JPH0550479B2 - - Google Patents

Info

Publication number
JPH0550479B2
JPH0550479B2 JP27800687A JP27800687A JPH0550479B2 JP H0550479 B2 JPH0550479 B2 JP H0550479B2 JP 27800687 A JP27800687 A JP 27800687A JP 27800687 A JP27800687 A JP 27800687A JP H0550479 B2 JPH0550479 B2 JP H0550479B2
Authority
JP
Japan
Prior art keywords
molecular beam
raw material
chamber
beam source
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27800687A
Other languages
Japanese (ja)
Other versions
JPH01119596A (en
Inventor
Hideki Yao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27800687A priority Critical patent/JPH01119596A/en
Publication of JPH01119596A publication Critical patent/JPH01119596A/en
Publication of JPH0550479B2 publication Critical patent/JPH0550479B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜結晶をエピタキシヤル成長させ
る分子線エピタキシヤル成長装置に使用するAs
分子線源に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an As
It concerns molecular beam sources.

[従来の技術] 従来のAs分子線源の構成を第2図に示す。[Conventional technology] Figure 2 shows the configuration of a conventional As molecular beam source.

図示のように、ルツボ2を囲んで容器18内に
熱シールド板11と抵抗による原料加熱用ヒータ
3が配置され、ルツボ2の底部には熱電対13が
取付けられ、そのリード線は容器18の下部に設
けた熱シールド板11の通孔を通して外側に引出
される。14はルツボ2の開口部前方に設置され
るシヤツターで、シヤツター14は回転軸14′
によつて、ルツボ2の開口部を覆い、あるいは開
口部を開放するように回転することができる。
As shown in the figure, a heat shield plate 11 and a resistance heater 3 for heating the raw material are arranged in a container 18 surrounding the crucible 2. A thermocouple 13 is attached to the bottom of the crucible 2, and its lead wire is connected to the container 18. It is pulled out to the outside through a through hole in the heat shield plate 11 provided at the bottom. 14 is a shutter installed in front of the opening of the crucible 2, and the shutter 14 is connected to the rotating shaft 14'.
can be rotated to cover or open the opening of the crucible 2.

固体As原料1を入れたルツボ2は原料加熱用
ヒータ3で加熱され、ルツボ2の温度は熱電対1
3によつて測定され、As分子線のオン・オフ制
御はシヤツター14で行われ、分子線強度はAs
原料の温度によつて制御される。
A crucible 2 containing a solid As raw material 1 is heated by a heater 3 for heating the raw material, and the temperature of the crucible 2 is controlled by a thermocouple 1.
3, the on/off control of the As molecular beam is performed by the shutter 14, and the molecular beam intensity is measured by the As molecular beam.
Controlled by the temperature of the raw material.

なお、このようなAs分子線源は従来成長室に
設置されている。
Note that such an As molecular beam source is conventionally installed in a growth chamber.

[発明が解決しようとする問題点] ところで、上述のような構成を有するAs分子
線源には次のような問題があつた。
[Problems to be Solved by the Invention] By the way, the As molecular beam source having the above-mentioned configuration has the following problems.

(1) 分子線強度を調整する際に、固体As原料の
温度が安定してAs分子線強度が一定になるま
でに長時間を要するので、As原料の温度によ
る分子線強度の調整がむつかしい。
(1) When adjusting the molecular beam intensity, it takes a long time for the temperature of the solid As raw material to stabilize and the As molecular beam intensity to become constant, so it is difficult to adjust the molecular beam intensity by adjusting the temperature of the As raw material.

(2) As原料の温度を一定に保つていてもAs原料
の消費にともない分子線強度が次第に減少する
という経時変化がある。
(2) Even if the temperature of the As raw material is kept constant, there is a change over time in which the molecular beam intensity gradually decreases as the As raw material is consumed.

