JPS6396457A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS6396457A
JPS6396457A JP24044686A JP24044686A JPS6396457A JP S6396457 A JPS6396457 A JP S6396457A JP 24044686 A JP24044686 A JP 24044686A JP 24044686 A JP24044686 A JP 24044686A JP S6396457 A JPS6396457 A JP S6396457A
Authority
JP
Japan
Prior art keywords
pressure
reducing device
temperature
compressor
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24044686A
Other languages
Japanese (ja)
Inventor
等 飯島
嘉裕 隅田
直樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24044686A priority Critical patent/JPS6396457A/en
Publication of JPS6396457A publication Critical patent/JPS6396457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ヒートポンプ装置に関し、特にその圧力測
定に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat pump device, and particularly to pressure measurement thereof.

〔従来の技術〕[Conventional technology]

従来、この種の装置として例えば三菱電機冷熱ハンドブ
ック[85年発行空調編ページ238に記載された第4
図に示すものがあった。図において。
Conventionally, as a device of this kind, for example, the Mitsubishi Electric Refrigeration Handbook [No.
There was something shown in the figure. In fig.

+1)は圧縮機、(21は凝縮器、(3)は第1減圧装
置で。
+1) is the compressor, (21 is the condenser, and (3) is the first pressure reducing device.

例えば温度式膨張弁、(4:は蒸発器、(51は温度式
膨張弁(3)の感温筒・ (6a)は圧縮@(1)の出
口に設けられた高圧側圧力スイッチ、  (6b)は圧
縮機fi+の入口に設けられた低圧側圧力スイッチであ
る。なお圧カスイッチC6a’) 、 (sb)は1例
えば冷凍空調便覧第4版基礎1編(日本冷凍協会発行昭
56.5.30)に記載されているような一般に公知の
圧力スイッチである。また、これら全接続する配管内に
は、熱媒体1例えば冷媒が封入されている。
For example, a temperature-type expansion valve, (4: evaporator, (51) temperature-sensitive cylinder of the temperature-type expansion valve (3), (6a) a high-pressure side pressure switch provided at the outlet of the compression @ (1), (6b) ) is the low-pressure side pressure switch installed at the inlet of the compressor fi+.The pressure switch C6a') and (sb) are 1, for example, Refrigeration and Air Conditioning Handbook, 4th edition, Basics 1 (Japan Refrigeration Association, published 1986.5). This is a generally known pressure switch as described in .30).Furthermore, a heat medium 1 such as a refrigerant is sealed in the pipes that connect all these.

次に動作について説明する。圧縮機(1)によシ吐出さ
れた高圧の冷媒ガスV1.1):縮器(2)で放熱して
液化され温度式膨張弁(3)に流入する。この温度式膨
張弁(3)に流入した冷媒は減圧されて低温低圧となり
蒸発器(4)で吸熱してガス化し圧縮機+1)に再び吸
入される循環サイクルを形成している。
Next, the operation will be explained. High-pressure refrigerant gas V1.1) discharged by the compressor (1): radiates heat in the condenser (2), liquefies it, and flows into the thermostatic expansion valve (3). The refrigerant flowing into the thermostatic expansion valve (3) is depressurized, becomes low temperature and low pressure, absorbs heat in the evaporator (4), is gasified, and is sucked into the compressor +1) again, forming a circulation cycle.

