JPH02293391A - Method for hot-wall epitaxial growth - Google Patents

Method for hot-wall epitaxial growth

Info

Publication number
JPH02293391A
JPH02293391A JP11084289A JP11084289A JPH02293391A JP H02293391 A JPH02293391 A JP H02293391A JP 11084289 A JP11084289 A JP 11084289A JP 11084289 A JP11084289 A JP 11084289A JP H02293391 A JPH02293391 A JP H02293391A
Authority
JP
Japan
Prior art keywords
substrate
epitaxial growth
epitaxial
crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11084289A
Other languages
Japanese (ja)
Inventor
Yoshito Nishijima
西嶋 由人
Akira Sawada
亮 澤田
Koji Ebe
広治 江部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11084289A priority Critical patent/JPH02293391A/en
Publication of JPH02293391A publication Critical patent/JPH02293391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain an epitaxially grown crystal having improved crystallinity by forming a space between the opening of a source crucible and a substrate for epitaxial growth in such a manner as to keep high concentration of low- vapor pressure molecule having a specific action and exposing the substrate to the atmosphere of the space. CONSTITUTION:A GaAs substrate 3 for epitaxial growth is placed on a substrate-holding table 5 provided with a heater 4 and the substrate 3 is positioned above the opening 11 of a source crucible 2 containing the source material 6 for CdTe. The GaAs substrate 3 is heated at about 350 deg.C and the source material 6 is heated at about 500 deg.C. The crucible is evacuated at a specific rate to remove Cd molecule 13 having high vapor pressure through the gap between the bottom face 5A of the substrate-holding table 5 and the opening 11 and to form a concentrated phase of Te2 molecule in the space encircled with the substrate 3 and the substrate-holding table 5. The Te2 molecule is a low vapor-pressure component of the volatile components of CdTe. A CdTe single crystal of (100) plane is formed on the substrate 3 by this process.

Description

【発明の詳細な説明】 〔概 要〕 ホットウォールエピタキシャル成長方法に関し、基板上
に該基板と組成の異なる化合物半導体結晶を所望の結晶
成長方向でエピタキシャル成長できるようにしたホント
ウォールエピタキシャル成長方法を目的とし、 真空室内に設置され、上部が開放で内部に蒸気圧がそれ
ぞれ異なる原子で構成されたエピタキシャル成長用ソー
ス材料を収容したソース坩堝上にエピタキシャル成長用
基板を設置し、該ソース坩堝内のソース材料を加熱して
該ソース材料の蒸発成分を基板上に被着してエビタギシ
ャル成長する方法に於いて、 前記ソース坩堝の上部の開口部と、エピタキシャル成長
用基板の基板表面との間に、エビクキシャル成長用ソー
ス材料の蒸発成分の内で、エピタキシャル結晶成長面を
所定の結晶成長面に規制する低薫気圧分子の濃度を大き
く保つような空間部を形成し、該空間部で形成された低
蒸気圧分子濃度の大きい雰囲気に基板を曝してエピタキ
シャル成長することで構成する。
[Detailed Description of the Invention] [Summary] Regarding a hot wall epitaxial growth method, the present invention aims to provide a real wall epitaxial growth method in which a compound semiconductor crystal having a composition different from that of the substrate can be epitaxially grown on a substrate in a desired crystal growth direction. An epitaxial growth substrate is placed on a source crucible that is installed in a room, has an open top, and contains a source material for epitaxial growth that is composed of atoms with different vapor pressures, and heats the source material in the source crucible. In the method for depositing an evaporated component of the source material on a substrate for evitaxial growth, the evaporation component of the source material for evixaxial growth is placed between the upper opening of the source crucible and the substrate surface of the substrate for epitaxial growth. Among the components, a space is formed to maintain a high concentration of low vapor pressure molecules that regulate the epitaxial crystal growth surface to a predetermined crystal growth surface, and an atmosphere with a high concentration of low vapor pressure molecules is formed in the space. It is constructed by exposing the substrate to epitaxial growth.