(3) As分子線源が成長室に取り付けられている
ため、分子線源の大型化には制限があり、一度
に充填できるAs原料の量を増やすことにも限
界がある。As原料の再充填時には成長室内を
大気にさらさねばならないため、再充填後に再
び成長室内を超高真空にまで排気するのに非常
に長い時間を必要とする。
(3) Since the As molecular beam source is attached to the growth chamber, there are limits to increasing the size of the molecular beam source, and there are also limits to increasing the amount of As raw material that can be filled at one time. When refilling the As raw material, the growth chamber must be exposed to the atmosphere, so it takes a very long time to evacuate the growth chamber to ultra-high vacuum again after refilling.

以上のような問題点を解決するため、これまで
は、固体As原料を用いず、アルシン(AsH3)ガ
スをAs原料として、ガスボンベから、リークバ
ルブまたはマスフローを介してガスの圧力や流量
を調整して成長室内に導入し、成長室でアルシン
ガスを高温で熱分解することによりAs分子線を
得る、ガスソースのAs分子線源が使われている。
しかし、この方法ではアルシンという毒性ガスを
使用するため作業の安全性の面で非常に大きな問
題があつた。
In order to solve the above problems, conventional methods have been to use arsine (AsH 3 ) gas as an As raw material, without using a solid As raw material, and adjust the pressure and flow rate of the gas from a gas cylinder via a leak valve or mass flow. A gas source As molecular beam source is used, which obtains As molecular beams by thermally decomposing arsine gas at high temperatures in the growth chamber.
However, this method used a toxic gas called arsine, which caused a huge problem in terms of work safety.

[発明の構成] 本発明は従来のアルシンガス使用による安全性
の面で問題を避け、固体As原料を分子線源とし
て用いるものであるが、前記(1),(2)、(3)で示した
ような問題点を解決し、きわめて効率よく薄膜結
晶をエピタキシヤル成長させる、分子線エピタキ
シヤル成長装置に使用するAs分子線源を提供す
るものである。
[Structure of the Invention] The present invention avoids the safety problems caused by the conventional use of arsine gas and uses a solid As raw material as a molecular beam source. The present invention provides an As molecular beam source for use in a molecular beam epitaxial growth apparatus that solves the above problems and allows epitaxial growth of thin film crystals with extremely high efficiency.

以下、第1図に示す実施例により本発明を説明
する。図は、本発明が適用された分子線エピタキ
シヤル成長装置を概略的に示している。
The present invention will be explained below with reference to an embodiment shown in FIG. The figure schematically shows a molecular beam epitaxial growth apparatus to which the present invention is applied.

第2図と同一部分は同一符号で示す。ルツボ2
を囲んでAs昇華室4が形成される。As昇華室4
は一方でゲートバルブ15を介して真空排気装置
8と配管17によつて連結され、他方で、バリア
ブル・リークバルブ5を介して成長室6と配管1
6で連結される。
The same parts as in FIG. 2 are indicated by the same reference numerals. Crucible 2
An As sublimation chamber 4 is formed surrounding it. As sublimation chamber 4
is connected via a gate valve 15 to a vacuum pump 8 and a pipe 17 on the one hand, and on the other hand is connected to a growth chamber 6 via a variable leak valve 5 to a pipe 1.
Connected by 6.

ルツボ2に対応し、As昇華室4の外側に固体
As原料加熱用ヒータ3が配置される。また、As
昇華室4より成長室6に至る配管16およびバリ
アブル・リークバルブ5を囲んで加熱用ヒータ7
が配置される。
Corresponding to crucible 2, the solid is placed outside the As sublimation chamber 4.
A heater 3 for heating the As raw material is arranged. Also, As
A heating heater 7 surrounds the pipe 16 leading from the sublimation chamber 4 to the growth chamber 6 and the variable leak valve 5.
is placed.