また、圧縮機(1)の吐出側に高圧圧力スイッチ(6a
)を設けているので、設定高圧圧力よシ圧縮機(1)の
吐出圧力が上昇するとスイッチが動作し圧力を検知でき
る。圧縮機(1)吸入圧力も同様に設定低圧圧力より吸
入圧力が低下するとスイッチが動作し圧力を検知できる
ように構成されている。この検知した圧力によって1凝
縮器〔2)や蒸発器(4)のファンの回転数を制御した
り書圧縮器(1)の回転数などを制御している。
In addition, a high pressure switch (6a) is installed on the discharge side of the compressor (1).
), the switch operates and the pressure can be detected when the discharge pressure of the compressor (1) increases beyond the set high pressure. Similarly, the suction pressure of the compressor (1) is configured so that when the suction pressure decreases below the set low pressure, a switch is operated and the pressure can be detected. Based on the detected pressure, the rotational speed of the fans of the condenser [2] and the evaporator (4), the rotational speed of the compressor (1), etc. are controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の工うなヒートポンプ装置では、圧力を検知するの
に圧力スイッチ又は圧力センサーを設けなけnばならず
、検知する圧力が複数必要な場合は圧力スイッチ、又は
圧力センサーを複数設ける必要があり、装置がたいへん
高価になる。また。
In the above-mentioned heat pump equipment, a pressure switch or pressure sensor must be installed to detect the pressure, and if multiple pressures need to be detected, multiple pressure switches or pressure sensors must be installed. become very expensive. Also.

圧力スイッチの場合は設定圧力で検知するため。In the case of a pressure switch, this is because it detects based on the set pressure.

連続的な圧力変化を検知することが不可能であるなどの
問題点かあつ比。
Problems such as the impossibility of detecting continuous pressure changes.

この発明は、かかる問題点?解決するためになされたも
ので、連続的な圧力変化tv&実に検知してその動作を
制御するヒートポンプ装置を安価に提供することを目的
とする。
Does this invention have such problems? The purpose of this invention is to provide at a low cost a heat pump device that detects continuous pressure changes and controls its operation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るヒートポンプ装置は、圧縮機出口から第
1訊圧装置入口までの高圧側と第1減圧装置出口から上
記圧縮機入口までの低圧側とヲ第2減圧装置を介して接
続する配管、この配管の高圧側から第2減圧装置へ流入
する熱媒体を冷却する冷却手段、上記配管の高圧側から
分岐し、上記冷却手段の中間部より第2減圧装置入口ま
での間に流入するバイパス手段、このバイパス手段の熱
媒体が流入する位置よシ下流側で第2減圧装置入口まで
の間の高圧側熱媒体の温度全検出する第1温度センサー
、および第2減圧装置出口部の低圧側熱媒体の温度を検
出する第2温度センサーを備え、第」および第2温度セ
ンサーにより上記圧縮機の高圧側圧力および低圧側圧力
をそれぞれ知るようにしたものである。
The heat pump device according to the present invention includes piping that connects a high pressure side from a compressor outlet to a first pressure reducing device inlet and a low pressure side from a first pressure reducing device outlet to the compressor inlet via a second pressure reducing device; A cooling means for cooling the heat medium flowing into the second pressure reducing device from the high pressure side of the piping, and a bypass means branching from the high pressure side of the piping and flowing from the middle part of the cooling means to the inlet of the second pressure reducing device. , a first temperature sensor that detects the entire temperature of the high-pressure heat medium from the position where the heat medium flows into the bypass means to the inlet of the second pressure reducing device on the downstream side, and a first temperature sensor that detects the entire temperature of the high pressure side heat medium at the outlet of the second pressure reducing device A second temperature sensor is provided for detecting the temperature of the medium, and the pressure on the high pressure side and the pressure on the low pressure side of the compressor are determined by the second temperature sensor and the second temperature sensor, respectively.

〔作用〕[Effect]