〔産業上の利用分野〕[Industrial application field]

本発明はホットウォールエピタキシャル成長方法に係り
、特に基板上に化合物半導体のエビ多キシャル結晶が所
定の結晶成長方向で形成され得るようにしたホントウォ
ールエピタキシャル成長方法に関する。
The present invention relates to a hot wall epitaxial growth method, and more particularly to a real wall epitaxial growth method in which an epitaxial crystal of a compound semiconductor can be formed on a substrate in a predetermined crystal growth direction.

ホットウォールエピタキシャル成長方法は、鉛テルル(
PbTe)や、鉛・錫・テルル(PbsnTe)等の■
■族の化合物半導体結晶や、ガリウム砒素(GaAs)
に代表されるIII−V族化合物半導体結晶や、カドミ
ウムテルル(CdTe)等のII−Vl族化合物半導体
結晶を用いた光デバイスの形成、および集積回路の結晶
製造技術として確立しつつある。
The hot wall epitaxial growth method uses lead tellurium (
■ PbTe), lead, tin, tellurium (PbsnTe), etc.
Group III compound semiconductor crystals, gallium arsenide (GaAs)
It is becoming established as a crystal manufacturing technology for forming optical devices and integrated circuits using III-V group compound semiconductor crystals such as those represented by III-V compound semiconductor crystals, and II-Vl group compound semiconductor crystals such as cadmium tellurium (CdTe).

このホットウォールエピタキシャル成長方法は高真空に
排気された室内に、形成すべき化合物半導体結晶のソー
ス材料を収容し、かつ側壁が加熱されたソース坩堝を配
設し、該坩堝の開口部にエピタキシャル層を形成する基
板を設置し、その坩堝内の蒸発した成分を、基板にエピ
タキシャル層として付着させるようにしている。そのた
め、閉管型気相成長方法と類似しており、ソース材料の
蒸発した成分がホットウォールの側壁に衝突しながら基
板上に到達するため、熱平衡に近い状態でエピタキシャ
ル成長でき、形成される結晶層内に偏析を発生しない均
一な組成、および均一なキャリア濃度の薄層状態の結晶
が得られる。
In this hot wall epitaxial growth method, a source crucible containing a source material for a compound semiconductor crystal to be formed and a heated side wall is placed in a room evacuated to high vacuum, and an epitaxial layer is formed in the opening of the crucible. A substrate to be formed is placed, and the evaporated components in the crucible are attached to the substrate as an epitaxial layer. Therefore, it is similar to the closed-tube vapor phase growth method, and the evaporated components of the source material reach the substrate while colliding with the sidewalls of the hot wall, allowing epitaxial growth in a state close to thermal equilibrium. A thin layer crystal with a uniform composition and uniform carrier concentration without segregation can be obtained.

また赤外線形成用材料としては、エネルギーハンドギャ
ップの狭い水銀・カドミウム・テルル(Hg+−x c
dXTe)のような化合物半導体結晶が用いられており
、このような化合物半導体結晶を素子形成に都合が良い
ように大面積でかつ薄膜状態に形成するために前記Hg
+−x Cd)I Teと格子定数が近接したカドミウ
ムテルル(CdTe)基板の上に、Hg+−x Cd.
 Te結晶をエピタキシャル成長している。
In addition, as materials for forming infrared rays, mercury, cadmium, tellurium (Hg+-x c
A compound semiconductor crystal such as dXTe) is used, and in order to form such a compound semiconductor crystal in a large area and thin film state convenient for device formation, the Hg
+-x Cd)I Hg+-x Cd.
Te crystal is grown epitaxially.

ところで、上記CdTeの結晶は大面積の単結晶が得難
く、そのため大面積の単結晶が比較的容易に得やすいガ
リウム砒素(GaAs )基板上に、前記したホノトウ
ォールエピタキシャル成長方法を用いてCdTeのエピ
タキシャル層を形成し、これを基板結晶として用いてそ
の上にHgI−XCdXTeのエピタキシャル結晶を形
成している。
By the way, it is difficult to obtain a large-area single crystal of CdTe, so CdTe is grown using the above-mentioned photowall epitaxial growth method on a gallium arsenide (GaAs) substrate, where it is relatively easy to obtain a large-area single crystal. An epitaxial layer is formed, and this is used as a substrate crystal, on which an epitaxial crystal of HgI-XCdXTe is formed.

