JPH06310747A - Formation of chalcopyrite thin film and fabrication of thin film solar cell - Google Patents

Formation of chalcopyrite thin film and fabrication of thin film solar cell

Info

Publication number
JPH06310747A
JPH06310747A JP5097900A JP9790093A JPH06310747A JP H06310747 A JPH06310747 A JP H06310747A JP 5097900 A JP5097900 A JP 5097900A JP 9790093 A JP9790093 A JP 9790093A JP H06310747 A JPH06310747 A JP H06310747A
Authority
JP
Japan
Prior art keywords
thin film
chalcopyrite
heat treatment
solar cell
chalcogen element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5097900A
Other languages
Japanese (ja)
Inventor
Masahiro Matsui
正宏 松井
Takashi Namikata
尚 南方
Takayuki Watanabe
隆行 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5097900A priority Critical patent/JPH06310747A/en
Publication of JPH06310747A publication Critical patent/JPH06310747A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To fabricate a thin film solar cell having good characteristics by forming a thin film of chalcopyrite having high adhesion to a substrate, stoichiometric composition, and high crystallinity. CONSTITUTION:The thin film of chalcopyrite is formed by heat treating a thin film, where the mole ratio of chalcogen element to the component metal elements of a chalcopyrite compound other than the chalcogen element is between 0.2-1, in a gas atmosphere containing chalcogen element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カルコパイライト型化
合物の薄膜の形成方法及び薄膜太陽電池の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film of chalcopyrite type compound and a method for manufacturing a thin film solar cell.

【0002】[0002]

【従来の技術】カルコパイライト型化合物は、太陽電池
や発光素子等への応用が期待されている材料である。従
来、カルコパイライト型化合物の薄膜(以下、カルコパ
イライト薄膜と記す。)を非晶質基板、非晶質薄膜ある
いは金属薄膜上に形成する場合は、カルコパイライト型
化合物そのものを蒸発源として蒸着させる真空蒸着法、
カルコパイライト型化合物そのものをターゲットとして
用いるスパッタリング法、カルコパイライト型化合物の
成分元素を別々に蒸着させる多元の真空蒸着法、カルコ
パイライト型化合物の成分元素を別々にターゲットとし
て用いるマルチスパッタリング法、あるいは構成金属の
積層薄膜、例えばCu−In薄膜のカルコゲナイト化等
のプロセスによって形成している。
2. Description of the Related Art Chalcopyrite type compounds are materials that are expected to be applied to solar cells, light emitting devices and the like. Conventionally, when a thin film of a chalcopyrite compound (hereinafter referred to as a chalcopyrite thin film) is formed on an amorphous substrate, an amorphous thin film, or a metal thin film, a vacuum for vaporizing the chalcopyrite compound itself as an evaporation source. Evaporation method,
A sputtering method using the chalcopyrite type compound itself as a target, a multi-source vacuum deposition method in which the constituent elements of the chalcopyrite type compound are separately deposited, a multi-sputtering method using the constituent elements of the chalcopyrite type compound as separate targets, or a constituent metal Is formed by a process such as chalcogenization of a laminated thin film of, for example, a Cu—In thin film.

【0003】しかしながら、カルコパイライト型化合物
そのものを蒸発源あるいはターゲットとして用いる場
合、カルコゲン元素の離脱による組成ずれがおこりやす
い。成分元素を別々に蒸着、スパッタする場合は、個々
の元素の蒸着速度の厳密な制御が難しい等の問題が生じ
る。また、構成金属の積層薄膜をカルコゲナイト化する
場合、形成した薄膜の基板に対する密着性が悪かった
り、形状の異なる結晶粒が混在しやすい等の問題があっ
た。
However, when the chalcopyrite type compound itself is used as an evaporation source or a target, a composition shift due to the release of the chalcogen element is likely to occur. When the component elements are separately vapor-deposited and sputtered, there arises a problem that it is difficult to strictly control the vapor deposition rate of each element. In addition, when the laminated thin films of the constituent metals are chalcogenized, there are problems that the formed thin films have poor adhesion to the substrate, and that crystal grains having different shapes are easily mixed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、基板に対す
る密着性が良好で、カルコゲン元素の欠乏がなく、組成
の制御された高結晶性のカルコパイライト薄膜の形成方
法及びそれを用いた薄膜太陽電池の製造方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention is directed to a method for forming a highly crystalline chalcopyrite thin film having good adhesion to a substrate, no chalcogen element deficiency and a controlled composition, and a thin film solar using the same. An object is to provide a method for manufacturing a battery.