この発明においては、温度センサーは圧力センサーや圧
力スイッチに比べて安価であり、対象とするものの連続
的な温度変化を検知でき、この温度センサーで圧力を検
知する箇所の飽和温度を検知することにより、飽和温度
と所定の関係にある圧力を推定でき、飽和温度を制御信
号としてヒートポンプ装置の動作を制御できる。
In this invention, the temperature sensor is cheaper than a pressure sensor or pressure switch, and can detect continuous temperature changes of the target object. It is possible to estimate the pressure that has a predetermined relationship with the saturation temperature, and to control the operation of the heat pump device using the saturation temperature as a control signal.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、+61Fi圧縮機(1)出口から温度式膨
張弁、すなわち第1減圧装置(3)入口までの高圧側と
、温度式膨張弁(3)出口から圧縮機(1)人口までの
低圧側とを、第2減圧装置(7)を介し、かつ第2減圧
装置(7)の入口側の高圧側と、出口側の低圧側とを冷
却手段すなわち熱交換器(8)で対向流形に熱交換関係
にして接読する配管で、この実施例では、高圧側として
圧縮機+1)出口から凝縮器(2)の気相部まで、低圧
側として蒸発器(4)出口から圧縮機(1)入口までの
間を接続してバイパス回路を+a成している。ま7?−
、第2鎮圧装置(7)は例えば、キャピラリーで構成さ
れている。熱交換器(8)は二重管で。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, the high pressure side from the +61Fi compressor (1) outlet to the thermostatic expansion valve, i.e. the first pressure reducing device (3) inlet, and the low pressure side from the thermostatic expansion valve (3) outlet to the compressor (1) population. are passed through a second pressure reducing device (7), and the high pressure side on the inlet side and the low pressure side on the outlet side of the second pressure reducing device (7) are made into counter-flow type by a cooling means, that is, a heat exchanger (8). In this example, the high-pressure side is the piping connected to the heat exchange connection and is connected to the gas phase of the condenser (2), and the low-pressure side is the piping from the evaporator (4) exit to the compressor (1). ) is connected to the inlet to form a bypass circuit. 7? −
, the second suppression device (7) is composed of, for example, a capillary. The heat exchanger (8) is a double pipe.

現状部を高圧側、管内を低圧側の冷媒が流通する工う構
成されている。(9)は配管(6)の高圧側から分岐し
、熱交換器(8)の中間部よシ第2減圧装置(7)入口
までの間に流入する。すなわち熱交換器(81の1%圧
側をバイパスするバイパス管である。αeはこのバイパ
ス管(9)の熱媒体が流入する位置より下流側でが2減
圧装置(7)入口までの間の高圧側熱媒体の温度を検出
する。すなわちこの例では、バイパス回路(6)の第2
減圧装置(7)の入口部の配管に設けられ、配管内の高
圧冷媒の温度を検出する第1の温度センサー、αDはF
df、2g圧装置(7)の出口から熱交換器(8)の低
圧側入口までの配管に設けられ配管内の低圧冷媒の温度
を検出する第2の温度センサー。
The current structure is such that the high-pressure side of the refrigerant flows through the pipe, and the low-pressure side of the refrigerant flows through the pipe. (9) branches from the high-pressure side of the pipe (6) and flows between the middle part of the heat exchanger (8) and the inlet of the second pressure reducing device (7). In other words, it is a bypass pipe that bypasses the 1% pressure side of the heat exchanger (81).αe is the high pressure downstream from the position where the heat medium flows into the bypass pipe (9) up to the inlet of the pressure reducing device (7). The temperature of the side heat medium is detected.In other words, in this example, the temperature of the second heat medium of the bypass circuit (6) is detected.
The first temperature sensor, αD, is installed in the pipe at the inlet of the pressure reducing device (7) and detects the temperature of the high-pressure refrigerant in the pipe.
df, 2g A second temperature sensor is provided in the piping from the outlet of the pressure device (7) to the low-pressure side inlet of the heat exchanger (8) and detects the temperature of the low-pressure refrigerant in the piping.

02は第1及び第2の温度センサーαα・αDが接続さ
れた温度検知器である。
02 is a temperature detector to which first and second temperature sensors αα and αD are connected.