なお、図において、9はホルダーに保持された
基板を示し、10は液体窒素シユラウドを示し、
11は加熱用ヒータ7に対する熱シールド板を示
し、ルツボ2はその底部に熱電対13を具えてい
る。
In the figure, 9 indicates a substrate held in a holder, 10 indicates a liquid nitrogen shroud,
Reference numeral 11 indicates a heat shield plate for the heater 7, and the crucible 2 is equipped with a thermocouple 13 at its bottom.

[動作] 本As分子線源は、上記のような構造となつて
いるから、As昇華室4内の固体As原料1がAs原
料加熱用ヒータ3によつて加熱され、昇華した
As蒸気がAs昇華室4内に充満する。このAs蒸気
をバリアブル・リークバルブ5の開閉によりその
流量を制御して成長室6内へAs分子線として導
入することができる。
[Operation] Since the present As molecular beam source has the above structure, the solid As raw material 1 in the As sublimation chamber 4 is heated by the As raw material heating heater 3 and sublimated.
As vapor fills the As sublimation chamber 4. This As vapor can be introduced into the growth chamber 6 as an As molecular beam by controlling its flow rate by opening and closing the variable leak valve 5.

このとき、配管16及びバリアブル・リークバ
ルブ5を別の加熱用ヒータ7により固体As原料
1の温度よりも高温に保持することにより、前記
リークバルブ5や配管16の内壁にAsが蒸着し
て堆積することはない。
At this time, by keeping the pipe 16 and the variable leak valve 5 at a higher temperature than the solid As raw material 1 using another heater 7, As is vapor-deposited and deposited on the inner wall of the leak valve 5 and the pipe 16. There's nothing to do.

As昇華室4に取り付けられた真空排気装置8
は、As原料1の再充填時にAs昇華室4内を超高
真空にまで真空排気するためのものであり、この
時、バリアブル・リークバルブ5は閉じられてお
り、ゲートバルブ15の開閉により排気を行なつ
たり、やめたりすることができる。
Vacuum exhaust device 8 attached to As sublimation chamber 4
is for evacuating the As sublimation chamber 4 to an ultra-high vacuum when refilling the As raw material 1. At this time, the variable leak valve 5 is closed, and the gate valve 15 is opened and closed to evacuate the As sublimation chamber 4. You can do it or stop it.

[実施例] 本As分子線源を使用し、薄膜結晶を分子線エ
ピタキシヤル成長させた例を示す。
[Example] An example will be shown in which a thin film crystal was grown by molecular beam epitaxial growth using the present As molecular beam source.

As昇華室内のPBN製ルツボに約500gの固体
As原料を充填し、真空排気装置でAs昇華室内を
超高真空まで排気した。その後、分子線エピタキ
シヤル成長を行なわせるため、配管及びバリアブ
ル・リークバルブを加熱用ヒータで400℃に加熱、
保持しておき、As昇華室内の真空排気をやめて、
As原料加熱用ヒータにより固体As原料の温度を
220℃まで昇温して一定温度に保持し、As昇華室
内をAsの蒸気で充満させた。次に成長室内の基
板の直前の位置に置かれたイオンゲージ(第1図
に図示していない)により測定した分子線強度
が、例えば1×10-5mbarとなるように、バリア
ブル・リークバルブを調整してAsの蒸気を成長
室内に分子線として導入した。
Approximately 500g of solid was placed in a PBN crucible in the As sublimation chamber.
Filled with As raw material, the As sublimation chamber was evacuated to an ultra-high vacuum using a vacuum evacuation device. Then, in order to perform molecular beam epitaxial growth, the piping and variable leak valve were heated to 400℃ using a heater.
Hold it, stop evacuation of the As sublimation chamber,
The temperature of the solid As raw material is controlled by the heater for heating the As raw material.
The temperature was raised to 220°C and maintained at a constant temperature, and the As sublimation chamber was filled with As vapor. Next, a variable leak valve is installed so that the molecular beam intensity measured by an ion gauge (not shown in Figure 1) placed just in front of the substrate in the growth chamber is, for example, 1 x 10 -5 mbar. The As vapor was introduced into the growth chamber as a molecular beam.