【0005】[0005]

【課題を解決するための手段】かかる状況下において、
本発明者らは、カルコパイライト薄膜中の成分金属元素
とカルコゲン元素との組成比と、膜の結晶性との関係に
ついて鋭意検討した結果、カルコゲン元素の組成比が、
化学量論組成(カルコゲン元素/金属元素のモル比1)
よりやや小さな薄膜を、そのカルコゲン元素を含有する
ガス雰囲気中で熱処理することにより、膜中にカルコゲ
ン元素が取り込まれて化学量論組成に近づくと共に、結
晶粒が大きく成長し、高結晶性のカルコパイライト薄膜
を形成することができ、しかも、このようなカルコパイ
ライト薄膜を用いて作製した薄膜太陽電池は、従来の方
法で作製したものに比べ、良好な特性を示すことをみい
だし、本発明をなすに至った。
[Means for Solving the Problems] Under such circumstances,
The present inventors, as a result of diligent examination of the relationship between the composition ratio of the component metal element and the chalcogen element in the chalcopyrite thin film and the crystallinity of the film, the composition ratio of the chalcogen element,
Stoichiometric composition (molar ratio of chalcogen element / metal element 1)
By heat-treating a slightly smaller thin film in a gas atmosphere containing the chalcogen element, the chalcogen element is incorporated into the film and the stoichiometric composition is approached. It has been found that a pyrite thin film can be formed, and that a thin-film solar cell produced using such a chalcopyrite thin film exhibits better characteristics than those produced by a conventional method. It came to eggplant.

【0006】すなわち、本発明は以下のとおりである。 1) 元素周期律表Ib族及びIIIb族金属並びにカ
ルコゲン元素からなり、熱処理後にカルコパイライト型
構造を採りうる薄膜を、上記カルコゲン元素を含有する
ガス雰囲気中で熱処理するカルコパイライト型化合物の
薄膜の形成方法において、熱処理前の上記薄膜中の元素
周期律表Ib族及びIIIb族金属に対するカルコゲン
元素のモル比が、0.2以上1未満であることを特徴と
するカルコパイライト型化合物の薄膜の形成方法。 2) 上記1記載のカルコパイライト型化合物の薄膜の
形成方法によって得られたカルコパイライト型化合物の
薄膜を用いることを特徴とする薄膜太陽電池の製造法。
That is, the present invention is as follows. 1) Formation of a thin film of a chalcopyrite type compound, which is a thin film made of a metal of Group Ib and Group IIIb of the Periodic Table of Elements and a chalcogen element and having a chalcopyrite type structure after heat treatment in a gas atmosphere containing the chalcogen element. A method for forming a thin film of a chalcopyrite-type compound, characterized in that the molar ratio of the chalcogen element to the metal of group Ib and group IIIb of the periodic table in the thin film before heat treatment is 0.2 or more and less than 1. . 2) A method for producing a thin-film solar cell, which comprises using a thin film of a chalcopyrite-type compound obtained by the method for forming a thin film of a chalcopyrite-type compound as described in 1 above.