〔従来の技術〕[Conventional technology]

第3図は従来のホットウォールエピタキシャル成長装置
の説明図で、GaAs基板上にCdTeのエピタキシャ
ル層を形成する装置である。
FIG. 3 is an explanatory diagram of a conventional hot wall epitaxial growth apparatus, which is an apparatus for forming a CdTe epitaxial layer on a GaAs substrate.

図示するように10− 7torr程度の高真空に排気
された真空室1内には、上部が開放ソース坩堝2が設置
され、このソース坩堝2の上部にはGaAsより成るエ
ピタキシャル成長用基板3を保持し、この基板を加熱す
るヒータ4を内蔵した基板設置台5が設けられている。
As shown in the figure, a source crucible 2 with an open top is installed in a vacuum chamber 1 evacuated to a high vacuum of about 10-7 torr, and an epitaxial growth substrate 3 made of GaAs is held in the upper part of the source crucible 2. A substrate installation stand 5 is provided which includes a built-in heater 4 for heating the substrate.

上記ソース坩堝2内には、ブリッジマン法で形成したC
dTeの単結晶より成るソース材料6が収容され、エピ
タキシャル成長用基板として結晶成長面が(100”)
面のGaAs単結晶が用いられている。
Inside the source crucible 2, C was formed by the Bridgman method.
A source material 6 made of a single crystal of dTe is accommodated, and the crystal growth surface is (100”) as a substrate for epitaxial growth.
A planar GaAs single crystal is used.

更にエピタキシャル成長用基板の表面論と基板設置台5
の底部道との距離は1〜1.5価程度に接近させて基板
設置台上に設置し、このソース坩堝2の側壁2^のヒー
タ7を500″Cの温度で加熱し、前記基板を350゜
C程度の温度で加熱することで、CdTeのソース材料
より蒸発した成分を基板上に付着してGaAs基板上に
CdTeのエビクキシャル結晶を成長している。
Furthermore, surface theory of substrates for epitaxial growth and substrate installation stand 5
The source crucible 2 is placed on a substrate mounting table with a distance from the bottom path of about 1 to 1.5, and the heater 7 on the side wall 2^ of the source crucible 2 is heated to a temperature of 500''C to heat the substrate. By heating at a temperature of about 350° C., components evaporated from the CdTe source material are deposited on the substrate, thereby growing an evixaxial crystal of CdTe on the GaAs substrate.

また上記ソース坩堝内にカドミウム・亜鉛・テルル( 
CdZnTe)よりなるソース材料を収容し、GaAs
基板上にCdZnTeのエピタキシャル層を成長する方
法も採られている。
In addition, cadmium, zinc, tellurium (
CdZnTe) and GaAs
A method of growing an epitaxial layer of CdZnTe on a substrate has also been adopted.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、上記した従来の方法で結晶成長面が(100)の
GaAsの単結晶を用い、その上にCdTeのエピタキ
シャル結晶を成長した場合、形成されるCdTeのエピ
タキシャル結晶は(100)面、または(1 1 1)
面、或いは上記(’100)面と(111)面の両方の
結晶成長面が混在したエピタキシャル結晶が形成される
不都合が生じる。
However, when a GaAs single crystal with a (100) crystal growth plane is used in the above conventional method and a CdTe epitaxial crystal is grown thereon, the CdTe epitaxial crystal that is formed will have a (100) plane or a (100) plane. 1 1 1)
A problem arises in that an epitaxial crystal is formed in which both the ('100) and (111) crystal growth planes coexist.

このように結晶成長面が異なったり、或いは結晶成長面
が混在したエピタキシャル結晶を有する基板をエピタキ
シャル成長用基板として用いると、該基板上には所望の
結晶成長面を有するog,−XCdxTeのエピタキシ
ャル層が形成されない不都合がある。
When a substrate having an epitaxial crystal with different crystal growth planes or mixed crystal growth planes is used as an epitaxial growth substrate, an epitaxial layer of og, -XCdxTe having a desired crystal growth plane is formed on the substrate. There is an inconvenience that it is not formed.