この分子線強度の調整はリークバルブの開閉の
みで行なえるため、通常のAs分子線源に比べて
極めて短時間で容易に行なうことができる。
Since the molecular beam intensity can be adjusted simply by opening and closing a leak valve, it can be easily done in an extremely short time compared to a normal As molecular beam source.

本As分子線源と、別途成長室に設置されてお
り、分子線強度の調整を行なつた通常のGa分子
線源12、Al分子線源を用いて、650℃程度の成
長温度に加熱された(100)GaAs基板上にGaAs
やAlGaAsのエピタキシヤル薄膜結晶を連続して
何回も成長させた。
Using this As molecular beam source, a normal Ga molecular beam source 12 and an Al molecular beam source that are installed separately in the growth chamber and whose molecular beam intensity is adjusted, the growth temperature is heated to about 650℃. GaAs on (100) GaAs substrate
epitaxial thin film crystals of AlGaAs and AlGaAs were successively grown many times.

従来のAs分子線源では、その大型化が困難で
あつたため1回の固体As原料の充填により約
1μmのエピタキシヤル薄膜を100回程度しか成長
できなかつたが、本実施例のAs分子線源では連
続して約400回の成長を行なえた。さらに、固体
As原料の再充填時にも、成長室内を大気にさら
す必要はない。また、本実施例のAs分子線源で
は、固体As原料の消費にともなうAs分子線強度
の経時的変化は殆んど見られなかつた。
With conventional As molecular beam sources, it was difficult to increase the size of the source, so a single charge of solid As raw material produced approximately
Although it was possible to grow an epitaxial thin film of 1 μm only about 100 times, the As molecular beam source of this example allowed continuous growth to be performed about 400 times. Furthermore, solid
There is no need to expose the inside of the growth chamber to the atmosphere when refilling the As raw material. Furthermore, in the As molecular beam source of this example, almost no change over time in the As molecular beam intensity due to consumption of the solid As raw material was observed.

実施例ではAs原料を使用する場合について述
べたが、本発明はAsに限らず他の昇華性原料例
えばP、Sb、S、Se、Te等にも適用して同様の
効果が得られることは言うまでもない。
Although the example describes the case where As raw material is used, the present invention can be applied not only to As but also to other sublimable raw materials such as P, Sb, S, Se, Te, etc., and similar effects can be obtained. Needless to say.

[発明の効果] 以上説明したように、本発明ではアルシンのよ
うな毒性ガスを使用することなく、比較的取り扱
いの安全な固体As原料を用いて、分子線強度の
調整が容易で、分子線強度の経時変化が殆んどな
いAs分子線源が得られる。
[Effects of the Invention] As explained above, the present invention uses a solid As raw material that is relatively safe to handle without using a toxic gas such as arsine, and the molecular beam intensity can be easily adjusted. An As molecular beam source with almost no change in intensity over time can be obtained.

また、分子線源の大型化が可能となり、一度に
多量のAs原料を充填でき、As原料の再充填の回
数を減らすことができるので、分子線エピタキシ
ヤル成長装置の稼動率を著しく向上させることが
できる。
In addition, the molecular beam source can be made larger, a large amount of As raw material can be filled at once, and the number of times the As raw material must be refilled can be reduced, so the operating rate of the molecular beam epitaxial growth apparatus can be significantly improved. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を断面図で示す。
第2図は、従来のAs分子線源を断面図で示す。 1……固体As原料、2……ルツボ、3……As
原料加熱用ヒータ、4……As昇華室、5……バ
リアブル・リークバルブ、6……成長室、7……
加熱用ヒータ、8……真空排気装置、9……基
板、10……液体窒素シユラウド、11……熱シ
ールド板、12……従来の分子線源、13……熱
電対、14……シヤツター、15……ゲートバル
ブ。
FIG. 1 shows an embodiment of the invention in cross-section.
FIG. 2 shows a conventional As molecular beam source in cross section. 1... Solid As raw material, 2... Crucible, 3... As
Heater for heating raw material, 4... As sublimation chamber, 5... Variable leak valve, 6... Growth chamber, 7...
Heating heater, 8...Evacuation device, 9...Substrate, 10...Liquid nitrogen shroud, 11...Heat shield plate, 12...Conventional molecular beam source, 13...Thermocouple, 14...Shutter, 15...Gate valve.

