JPS639165A - Light-emitting diode - Google Patents

Light-emitting diode

Info

Publication number
JPS639165A
JPS639165A JP61153112A JP15311286A JPS639165A JP S639165 A JPS639165 A JP S639165A JP 61153112 A JP61153112 A JP 61153112A JP 15311286 A JP15311286 A JP 15311286A JP S639165 A JPS639165 A JP S639165A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting diode
insulating layer
diode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61153112A
Other languages
Japanese (ja)
Inventor
Tsuneo Mitsuyu
常男 三露
Kazuhiro Okawa
和宏 大川
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61153112A priority Critical patent/JPS639165A/en
Publication of JPS639165A publication Critical patent/JPS639165A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To bring the interface between an N-type ZnSe layer and an insulating layer in good state that there exist no impurity and defect and to obtain a high-efficiency ZnSe blue light-emitting diode by a method wherein the insulating layer is also constituted of a ZnSe single crystal as well. CONSTITUTION:An N-type ZnSe conductive layer 2, an N-type ZnSe luminous layer 3 having an electron dendity lower than that of the above conductive layer 2 and an insulative ZnSe insulating layer 4, which are epitaxially grown in order, are provided on a GaAs single crystal substrate 1. Then, a positive electrode 5 consisting of a metal to show Schottky type contact to the N-type ZnSe insulating layer is provided on part of the surface of the insulating layer 4 and moreover, negative electrodes 6 having ohmic contact to the conductive layer 2 or the luminous layer 3 are provided. As an impurity to be added to the above conductive layer 2 and the luminous layer 3, any one of aluminum, gallium, indium, fluorine, chlorine and bromine is suitable. Furthermore, as the material of the positive electrode 5, a metal having a large work function is, if possible, desirable for upgrading the injection efficiency of hole, in particular, gold is suitable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は発光ダイオードの構造に関し、特にセレン化亜
鉛半導体を用いた高効率の青色発光ダイオードの構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure of a light emitting diode, and more particularly to the structure of a highly efficient blue light emitting diode using a zinc selenide semiconductor.

従来の技術 ■−■族化合物半導体であるセレン化亜鉛(ZnSe)
は、青色発光ダイオードの材料として有望である。従来
、このZn5eを用いた発光ダイオードとして第3図に
示すような構造の素子が考案されている〔例えばジャパ
ニーズ ジャーナルオプ アプライド フィジックス(
Japanθ5eJournalof Appdiad
 Physics )誌、第18巻第1号(昭和62年
)P、77−84)。
Conventional technology Zinc selenide (ZnSe), a ■-■ group compound semiconductor
is a promising material for blue light-emitting diodes. Conventionally, an element with a structure as shown in Fig. 3 has been devised as a light emitting diode using this Zn5e [for example, Japanese Journal Op Applied Physics (
Japanθ5eJournalof Appdiad
Physics), Vol. 18, No. 1 (1986) P, 77-84).

同図で12はN型Zn5e単結晶、13は二酸化硅素(
SiO□)からなる絶縁層、5は陽電極、6はオーム性
接触を有する陰電極である。この素子の両電極間に、陽
電極6が正となるような電圧を印加すると、トンネル効
果によシ陽電極からN型Zn5e単結晶中へ正孔が注入
され、これが自由電子と再結合して青色の発光を生じる
In the figure, 12 is N-type Zn5e single crystal, 13 is silicon dioxide (
5 is a positive electrode, and 6 is a negative electrode having ohmic contact. When a voltage is applied between both electrodes of this device so that the positive electrode 6 becomes positive, holes are injected from the positive electrode into the N-type Zn5e single crystal due to the tunnel effect, and these holes recombine with free electrons. and emit blue light.

発明が解決しようとする問題点 しかしながら上述のような従来の構成では、絶縁層の素
材がZn5eとは全く異るため、両者を連続的に形成す
ることは不可能である。このため両者の界面に不純物が
堆積したシ、欠陥が発生することになシ、その結果注入
された正孔が有効に再結合せず、発光効率が低下すると
いう問題点があった。
Problems to be Solved by the Invention However, in the conventional structure as described above, since the material of the insulating layer is completely different from Zn5e, it is impossible to form both continuously. For this reason, impurities are deposited at the interface between the two, resulting in defects, and as a result, the injected holes are not effectively recombined, resulting in a reduction in luminous efficiency.

本発明はかかる点に鑑みてなされたもので、高効率のZ
n5a青色発光ダイオードを提供することを目的として
いる。
The present invention has been made in view of this point, and is a highly efficient Z
It aims to provide a n5a blue light emitting diode.

問題点を解決するための手段 本発明は上記問題点を解決するため、絶縁層をもZn5
e単結晶で構成し、N型Zn5e層と絶縁層を連続的に
形成し得るようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention also uses Zn5 for the insulating layer.
The Zn5e layer is made of e single crystal, and an N-type Zn5e layer and an insulating layer can be formed continuously.