本発明は上記した問題点を解決し、所定の結晶成長面を
有するGaAs基板上に、所定の結晶成長面を存するC
dTeのエピタキシャル結晶が確実に得られるようにし
たホントウォールエピタキシャル成長方法の提供を目的
とする。
The present invention solves the above-mentioned problems, and provides a GaAs substrate with a predetermined crystal growth surface.
The object of the present invention is to provide a true wall epitaxial growth method that can reliably obtain dTe epitaxial crystals.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための本発明のホットウォールエピ
タキシャル成長方法は、第1図の原理図に示すようにエ
ピタキシャル成長用ソース材料を収容したソース坩堝2
の上部の開口部1lと、エピタキシャル成長用基板3の
基板表面3Aとの間に、エピタキシャル成長用ソース材
料の蒸発成分の内で、エピタキシャル結晶成長面を所定
の結晶成長面に規制する低蒸気圧分子の濃度を太き《保
つような空間部12を形成し、該空間部12で形成され
た低蒸気圧分子濃度の大きい雰囲気にエピタキシャル成
長用基板3を曝してエピタキシャル成長することにある
The hot-wall epitaxial growth method of the present invention for achieving the above object uses a source crucible 2 containing a source material for epitaxial growth as shown in the principle diagram of FIG.
Between the upper opening 1l and the substrate surface 3A of the epitaxial growth substrate 3, among the evaporated components of the epitaxial growth source material, low vapor pressure molecules that regulate the epitaxial crystal growth surface to a predetermined crystal growth surface are present. The purpose is to form a space 12 that maintains a large concentration, and to expose the epitaxial growth substrate 3 to an atmosphere with a high concentration of low vapor pressure molecules formed in the space 12 to perform epitaxial growth.

〔作 用〕[For production]

CdTeのソース材料を高真空中で加熱するとCd原子
とTe.分子に成って蒸発する。
When CdTe source material is heated in a high vacuum, Cd atoms and Te. It turns into molecules and evaporates.

そして(100)面の成長面を有するGaAs基板の表
面上で、CdTeの蒸気の雰囲気中のTe.分子の占め
る濃度が、Cd原子の占める濃度より大であると(10
0)面の成長面を有するCdTeのエピタキシャル層が
形成されやすいことを本発明者等は実験的に確かめた。
Then, Te. When the concentration occupied by molecules is larger than the concentration occupied by Cd atoms (10
The present inventors have experimentally confirmed that an epitaxial layer of CdTe having a growth surface of 0) plane is easily formed.

ところでTeの沸点は1気圧で1390’Cで、Cdの
沸点は767”Cであり、Cd分子の方がTez分子よ
りも蒸発し易く蒸気圧が高い。そのため、基板表面と坩
堝の開口部との間の距離を、従来の1〜1.5 mから
15mmとその間隔を広げて、坩堝の開口部より奥まっ
た位置に基板を設置するようにし、坩堝の開口部と基板
設置台の底部の間の隙間より蒸気圧の高いCd原子を排
気することで、基板表面にTe.分子の占める濃度が大
きいTeリッチのCdTeの蒸気の雰囲気を形成し、こ
のTe’JンチのCdTeの蒸気の雰囲気でGaAs基
坂上にCdTeのエピタキシャル層を成長すると、Ga
As基板上に(100)面の結晶成長面を有するCdT
eのエピタキシャル結晶を形成することができる。
By the way, the boiling point of Te is 1390'C at 1 atm, and the boiling point of Cd is 767'C, and Cd molecules evaporate more easily and have a higher vapor pressure than Tez molecules.Therefore, the substrate surface and the opening of the crucible The distance between the crucible and the bottom of the substrate mounting table was increased from the conventional 1 to 1.5 m to 15 mm, and the substrate was installed at a position deeper than the opening of the crucible. By exhausting Cd atoms with a high vapor pressure from the gap between them, a Te-rich CdTe vapor atmosphere with a high concentration of Te molecules is formed on the substrate surface, and this Te'J-rich CdTe vapor atmosphere is created. When an epitaxial layer of CdTe is grown on a GaAs substrate using
CdT with (100) crystal growth plane on As substrate
It is possible to form an epitaxial crystal of e.