第2図はヒートポンプ装置の運転時の主要部分の冷奴の
状態をモリエル線図上に示し′fcものでνエンタルピ
に対する圧力を示している。図において、Pd1j圧縮
梯(1)吐出圧力、Ps  は吸入圧力。
FIG. 2 shows the state of the main parts of the cold coop during operation of the heat pump device on a Mollier diagram, and the 'fc' shows the pressure versus ν enthalpy. In the figure, Pd1j is the compression ladder (1) discharge pressure, and Ps is the suction pressure.

Aは圧縮機fil出口、Bは熱交換器(8)の高圧側出
口。
A is the compressor fil outlet, and B is the high pressure side outlet of the heat exchanger (8).

B′ はキャピラリー(7)入口、Cはキャピラリー(
7)出口、及びDは圧縮機(1)入口での冷媒状前金そ
れぞれ示している。
B' is the inlet of the capillary (7), C is the capillary (7)
7) Outlet, and D indicate the refrigerant-like precharge at the inlet of the compressor (1), respectively.

また、第3図は、温度検知器の一例を示すもので、三菱
電機製マイクロコンピュータM8748とその周辺回路
から構成され、温度センサーac、HはA/D変換器f
i3を介してマイクロコンピュータIに接続されている
Fig. 3 shows an example of a temperature detector, which is composed of a microcomputer M8748 manufactured by Mitsubishi Electric and its peripheral circuits, and temperature sensors ac and H are connected to an A/D converter f.
It is connected to microcomputer I via i3.

次に動作について説明する。圧縮機(1)で吐出された
高温高圧の冷媒ガスの一部は、バイパス回路(6)の高
圧側から熱交換器(8)とバイパス管(9)とに分かれ
て流入し、再び合流して第2減圧装置(7)に流入する
。ここで熱交換器(8)を通夛冷却された一方の冷#:
t′i、第2図に示すAからBの状態に変化して若干過
冷却した液体状態とl)、  もう一方のバイパス管(
9)を通った冷媒はAに示す冷媒蒸気の状態のままで、
熱交換器(8)を通シ液体状態となった冷媒と合流して
冷媒はB′に示す気体と液体の二相状態となる。次にキ
ャピラリー(7)で圧縮機(1)吸入圧力まで減圧され
てB′からCの状態に変化し低温の二相状態になって熱
交換器(8)の管内を流れ熱交換して圧縮機(1)に流
入する。この時、冷媒はDに示す蒸気となっている。第
2減圧装置(7)の入口部配管に設けた第1@度センサ
ー(1(1は高圧の二相状態の冷媒から、また出口部配
管に設けた第2温度センサー(1))は低圧の二相状態
の冷媒から、その箇所における飽和温度全検知する。こ
れは第3図のような温度検知器a2回路で構成され、第
1及び第2の温度センサーell)、在りの温度変化に
伴なう抵抗変化から、これを電圧変化で読み取シ温度を
検知する。さらに、この飽和温度と圧力の関係から圧力
を推定し、温度を制御信号としてヒートポンプ装置の動
作を制御している。
Next, the operation will be explained. A part of the high-temperature, high-pressure refrigerant gas discharged by the compressor (1) is divided into the heat exchanger (8) and the bypass pipe (9) from the high-pressure side of the bypass circuit (6), flows into the heat exchanger (8), and then joins again. and flows into the second pressure reducing device (7). Here, one cold # cooled through the heat exchanger (8):
t'i, the liquid state changes from state A to state B shown in Fig. 2 and is slightly supercooled (l), and the other bypass pipe (
The refrigerant that passed through 9) remains in the refrigerant vapor state shown in A,
The refrigerant passes through the heat exchanger (8) and joins with the refrigerant that has become a liquid state, and the refrigerant becomes a two-phase state of gas and liquid as shown in B'. Next, the capillary (7) reduces the pressure to the suction pressure of the compressor (1), changes the state from B' to C, becomes a low-temperature two-phase state, flows through the tubes of the heat exchanger (8), exchanges heat, and is compressed. It flows into the machine (1). At this time, the refrigerant has become a vapor as shown in D. The first temperature sensor (1 (1) is a high-pressure two-phase refrigerant installed at the inlet pipe of the second pressure reducing device (7), and the second temperature sensor (1) installed at the outlet pipe) is a low-pressure The total saturation temperature at that point is detected from the refrigerant in a two-phase state.This consists of a temperature sensor A2 circuit as shown in Figure 3, and the first and second temperature sensors The accompanying resistance change is read as a voltage change and the temperature is detected. Furthermore, the pressure is estimated from the relationship between this saturation temperature and pressure, and the operation of the heat pump device is controlled using the temperature as a control signal.