【0007】本発明におけるカルコパイライト型化合物
とは、Cu,Ag等の元素周期律表Ib族金属及びA
l,Ga,In等の元素周期律表IIIb族金属並びに
S,Se,Te等のカルコゲン元素からなり、カルコパ
イライト(黄銅鉱)型構造をとる化合物を総称したもの
である。本発明において、熱処理前の薄膜の形成方法と
しては、スパッタ蒸着法、抵抗加熱蒸着法、電子線ビー
ム蒸着法、MBE、MOCVD、ALE、スプレー加熱
分解法、無電解メッキ法等多くの方法が選択できる。そ
の場合、熱処理前に、元素周期律表Ib族及びIIIb
族金属に対するカルコゲン元素のモル比が0.2以上1
未満であるような薄膜を形成する方法は、特に限定され
るものではないが、例えば、形成しようとするカルコパ
イライト型化合物の粉末又は成分金属元素各々のカルコ
ゲナイド化合物の混合粉末を、アルゴン等の不活性雰囲
気中で熱処理した粉末を原料として、スパッタ蒸着ある
いは抵抗加熱蒸着を行う方法及び成分金属元素とカルコ
ゲン元素を別々にとばす多源同時蒸着において、各元素
の蒸発速度をコントロールする方法等がある。
The chalcopyrite type compound in the present invention means a metal of Group Ib of the periodic table of elements such as Cu and Ag and A.
It is a general term for compounds having a chalcopyrite (chalcopyrite) type structure, which is composed of a group IIIb metal of the periodic table of elements such as l, Ga and In and a chalcogen element such as S, Se and Te. In the present invention, as a method for forming a thin film before heat treatment, many methods such as a sputter deposition method, a resistance heating deposition method, an electron beam deposition method, MBE, MOCVD, ALE, a spray heating decomposition method, and an electroless plating method are selected. it can. In that case, before the heat treatment, Group Ib and IIIb of the periodic table of the elements are used.
Molar ratio of chalcogen element to group metal is 0.2 or more 1
The method for forming a thin film having a thickness less than that is not particularly limited, but, for example, a powder of a chalcopyrite type compound to be formed or a mixed powder of chalcogenide compounds of each of the component metal elements is mixed with argon or the like. There are a method of performing sputter vapor deposition or resistance heating vapor deposition using a powder heat-treated in an active atmosphere, and a method of controlling the evaporation rate of each element in multisource simultaneous vapor deposition in which component metal elements and chalcogen elements are separately skipped.

【0008】熱処理前の薄膜中の元素周期律表Ib族金
属とIIIb族金属のモル比は、熱処理後にカルコパイ
ライト型構造をとりうれば特に限定されるものではない
が、IIIb族金属に対するIb族金属のモル比が、例
えば3以上と1よりも非常に大きかったり、0.3以下
と非常に小さかったりすると、熱処理後にカルコパイラ
イト型化合物とともにIb族金属やIIIb族金属のカ
ルコゲナイドが混在するようになり好ましくない。
The molar ratio of the group Ib metal to the group IIIb metal of the periodic table in the thin film before the heat treatment is not particularly limited as long as it has a chalcopyrite type structure after the heat treatment, but is not limited to the group Ib group to the group Ib metal. If the molar ratio of the metal is, for example, 3 or more, which is much larger than 1, or 0.3 or less, which is very small, the chalcogenide of the Ib group metal or the IIIb group metal may be mixed together with the chalcopyrite compound after the heat treatment. It is not preferable.

【0009】また本発明においては、熱処理前の薄膜
の、カルコゲン元素を除く成分金属元素である元素周期
律表Ib族及びIIIb族金属に対するカルコゲン元素
のモル比が、0.2以上1未満であることが必要であ
り、好ましくは0.3以上0.9以下である。1以上で
あると、熱処理による結晶性向上効果が著しく小さくな
る。一方、モル比が0.2より小さいと、熱処理した膜
が、中にボイドを有する密着性の低いものになる。
Further, in the present invention, the molar ratio of the chalcogen element to the metal of group Ib and IIIb of the periodic table, which is a component metal element excluding the chalcogen element, of the thin film before heat treatment is 0.2 or more and less than 1. It is necessary, and preferably 0.3 or more and 0.9 or less. When it is 1 or more, the effect of improving the crystallinity by the heat treatment is significantly reduced. On the other hand, when the molar ratio is less than 0.2, the heat-treated film has voids inside and low adhesion.