〔実 施 例〕 以下、図面を用いながら本発明の一実施例につき詳細に
説明する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第2図は本発明のホットウォールエピタキシャル成長方
法の一実施例の要部説明図である。
FIG. 2 is an explanatory diagram of a main part of an embodiment of the hot wall epitaxial growth method of the present invention.

図示するように、本発明の方法を実施するホットウォー
ルエピタキシャル成長装置に於いては、石英よりなり基
板を加熱するヒータ4を備えた基板設置台5に(100
)面の結晶成長面を有し、直径が35IIIIlのGa
Asよりなるエピタキシャル成長用基板3を設置する。
As shown in the figure, in the hot wall epitaxial growth apparatus that implements the method of the present invention, a substrate mounting table 5 (100
) crystal growth plane and a diameter of 35IIII
An epitaxial growth substrate 3 made of As is installed.

そしてこのエピタキシャル成長用基板3を、ブリッジマ
ン法で形成したCdTeの単結晶より成るソース材料6
を収容したソース坩堝2の開口部ll上に設置する. このエピタキシャル成長用基板3の表面3Aと、基板設
置台5の底面5Aとの距離!は、従来の1.5鵡より1
5+w程度に大きく保ち、基板設置台5の底面5Aより
見て基板表面3^の位置が、従来の場合におけるよりも
奥の方向に位置するように配置する。
Then, this epitaxial growth substrate 3 is replaced with a source material 6 made of a CdTe single crystal formed by the Bridgman method.
The source crucible 2 is placed over the opening ll of the source crucible 2 containing the . The distance between the surface 3A of this epitaxial growth substrate 3 and the bottom surface 5A of the substrate installation stand 5! is 1.5 parrots compared to the conventional 1.5 parrots.
5+w, and the substrate surface 3^ is arranged so that the position of the substrate surface 3^ is located further back when viewed from the bottom surface 5A of the substrate installation stand 5 than in the conventional case.

そしてソース材料6のCdTeより蒸発した蒸発成分の
内の蒸気圧の大きいCd分子l3が選択的に充分排気さ
れるように、坩堝の開口部11と基板設置台の底面5^
との間の寸法dを所定の寸法に保つ.このようなソース
材料6を収容したソース坩堝2とエピタキシャル成長用
基板3を設置した基板設置台5とを収容した室(図示せ
ず)内を10− ’ to『rの真空度に成る迄排気す
る。
Then, the opening 11 of the crucible and the bottom surface 5^ of the substrate mounting table are opened so that the Cd molecules l3 having a high vapor pressure among the evaporated components evaporated from the CdTe of the source material 6 are selectively and sufficiently exhausted.
Keep the dimension d between . The chamber (not shown) containing the source crucible 2 containing the source material 6 and the substrate mounting table 5 containing the epitaxial growth substrate 3 is evacuated to a degree of vacuum of 10-'to'r. .

次いでGaAsよりなるエピタキシャル成長用基板3を
350゜Cの温度に加熱し、ソース材料6を500゜C
程度の温度に加熱し、室内を所定の排気速度で排気しな
がらエピタキシャル成長すると基板上に1μlI/時間
の速度でCdTeの結晶がエピタキシャル成長する。
Next, the epitaxial growth substrate 3 made of GaAs is heated to a temperature of 350°C, and the source material 6 is heated to a temperature of 500°C.
When the substrate is heated to a certain temperature and epitaxial growth is performed while the chamber is evacuated at a predetermined exhaust rate, CdTe crystals are epitaxially grown on the substrate at a rate of 1 μl/hour.