この発明では、圧力を知る手段として圧力と一定の関係
のある飽和温度を検知しているため高価な圧力センサー
を必要とせず、かつ高圧側と低圧側の圧力を同時に検知
できる利点がある。さらにバイパス回路(61の陥圧側
のバイパス管(9)のない場には、高圧側冷媒の二相状
態となる熱交換器の中途部分に温度センサーα!]を設
ける必要があり、かつ運転条件によってその位置が変化
することから温度センサーの設置位置の選定がむずかし
く、また圧力を精度よく検知できにくい点があったが。
This invention has the advantage of not requiring an expensive pressure sensor because it detects the saturation temperature, which has a certain relationship with pressure, as a means of determining pressure, and can simultaneously detect pressures on the high and low pressure sides. Furthermore, it is necessary to install a bypass circuit (in the case where there is no bypass pipe (9) on the depressed pressure side of 61, a temperature sensor α! in the middle of the heat exchanger where the high pressure side refrigerant is in a two-phase state!) and the operating conditions However, since the temperature sensor's position changes depending on the temperature, it is difficult to select the location to install the temperature sensor, and it is also difficult to accurately detect the pressure.

バイパス管(9)を設けた事により、熱交換器(8)に
よって冷却され液体となった冷媒とバイパス管(9)を
通った冷媒蒸気が混合されるため確実に第2減圧装置(
7)入口で二相状態となることから広い運転範囲で圧力
を¥ft度良く検知できる効果がある。
By providing the bypass pipe (9), the refrigerant that has been cooled into liquid by the heat exchanger (8) and the refrigerant vapor that has passed through the bypass pipe (9) are mixed, so that the second pressure reducing device (
7) Since it is in a two-phase state at the inlet, it has the effect of being able to accurately detect pressure over a wide operating range.