【0010】カルコゲン元素を含有するガス雰囲気中で
熱処理する場合のガスとしては、カルコゲン元素単体の
蒸気、カルコゲン元素の水素化物、炭化物、メチル化
物、エチル化物等があり、中でも水素化物は熱処理効果
が大きく現れ好ましい。カルコゲン元素を含有するガス
の濃度は特に限定されないが、0.01〜100mol
%が好ましく、より好ましくは0.1〜30mol%で
ある。希釈ガスとしては、アルゴン、ヘリウム、窒素等
の不活性ガスが用いられる。熱処理の温度については、
このガスによる結晶性向上効果を得るためには、熱処理
前の膜成長時の基板温度より高いことが必要であり、3
00℃以上であることが好ましい。また、熱処理時間に
ついては、0.5時間以上が好ましい。
Gases for heat treatment in a gas atmosphere containing a chalcogen element include vapor of a single element of chalcogen, a hydride of a chalcogen element, a carbide, a methylated product, an ethylated product, etc. Among them, a hydride has a heat treatment effect. It appears large and is preferable. The concentration of the gas containing the chalcogen element is not particularly limited, but 0.01 to 100 mol
% Is preferable, and more preferably 0.1 to 30 mol%. As the diluting gas, an inert gas such as argon, helium or nitrogen is used. For the temperature of heat treatment,
In order to obtain the effect of improving the crystallinity by this gas, it is necessary that the temperature is higher than the substrate temperature during the film growth before the heat treatment.
It is preferably 00 ° C. or higher. The heat treatment time is preferably 0.5 hours or more.

【0011】カルコパイライト化合物には、多くの種類
があるが、それらのうち、CuInS2 ,CuInSe
2 ,CuInTe2 ,CuGaSe2 ,CuGaT
2 ,AgInS2 ,AgInSe2 ,AgInT
2 ,AgGaSe2 ,AgGaTe 2 或いはそれらの
固溶体等が、適当なバンドギャップを持っており、薄膜
太陽電池用の材料として好ましい。
There are many types of chalcopyrite compounds.
There are, among them, CuInS2, CuInSe
2, CuInTe2, CuGaSe2, CuGaT
e2, AgInS2, AgInSe2, AgInT
e2, AgGaSe2, AgGaTe 2Or those
The solid solution has an appropriate band gap,
Preferred as a material for solar cells.

【0012】本発明の特徴は、カルコパイライト薄膜を
形成するに際し、熱処理前の薄膜中のカルコゲン元素を
除く成分金属元素に対するカルコゲン元素のモル比が
0.2以上1未満になっていることであり、構成するカ
ルコゲン元素を含有する雰囲気中で熱処理することによ
り、化学量論組成に近づくと共に、結晶粒が著しく成長
して高結晶性のカルコパイライト薄膜を形成でき、か
つ、このようなカルコパイライト薄膜を用いて作製した
薄膜太陽電池が良好な特性を示すということである。
A characteristic of the present invention is that, when forming a chalcopyrite thin film, the molar ratio of the chalcogen element to the component metal element excluding the chalcogen element in the thin film before the heat treatment is 0.2 or more and less than 1. By performing heat treatment in an atmosphere containing the constituent chalcogen element, it becomes possible to form a highly crystalline chalcopyrite thin film due to the crystal grains growing significantly while approaching the stoichiometric composition. It means that the thin-film solar cell produced by using has excellent characteristics.

【0013】[0013]

【実施例】以下に、この発明の実施例を具体的に説明す
る。
EXAMPLES Examples of the present invention will be specifically described below.

【0014】[0014]

【実施例1】Cu2 S粉末とIn2 3 粉末をモル比
1:1で混合後、Ar雰囲気中850℃で4時間焼成し
た。この粉末より作製したターゲットを用いて、スパッ
タリング法により、基板温度250℃でCu,In,S
からなる薄膜を形成した。この薄膜の組成比をEPMA
により測定したところ、Cu28at%、In28at
%、S44at%(Cu/In:1.0、S/(Cu+
In):0.79)であった。
Example 1 Cu 2 S powder and In 2 S 3 powder were mixed at a molar ratio of 1: 1 and then calcined in an Ar atmosphere at 850 ° C. for 4 hours. By using a target produced from this powder, Cu, In, S at a substrate temperature of 250 ° C. by a sputtering method.
Was formed. The composition ratio of this thin film is EPMA
Measured by Cu28at%, In28at
%, S44 at% (Cu / In: 1.0, S / (Cu +
In): 0.79).