このようにすると蒸気圧の高いCd原子13は選択的に
基板設置台5の底面5八と、坩堝の開口部1lとの隙間
より排気されて除去され、基板設置台5の側壁部5Bと
奥まった位置に配置されるエピタキシャル成長用基板3
とで形成された空間部12にはCdTeの蒸発成分の内
で低蒸気圧のTe2分子14の濃度の高い成分が形成さ
れ、この雰囲気内でGaAs基板上にエピタキシャル層
を形成すると(100)面のCdTeの結晶が形成され
る。
In this way, the Cd atoms 13 with high vapor pressure are selectively exhausted and removed through the gap between the bottom surface 58 of the substrate mounting table 5 and the opening 1l of the crucible, and are recessed into the side wall 5B of the substrate mounting table 5. epitaxial growth substrate 3 placed at a position
A component with a high concentration of low vapor pressure Te2 molecules 14 among the evaporated components of CdTe is formed in the space 12 formed by CdTe crystals are formed.

このようにして形成された厚さが4μmのCdTeのエ
ピタキシャル結晶を、X線回折法で検査したところ、結
晶性を示すX線回折ピークの半値幅(FWHM)が、(
400)面で300秒の値を示し、そして良好な結晶性
を有する単結晶であることをlIII認した。
When the CdTe epitaxial crystal thus formed with a thickness of 4 μm was examined by X-ray diffraction, the half-width at half maximum (FWHM) of the X-ray diffraction peak indicating crystallinity was (
400) plane and was found to be a single crystal with good crystallinity.

以上述べたように、本発明の方法によれば、基板上に所
定の結晶方位の成長面を有する化合物半導体のエピタキ
シャル結晶が再現性良く形成され、このようなエピタキ
シャル結晶を有する基板を用い、その上に’g+−x 
Cd++ Teのエピタキシャル層を形成した材料を用
いて赤外線検知素子を形成すると高品位の検知素子が得
られる。
As described above, according to the method of the present invention, an epitaxial crystal of a compound semiconductor having a growth plane with a predetermined crystal orientation is formed on a substrate with good reproducibility. 'g+-x on top
When an infrared sensing element is formed using a material in which an epitaxial layer of Cd++Te is formed, a high-quality sensing element can be obtained.

なお、CdTeのエピタキシャル層の代わりに、CdZ
nTeのソース材料を用いてCdZnTeのエピタキシ
ャル結晶を形成する場合にも本発明は適応できる。
Note that instead of the CdTe epitaxial layer, CdZ
The present invention can also be applied to the case where a CdZnTe epitaxial crystal is formed using an nTe source material.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法によれば、所定の結晶方
向を有するエピタキシャル層が基板上に再現性良く形成
されるので、このようなエピタキシャル結晶を用いて赤
外線検知素子を形成すれば、高品位な赤外線検知素子が
得られる効果がある。
As described above, according to the method of the present invention, an epitaxial layer having a predetermined crystal direction is formed on a substrate with good reproducibility, so if an infrared sensing element is formed using such an epitaxial crystal, high This has the effect of providing a high-quality infrared sensing element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の原理図、 第2図は本発明の方法の一実施例の説明図、第3図は従
来のホットウォールエピタキシャル成長方法の説明図で
ある。 図に於いて、 2はソース坩堝、3はエピタキシャル成長用基板、4は
ヒータ、5は基板設置台、5Aは基板設置台の底面、5
Bは基板設置台の側壁、6はソース材料、l1は開口部
、12は空間部、l3は高蒸気圧分子(Cd分子)、l
4は低蒸気圧分子( Te2分子)を示す。 第1図 ,,−−4″−7− 第2図
FIG. 1 is a diagram showing the principle of the method of the present invention, FIG. 2 is an explanatory diagram of an embodiment of the method of the present invention, and FIG. 3 is an explanatory diagram of a conventional hot wall epitaxial growth method. In the figure, 2 is a source crucible, 3 is an epitaxial growth substrate, 4 is a heater, 5 is a substrate installation table, 5A is the bottom of the substrate installation table, 5
B is the side wall of the substrate installation stand, 6 is the source material, l1 is the opening, 12 is the space, l3 is a high vapor pressure molecule (Cd molecule), l
4 indicates a low vapor pressure molecule (Te2 molecule). Figure 1, --4''-7- Figure 2

Claims (1)