また、第2減圧装置(7)はキャピラリーに限るもので
なくオリアイスやノズルでもよい。またさらに上記実施
例では、バイパス回路(61に常時冷媒を流すようにし
ているが・中途に開閉弁を設けて圧力を検知したい時の
み冷媒金泥すようにしても良い。ま几さらに熱交換器(
8)を二重管としたが高圧61)1と低圧側との配管を
接触させても良いものである。
Further, the second pressure reducing device (7) is not limited to a capillary, but may be an oriice or a nozzle. Furthermore, in the above embodiment, the refrigerant is always allowed to flow through the bypass circuit (61), but an on-off valve may be provided in the middle to allow the refrigerant to flow only when it is desired to detect the pressure. (
Although 8) is a double pipe, the high pressure 61) 1 and low pressure side piping may be brought into contact with each other.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、圧縮機、凝縮器、第
1減圧装置、および蒸発器をこの順序に結合して熱媒体
を循環させるものにおいて 上記圧縮機出口から第1減
圧装置入口までの高圧側と第1威圧装置出口から上記圧
縮機入口までの低圧側とを第2減圧装置を介して接続す
る配管、この配管の高圧側から涼2減圧装置へ流入する
熱媒体を冷却する冷却手段、上記配管の高圧側から分岐
し、上記冷却手段の中間部より第2減圧装置入口までの
間に流入するバイパス手段、このバイパス手段の熱媒体
が流入する位置より下流側で第2減圧装置入口までの間
の高圧側熱媒体の温度を検出する第1温度センサー、お
よび第19EE装置出口部の低圧側熱媒体の温度を検出
する第2温度センサーを備え、第1および第2温度セン
サーによシ上記圧8機の高圧側圧カシよび低圧り■圧力
をそれぞれ知るようにしたので、筑’l$、圧装置入口
および出口で41実に熱媒体が二相状態となり、飽和温
度から圧力を推定して連続的な圧力変化を精度良ぐ検知
できるヒートポンプ装置が安価に得られる効果がある。
As described above, according to the present invention, in a device in which a compressor, a condenser, a first pressure reducing device, and an evaporator are connected in this order to circulate a heat medium, from the outlet of the compressor to the inlet of the first pressure reducing device. piping that connects the high pressure side of the piping and the low pressure side from the outlet of the first coercive pressure device to the inlet of the compressor via a second pressure reducing device, and cooling that cools the heat medium flowing from the high pressure side of this piping to the Ryou 2 pressure reducing device. means, a bypass means that branches from the high pressure side of the piping and flows from the middle part of the cooling means to the inlet of the second pressure reducing device; a second pressure reducing device downstream from the position where the heat medium of the bypass means flows; The first temperature sensor detects the temperature of the high-pressure heat medium up to the inlet, and the second temperature sensor detects the temperature of the low-pressure heat medium at the outlet of the 19EE device, and the first and second temperature sensors Now that we know the high-pressure side pressure and low-pressure side pressure of the eight pressure devices above, we can estimate the pressure from the saturation temperature since the heat medium is in a two-phase state at the inlet and outlet of the pressure device. This has the effect that a heat pump device that can detect continuous pressure changes with high accuracy can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるヒートポンプ装置を
示す措成図、第2図は第1図に示した装置の運転時の各
部の熱媒体のエンタルピに対する圧力をモリエル線図上
に示し72:特性図、第3図は温度検知器の一実施例を
示す回路図、第4図は従来のヒートポンプ装置t示す構
成図である。 図において、(Ild圧縮機、(21は凝縮器、(3)
は第1減圧装置、C4)は蒸発器、(5)は第1減圧装
置(3)の感温筒、  (6a)、 (6b’)は圧力
スイッチ、(6)はバイパス回路、(7)i!第2it
圧fel?、 (81H熱交換fi、 +91t−!バ
イパス管書Q(1−(lυは第1及び第2の温度センサ
ー、(I7Jは温度検知器である。 なお9図中同一符号は同−又は相当部分を示す。
FIG. 1 is a schematic diagram showing a heat pump device according to an embodiment of the present invention, and FIG. 2 is a Mollier diagram showing the pressure with respect to the enthalpy of the heat medium at each part during operation of the device shown in FIG. 1. 3 is a circuit diagram showing an embodiment of a temperature detector, and FIG. 4 is a configuration diagram showing a conventional heat pump device. In the figure, (Ild compressor, (21 is a condenser, (3)
is the first pressure reducing device, C4) is the evaporator, (5) is the temperature sensing cylinder of the first pressure reducing device (3), (6a), (6b') is the pressure switch, (6) is the bypass circuit, (7) i! 2nd it
Pressure felt? , (81H heat exchange fi, +91t-! Bypass tube book Q (1-(lυ is the first and second temperature sensor, (I7J is the temperature detector. The same reference numerals in Figure 9 indicate the same - or corresponding parts. shows.