【0015】次に、この薄膜を5mol%のH2 Sを含
むArガス雰囲気中700℃で3時間熱処理を行った。
熱処理後の薄膜の組成比をEPMA(日本電子(株)製
JCXA−733)により測定したところ、Cu25
at%、In25at%、S50at%であり、化学量
論組成のCuInS2 薄膜が形成されたことがわかる。
また、図1は、熱処理後の薄膜のX線回折スペクトル
((株)リガク製 RU−200を使用した。)である
が、このスペクトルからもカルコパイライト型構造を有
するCuInS2 薄膜であることが確認できる。尚、C
uInS2 (112)面のピークの半値幅は0.24度
であった。
Next, this thin film was heat-treated at 700 ° C. for 3 hours in an Ar gas atmosphere containing 5 mol% of H 2 S.
The composition ratio of the thin film after the heat treatment was measured by EPMA (JCXA-733 manufactured by JEOL Ltd.).
At%, In25 at%, and S50 at%, it can be seen that a CuInS 2 thin film having a stoichiometric composition was formed.
In addition, FIG. 1 shows an X-ray diffraction spectrum (using RU-200 manufactured by Rigaku Corporation) of the thin film after the heat treatment. From this spectrum, it can be seen that the thin film is a CuInS 2 thin film having a chalcopyrite type structure. I can confirm. Incidentally, C
The full width at half maximum of the peak of the uInS 2 (112) plane was 0.24 degrees.

【0016】図2は、上記の方法により作製したCuI
nS2 薄膜を用いた太陽電池の1例である。金属薄膜2
上の所定領域に、本発明の方法により、組成比がCu/
In=1のCuInS2 薄膜3を形成する。その上に、
ヘテロp−n接合を形成するために、CdS薄膜4を形
成する。その上の所定領域に、上部透明電極5を形成す
る。このようにして作製した太陽電池素子にAM1.5
の光を照射したところ、変換効率は4.5%であった。
FIG. 2 shows CuI prepared by the above method.
It is an example of a solar cell using an nS 2 thin film. Metal thin film 2
By the method of the present invention, the composition ratio Cu / Cu /
A CuInS 2 thin film 3 with In = 1 is formed. in addition,
A CdS thin film 4 is formed to form a hetero pn junction. The upper transparent electrode 5 is formed in a predetermined region above the upper transparent electrode 5. AM1.5 is applied to the solar cell element thus manufactured.
When irradiated with light, the conversion efficiency was 4.5%.

【0017】[0017]

【比較例1】混合粉末の焼成雰囲気が10mol%のH
2 Sを含むArガスであること以外は、実施例1と同様
にして、CuInS2 薄膜及び太陽電池素子を作製し
た。熱処理前後の薄膜の組成比は、いずれもCu24.
5at%,In24.5at%,S51at%(Cu/
In:1.0、S/(Cu+In):1.04)であ
り、熱処理による組成の変化はみられなかった。図3
は、熱処理後の薄膜のX線回折スペクトルであるが、カ
ルコパイライト型構造に特有の(103)面ピークがみ
られない。また、実施例1に比べて、ピーク強度が低い
上に、CuInS2 (112)面ピークの半値幅が0.
48度と大きく、結晶性が劣っていることがわかる。さ
らに、作製した太陽電池素子にAM1.5の光を照射し
たところ、変換効率は1.5%であった。
[Comparative Example 1] The firing atmosphere of the mixed powder was 10 mol% of H 2.
A CuInS 2 thin film and a solar cell element were produced in the same manner as in Example 1 except that Ar gas containing 2 S was used. The composition ratio of the thin film before and after the heat treatment was Cu24.
5at%, In24.5at%, S51at% (Cu /
In: 1.0, S / (Cu + In): 1.04), and no change in composition due to heat treatment was observed. Figure 3
Is an X-ray diffraction spectrum of the thin film after heat treatment, but no (103) plane peak peculiar to the chalcopyrite type structure is observed. In addition, the peak intensity is lower than that of Example 1, and the half width of the CuInS 2 (112) plane peak is less than 0.
It is as large as 48 degrees, which shows that the crystallinity is inferior. Further, when the manufactured solar cell element was irradiated with light of AM1.5, the conversion efficiency was 1.5%.