Claims (1)

【特許請求の範囲】[Claims] 1 分子線エピタキシヤル成長装置に用いるAs
分子線源であつて、固体As原料を収納するAs昇
華室を備え、該As昇華室を配管によりバリアブ
ル・リークバルブを介して前記成長装置の成長室
と連結するとともに、配管によりゲートバルブを
介して真空排気装置と連結し、前記昇華室及び前
記昇華室より前記成長室に至る配管、バリアブ
ル・リークバルブにそれぞれ加熱用ヒータを配置
したことを特徴とするAs分子線源。
1 As used in molecular beam epitaxial growth equipment
The molecular beam source is equipped with an As sublimation chamber that stores a solid As raw material, and the As sublimation chamber is connected to the growth chamber of the growth apparatus through a variable leak valve through piping, and through a gate valve through piping. The As molecular beam source is connected to a vacuum evacuation device, and heaters are arranged in the sublimation chamber, the piping from the sublimation chamber to the growth chamber, and a variable leak valve, respectively.
JP27800687A 1987-11-02 1987-11-02 As molecular beam source Granted JPH01119596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27800687A JPH01119596A (en) 1987-11-02 1987-11-02 As molecular beam source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27800687A JPH01119596A (en) 1987-11-02 1987-11-02 As molecular beam source

Publications (2)

Publication Number Publication Date
JPH01119596A JPH01119596A (en) 1989-05-11
JPH0550479B2 true JPH0550479B2 (en) 1993-07-29

Family

ID=17591318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27800687A Granted JPH01119596A (en) 1987-11-02 1987-11-02 As molecular beam source

Country Status (1)

Country Link
JP (1) JPH01119596A (en)

Also Published As

Publication number Publication date
JPH01119596A (en) 1989-05-11

Similar Documents

Publication Publication Date Title
US4239955A (en) Effusion cells for molecular beam epitaxy apparatus
US20020170490A1 (en) Method and apparatus for growing aluminum nitride monocrystals
US4181544A (en) Molecular beam method for processing a plurality of substrates
US4137865A (en) Molecular beam apparatus for processing a plurality of substrates
US3011912A (en) Process for depositing beta silicon carbide
JPH07300666A (en) Production of molecular beam source for silicon evaporation and crucible used for the same
JPH0550479B2 (en)
JPS60226493A (en) Device for molecular jet epitaxial growth
JP2719283B2 (en) Knudsen cell for low temperature
JP2719281B2 (en) Knudsen cell for low temperature
Mueller et al. The preparation of amorphous thin films
JPS6272113A (en) Molecular beam crystal growth device
JP3501412B2 (en) Pulsed material introduction cell
JPH0672796A (en) Low-temperature knudsen cell
JPH0339040B2 (en)
JPH0266162A (en) Vacuum deposition device
JPS6369219A (en) Molecular beam source cell
Cook et al. MBE Growth of Mercury Cadmium Telluride: Issues and Practical Solutions
JPS5946096B2 (en) Liquid phase epitaxial growth equipment
JPS6379315A (en) Growth of iii-v compound single crystal
JPS6396928A (en) Vapor deposition apparatus
JPS62162324A (en) Reactive gas heating and introducing apparatus for ultra-high vacuum
JPH0246666B2 (en)
JPS6120513B2 (en)
JPH01305890A (en) Device for growing crystal by molecular beam

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080729

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080729