【特許請求の範囲】  真空室内に設置され、上部が開放で内部に蒸気圧がそ
れぞれ異なる原子で構成されたエピタキシャル成長用ソ
ース材料(6)を収容したソース坩堝(2)上にエピタ
キシャル成長用基板(3)を設置し、該ソース坩堝内の
ソース材料を加熱して該ソース材料の蒸発成分を基板上
に被着してエピタキシャル成長する方法に於いて、 前記ソース坩堝(2)の上部の開口部(11)と、エピ
タキシャル成長用基板(3)の基板表面との間に、エピ
タキシャル成長用ソース材料の蒸発成分の内で、エピタ
キシャル結晶成長面を所定の結晶成長面に規制する低蒸
気圧分子(14)の濃度を大きく保つような空間部(1
2)を形成し、該空間部で形成された低蒸気圧分子濃度
の大きい雰囲気に基板を曝してエピタキシャル成長する
ことを特徴とするホットウォールエピタキシャル成長方
法。
[Scope of Claims] An epitaxial growth substrate (3) is placed on a source crucible (2) that is installed in a vacuum chamber, has an open top, and contains therein an epitaxial growth source material (6) composed of atoms with different vapor pressures. ), the source crucible is heated, and the evaporated components of the source material are deposited on the substrate for epitaxial growth, the source crucible (2) having an opening (11) in the upper part thereof. ) and the substrate surface of the epitaxial growth substrate (3), there is a concentration of low vapor pressure molecules (14) among the evaporated components of the epitaxial growth source material that regulates the epitaxial crystal growth surface to a predetermined crystal growth surface. A space (1
2), and epitaxial growth is performed by exposing the substrate to an atmosphere with a high concentration of low vapor pressure molecules formed in the space.
JP11084289A 1989-04-28 1989-04-28 Method for hot-wall epitaxial growth Pending JPH02293391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11084289A JPH02293391A (en) 1989-04-28 1989-04-28 Method for hot-wall epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11084289A JPH02293391A (en) 1989-04-28 1989-04-28 Method for hot-wall epitaxial growth

Publications (1)

Publication Number Publication Date
JPH02293391A true JPH02293391A (en) 1990-12-04

Family

ID=14546047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11084289A Pending JPH02293391A (en) 1989-04-28 1989-04-28 Method for hot-wall epitaxial growth

Country Status (1)

Country Link
JP (1) JPH02293391A (en)

Similar Documents

Publication Publication Date Title
US4662981A (en) Method and apparatus for forming crystalline films of compounds
EP0064514B1 (en) Process and apparatus for growing mercury cadmium telluride layer by liquid phase epitaxy from mercury-rich melt
JP2743377B2 (en) Semiconductor thin film manufacturing method
JP2754765B2 (en) Method for manufacturing compound semiconductor crystal
US3476593A (en) Method of forming gallium arsenide films by vacuum deposition techniques
US4642142A (en) Process for making mercury cadmium telluride
JPS6021959B2 (en) Method for manufacturing a layer with a surface composition of Hg↓1-xCdxTe
JPH02293391A (en) Method for hot-wall epitaxial growth
Sadowski et al. Reflection mass spectrometry studies on UHV ALE of Cd1− xZnxTe (0≤ x≤ 1) compounds
JPH04122020A (en) Vapor phase epitaxy method
JPH02160692A (en) Hot wall epitaxial growth unit
JPS582036A (en) Manufacture of semiconductor device
JPS631038A (en) Ii-vi compound thin film deposition system
JPS62132312A (en) Manufacture of semiconductor thin film
JPS6226568B2 (en)
JPH0322913Y2 (en)
JPH026385A (en) Method for forming thin film and apparatus therefor
JPH0478144A (en) Manufacture of compound semiconductor crystal
JPS6272113A (en) Molecular beam crystal growth device
JPS5834925A (en) Liquid phase epitaxial growth device
JPH0218383A (en) Device for hot-wall epitaxial growth
JPS61141119A (en) Device for crystal growth by molecular beam
JPH0564849B2 (en)
JPH0483793A (en) Apparatus for vapor growth
JPH1192684A (en) Production of epsilon-type copper phthalocyanine crystal and thin film thereof by vacuum deposition in gas