【0018】[0018]

【実施例2】Cu,In,Seの3つの蒸発源より、温
度250℃の基板上に、同時に蒸着し、Cu−In−S
eからなる薄膜を形成した。この際、各蒸発源の温度を
コントロールすることにより、膜中のCuとInのモル
比が1で、CuとInに対するSeのモル比が1より小
さくなるようにした。この薄膜の組成比をEPMAによ
り測定したところ、Cu33at%,In33at%,
Se34at%(Cu/In:1.0,Se/(Cu+
In):0.52)であった。次に、この薄膜を、10
mol%のSe蒸気を含むN2 ガス中600℃で2時間
熱処理を行った。熱処理後の薄膜の組成比をEPMAに
より測定したところ、Cu25at%,In25at
%,Se50at%であり、化学量論組成のCuInS
2 薄膜が形成されたことがわかる。又、熱処理後の薄
膜のX線回折スペクトルにおけるCuInSe2 (11
2)面のピークの半値幅は0.25度であった。
Example 2 Cu-In-S was simultaneously vapor-deposited on a substrate at a temperature of 250 ° C. from three evaporation sources of Cu, In and Se.
A thin film of e was formed. At this time, the temperature of each evaporation source was controlled so that the molar ratio of Cu and In in the film was 1 and the molar ratio of Se to Cu and In was smaller than 1. When the composition ratio of this thin film was measured by EPMA, Cu33at%, In33at%,
Se34 at% (Cu / In: 1.0, Se / (Cu +
In): 0.52). Next, this thin film is
Heat treatment was performed at 600 ° C. for 2 hours in N 2 gas containing mol% Se vapor. When the composition ratio of the thin film after the heat treatment was measured by EPMA, Cu25at%, In25at
%, Se50 at%, stoichiometric composition CuInS
It can be seen that the e 2 thin film was formed. In addition, CuInSe 2 (11
The half width of the peak on the 2) plane was 0.25 degree.

【0019】上記の方法により作製したCuInSe2
薄膜をCuInS2 薄膜の代わりに用いて実施例1と同
様の構造の太陽電池素子を作製し、これにAM1.5の
光を照射したところ、変換効率は6.5%であった。
CuInSe 2 produced by the above method
A solar cell element having the same structure as in Example 1 was prepared by using the thin film instead of the CuInS 2 thin film, and irradiated with light of AM1.5, the conversion efficiency was 6.5%.

【0020】[0020]

【比較例2】Cu,In,Se各蒸発源の温度をコント
ロールすることにより、膜中のCuとInのモル比が1
で、CuとInに対するSeのモル比が1より大きくな
るようにしたこと以外は、実施例2と同様にしてCuI
nSe2 薄膜及び太陽電池素子を作製した。熱処理前後
の薄膜の組成比は、いずれもCu24.2at%,In
24.2at%,Se51.6at%(Cu/In:
1.0、Se/(Cu+In):1.07)であり、熱
処理による組成の変化はみられなかった。熱処理後の薄
膜のX線回折スペクトルにおけるCuInSe2 (11
2)面のピークの半値幅は0.48度であった。また、
作製した太陽電池素子にAM1.5の光を照射したとこ
ろ、変換効率は3.5%であった。
Comparative Example 2 By controlling the temperature of each evaporation source of Cu, In, and Se, the molar ratio of Cu and In in the film is 1
In the same manner as in Example 2, except that the molar ratio of Se to Cu and In was set to be greater than 1, CuI
An nSe 2 thin film and a solar cell element were produced. The composition ratios of the thin film before and after the heat treatment were Cu 24.2 at% and In
24.2 at%, Se51.6 at% (Cu / In:
1.0, Se / (Cu + In): 1.07), and no change in composition due to heat treatment was observed. CuInSe 2 (11 in the X-ray diffraction spectrum of the thin film after heat treatment
The half width of the peak on the 2) plane was 0.48 degrees. Also,
When the manufactured solar cell element was irradiated with light of AM1.5, the conversion efficiency was 3.5%.