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、第1減圧装置、および蒸発器を
この順序に結合して熱媒体を循環させるものにおいて、
上記圧縮機出口から第1減圧装置入口までの高圧側と第
1減圧装置出口から上記圧縮器入口までの低圧側とを第
2減圧装置を介して接続する配管、この配管の高圧側か
ら第2減圧装置へ流入する熱媒体を冷却する冷却手段、
上記配管の高圧側から分岐し、上記冷却手段の中間部よ
り第2減圧装置入口までの間に流入するバイパス手段、
このバイパス手段の熱媒体が流入する位置より下流側で
第2減圧装置入口までの間の高圧側熱媒体の温度を検出
する第1温度センサー、および第2減圧装置出口部の低
圧側熱媒体の温度を検出する第2温度センサーを備え、
第1および第2温度センサーにより上記圧縮機の高圧側
圧力および低圧側圧力をそれぞれ知るようにしたことを
特徴とするヒートポンプ装置。
(1) A compressor, a condenser, a first pressure reducing device, and an evaporator are connected in this order to circulate a heat medium,
Piping that connects the high pressure side from the compressor outlet to the first pressure reducing device inlet and the low pressure side from the first pressure reducing device outlet to the compressor inlet via a second pressure reducing device; cooling means for cooling the heat medium flowing into the pressure reducing device;
a bypass means that branches from the high pressure side of the piping and flows from the middle part of the cooling means to the inlet of the second pressure reducing device;
A first temperature sensor detects the temperature of the high-pressure heat medium downstream from the point where the heat medium flows into the bypass means up to the inlet of the second pressure reducing device, and a first temperature sensor that detects the temperature of the high pressure heat medium at the outlet of the second pressure reducing device. Equipped with a second temperature sensor that detects temperature,
A heat pump device characterized in that the high-pressure side pressure and the low-pressure side pressure of the compressor are determined by first and second temperature sensors, respectively.
(2)配管の高圧側は、圧縮機出口から凝縮器の気相部
までの間に接続したことを特徴とする特許請求の範囲第
1項記載のヒートポンプ装置。
(2) The heat pump device according to claim 1, wherein the high-pressure side of the piping is connected between the outlet of the compressor and the gas phase portion of the condenser.
(3)配管の高圧側熱媒体の冷却は、低圧側の冷気で行
なうことを特徴とする特許請求の範囲第1項または第2
項記載のヒートポンプ装置。
(3) The cooling of the heat medium on the high-pressure side of the piping is performed by cold air on the low-pressure side.
The heat pump device described in Section 1.
JP24044686A 1986-10-09 1986-10-09 Heat pump device Pending JPS6396457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24044686A JPS6396457A (en) 1986-10-09 1986-10-09 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24044686A JPS6396457A (en) 1986-10-09 1986-10-09 Heat pump device

Publications (1)

Publication Number Publication Date
JPS6396457A true JPS6396457A (en) 1988-04-27

Family

ID=17059618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24044686A Pending JPS6396457A (en) 1986-10-09 1986-10-09 Heat pump device

Country Status (1)

Country Link
JP (1) JPS6396457A (en)

Similar Documents

Publication Publication Date Title
CN100334407C (en) Freezer apparatus
JPS6039939B2 (en) heat pump equipment
KR20050065263A (en) Air conditioner
JPS6396457A (en) Heat pump device
JPH0765827B2 (en) Dual heat pump that can take out cold water and steam simultaneously
JP3070723B2 (en) Refrigeration equipment
JPS63290354A (en) Heat pump type air conditioner
JP3395449B2 (en) Air conditioner
JPS61101756A (en) Heat pump device
JP2800362B2 (en) Multi-room air conditioner
JPH0327252Y2 (en)
JP2000321103A (en) Tester for refrigerating compressor
JP2757584B2 (en) Air conditioner
JP3134388B2 (en) Air conditioner
JPS62206357A (en) Sensor device for heat pump
JP2004232905A (en) Refrigerator
JPS61231371A (en) Superheating controller for refrigeration cycle
CN106989534A (en) Sensor arrangement in heat pump
JP2703381B2 (en) Multi air conditioner
JPH035826Y2 (en)
JPS6322464Y2 (en)
JPS62129660A (en) Method of controlling refrigerant in refrigerator
JPS62153653A (en) Refrigerator
JPH07294026A (en) Refrigerator
JPS62178856A (en) Multi-chamber air conditioner