【0021】[0021]

【比較例3】Cu,In,Se各蒸発源の温度をコント
ロールすることにより、膜中のCuとInのモル比が
1、CuとInに対するSeのモル比が0.1になるよ
うにしたこと以外は、実施例2と同様にしてCuInS
2 薄膜及び太陽電池素子を作製した。熱処理後の薄膜
の組成比をEPMAにより測定したところ、Cu25a
t%,In25at%,Se50at%であり、X線回
折スペクトルにおけるCuInSe2 (112)面のピ
ークの半値幅は0.26度であった。ただし、SEMに
より表面を観察すると、明かに異相とわかる針状結晶が
混在しており、加えて、熱処理後の薄膜には部分的に剥
離がみられた。作製した太陽電池素子にAM1.5の光
を照射したところ、変換効率は3.2%であった。
Comparative Example 3 By controlling the temperature of each evaporation source of Cu, In and Se, the molar ratio of Cu and In in the film was set to 1 and the molar ratio of Se to Cu and In was set to 0.1. Except for the above, CuInS was prepared in the same manner as in Example 2.
An e 2 thin film and a solar cell element were produced. When the composition ratio of the thin film after heat treatment was measured by EPMA, it was found that Cu25a
t%, In25 at% and Se50 at%, and the half width of the peak of the CuInSe 2 (112) plane in the X-ray diffraction spectrum was 0.26 degrees. However, when the surface was observed by SEM, needle-like crystals clearly showing different phases were mixed, and in addition, partial peeling was observed in the thin film after the heat treatment. When the manufactured solar cell element was irradiated with light of AM 1.5, the conversion efficiency was 3.2%.

【0022】[0022]

【発明の効果】本発明によれば、基板に対する密着性が
良好で、化学量論組成を有する高結晶性のカルコパイラ
イト薄膜を形成することができ、この薄膜を用いて作製
した薄膜太陽電池は良好な特性を示す。
According to the present invention, a highly crystalline chalcopyrite thin film having good adhesion to a substrate and having a stoichiometric composition can be formed, and a thin film solar cell produced using this thin film is Shows good properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における、熱処理後の薄膜のX線回折
スペクトルである。
FIG. 1 is an X-ray diffraction spectrum of a thin film after heat treatment in Example 1.

【図2】本発明によるカルコパイライト薄膜を用いた太
陽電池の素子構造の1例である。
FIG. 2 is an example of an element structure of a solar cell using the chalcopyrite thin film according to the present invention.

【図3】比較例1における、熱処理後の薄膜のX線回折
スペクトルである。
FIG. 3 is an X-ray diffraction spectrum of a thin film after heat treatment in Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 金属電極 3 CuInS2 薄膜 4 CdS薄膜 5 透明電極1 glass substrate 2 metal electrode 3 CuInS 2 thin film 4 CdS thin film 5 transparent electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 元素周期律表Ib族及びIIIb族金属
並びにカルコゲン元素からなり、熱処理後にカルコパイ
ライト型構造を採りうる薄膜を、上記カルコゲン元素を
含有するガス雰囲気中で熱処理するカルコパイライト型
化合物の薄膜の形成方法において、熱処理前の上記薄膜
中の元素周期律表Ib族及びIIIb族金属に対するカ
ルコゲン元素のモル比が、0.2以上1未満であること
を特徴とするカルコパイライト型化合物の薄膜の形成方
法。
1. A chalcopyrite-type compound obtained by heat-treating, in a gas atmosphere containing the chalcogen element, a thin film made of a metal of Group Ib and Group IIIb of the Periodic Table of Elements and a chalcogen element and having a chalcopyrite-type structure after the heat treatment. In the method for forming a thin film, the molar ratio of the chalcogen element to the Group Ib and Group IIIb metals of the periodic table in the thin film before heat treatment is 0.2 or more and less than 1 and is a thin film of a chalcopyrite type compound. Forming method.
【請求項2】 請求項1記載のカルコパイライト型化合
物の薄膜の形成方法によって得られたカルコパイライト
型化合物の薄膜を用いることを特徴とする薄膜太陽電池
の製造法。
2. A method for producing a thin film solar cell, which comprises using a thin film of a chalcopyrite type compound obtained by the method of forming a thin film of a chalcopyrite type compound according to claim 1.
JP5097900A 1993-04-23 1993-04-23 Formation of chalcopyrite thin film and fabrication of thin film solar cell Withdrawn JPH06310747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5097900A JPH06310747A (en) 1993-04-23 1993-04-23 Formation of chalcopyrite thin film and fabrication of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5097900A JPH06310747A (en) 1993-04-23 1993-04-23 Formation of chalcopyrite thin film and fabrication of thin film solar cell

Publications (1)

Publication Number Publication Date
JPH06310747A true JPH06310747A (en) 1994-11-04

Family

ID=14204618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5097900A Withdrawn JPH06310747A (en) 1993-04-23 1993-04-23 Formation of chalcopyrite thin film and fabrication of thin film solar cell

Country Status (1)

Country Link
JP (1) JPH06310747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151432A (en) * 2010-06-28 2012-08-09 Kyocera Corp Photoelectric conversion element and photoelectric conversion device, and method of manufacturing photoelectric conversion element
JP2013224487A (en) * 2012-03-19 2013-10-31 Mitsubishi Materials Corp Sputtering target for forming compound thin film, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012151432A (en) * 2010-06-28 2012-08-09 Kyocera Corp Photoelectric conversion element and photoelectric conversion device, and method of manufacturing photoelectric conversion element
JP2013224487A (en) * 2012-03-19 2013-10-31 Mitsubishi Materials Corp Sputtering target for forming compound thin film, and method for producing the same

Similar Documents

Publication Publication Date Title
KR101004452B1 (en) Group i-?-? quaternary or higher alloy semiconductor films
US20200303571A1 (en) I-iii-vi2 photovoltaic absorber layers
JP3258667B2 (en) Manufacturing method of high efficiency Cu (In, Ga) (Se, S) 2 thin film for solar cell
US9881774B2 (en) Copper indium gallium selenide (CIGS) thin films with composition controlled by co-sputtering
US7833821B2 (en) Method and apparatus for thin film solar cell manufacturing
US5441897A (en) Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US8188367B2 (en) Multilayer structure to form absorber layers for solar cells
KR101522128B1 (en) Method for producing the pentanary compound semiconductor cztsse, and thin-film solar cell
JPH06151930A (en) Manufacture of chalcopyrite-type compound film
WO2003005456A1 (en) Method for forming light-absorbing layer
TW201138144A (en) Method of manufacturing solar cell
WO2011083646A1 (en) Sputtering target, compound semiconductor thin film, solar cell having compound semiconductor thin film, and method for manufacturing compound semiconductor thin film
JP2000087234A (en) Device for producing compound film and production of compound film
JP2003282600A (en) Method and device for manufacturing light-absorbing layer
Zweigart et al. CuInSe 2 film growth using precursors deposited at low temperature
JP5378534B2 (en) Method for producing chalcopyrite type compound thin film and method for producing thin film solar cell using the same
JPH06310747A (en) Formation of chalcopyrite thin film and fabrication of thin film solar cell
KR101388458B1 (en) Preparation method for cigs thin film using rapid thermal processing
KR101638379B1 (en) CIGS solar cell with preferred orientation and method of manufacturing the same
CN114242819A (en) Sb2(S1-xSex)3Thin film solar cell absorption layer and preparation method and application thereof
Terauchi et al. Preparation of CuInSe2 thin films by selenization of Cu In O precursors
CN102515561A (en) Preparation technology of Cu (In, al) Se2thin film
JPH08195499A (en) Manufacture of chalcopyrite compound film
Yun et al. Formation of CuIn1-xAlxSe2 Thin Films by Selenization of Metallic Precursors in Se Vapor
JPH05267704A (en) Manufacture of ternary compound semiconductor thin film

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704