作用 本発明は上記の手段により、N型Zn5e層と絶縁層の
界面を不純物や欠陥のない良好な状態にし注入された正
孔を有効に発光に寄与せしめて発光効率を高めるもので
ある。
Operation The present invention uses the above-mentioned means to improve the luminous efficiency by making the interface between the N-type Zn5e layer and the insulating layer in a good condition free of impurities and defects, allowing the injected holes to effectively contribute to luminescence.

実施例 以下、本発明を実施例により詳細に説明する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は本発明による発光ダイオードの構造を模式的に
示す断面図である。同図において、1は砒化ガリウム(
GaAs )単結晶基板、2はN型Zn5eからなる導
電層、3は導電層2よりも電子密度の低いN型Zn5e
からなる発光層、4は絶縁性Zn5eからなる絶縁層で
ある。上記の導電層2、発光層3、絶縁層4は前記基板
1上に順次エピタキシャル成長された単結晶である。ま
た同図において6はN型Zn5eに対してショットキー
型接触を示す金属からなる陽電極である。まだ6はオー
ム性接触を有する陰電極であり、絶縁層4と発光層3の
一部を除去して露出した導電層2に直接接続されている
FIG. 1 is a cross-sectional view schematically showing the structure of a light emitting diode according to the present invention. In the figure, 1 is gallium arsenide (
2 is a conductive layer made of N-type Zn5e, 3 is N-type Zn5e with a lower electron density than the conductive layer 2.
4 is an insulating layer made of insulating Zn5e. The conductive layer 2, the light emitting layer 3, and the insulating layer 4 are single crystals epitaxially grown on the substrate 1 in sequence. Further, in the figure, reference numeral 6 denotes a positive electrode made of metal that exhibits Schottky type contact with N-type Zn5e. Reference numeral 6 denotes a negative electrode with ohmic contact, which is directly connected to the conductive layer 2 exposed by removing part of the insulating layer 4 and the light emitting layer 3.

ここで、基板11/CG2LAsを用いるのは、格子定
数がZn5aとほぼ同一であシ、良好なZn5e単結晶
層をエピタキシャル成長させることができるためである
。このエピタキシャル成長の方法としては、例えば分子
線エピタキシー法が好適である。
The reason why the substrate 11/CG2LAs is used here is that the lattice constant is almost the same as that of Zn5a, and a good Zn5e single crystal layer can be epitaxially grown. As a method for this epitaxial growth, for example, molecular beam epitaxy is suitable.

この場合、結晶母体原料のZn、Ssと共に適切な不純
物を蒸発させ、その種類や蒸発量を変えることにより導
電層2、発光層3、絶縁層4を順次連続的に成長させる
ことができる。
In this case, the conductive layer 2, the light-emitting layer 3, and the insulating layer 4 can be successively grown in sequence by evaporating appropriate impurities together with the crystal host materials Zn and Ss and changing the type and amount of evaporation.

またMOCVD法などの気相成長法でも不純物原料ガス
を変化させることにより、同様の成長を行うことができ
る。ここで、導電層2と発光層3に添加する不純物とし
ては、アルミニウム、ガリウム、インジウム、弗素、塩
素、臭素の何れかが好適である。
Further, similar growth can be performed by changing the impurity source gas using a vapor phase growth method such as the MOCVD method. Here, as the impurity added to the conductive layer 2 and the light emitting layer 3, any one of aluminum, gallium, indium, fluorine, chlorine, and bromine is suitable.

導電層2は、陰電極6から発光部すなわち発光層3の陽
電極5直下部分に至る電流経路の電気抵抗を減らすため
に挿入されており、なるべく電子密度が高く、抵抗率が
低いことが望ましい。実際には電子密度を1×1016
/−以上とすると充分に低い抵抗率が得られる。導電層
2の厚さは上述の電気抵抗を減らすため、なるべく厚い
ことが望ましいが、通常1ミクロン以上あればよい。
The conductive layer 2 is inserted in order to reduce the electrical resistance of the current path from the negative electrode 6 to the light-emitting part, that is, the portion directly below the positive electrode 5 of the light-emitting layer 3, and it is desirable that the conductive layer 2 has as high an electron density as possible and a low resistivity. . Actually, the electron density is 1×1016
/- or more, a sufficiently low resistivity can be obtained. The thickness of the conductive layer 2 is desirably as thick as possible in order to reduce the above-mentioned electrical resistance, but it is usually sufficient if it is 1 micron or more.

次に発光層3の電子密度は、発光効率を高めるために、
なるべく高くすることが原理的には望ましいと考えられ
る。しかしながら、電子密度が1×1018/−以上で
あると、目的とする青色発光の効率はむしろ低下し、か
わって黄色・赤色領域の発光が生じることを発明者らは
見出した。詳細な検討の結果、好適な電子密度の範囲は
5X1016乃至1×1018/洲であることが判明し
た。また、この発光層の厚さは0.5乃至6μmとする
ことが望ましい。この範囲よりも薄い場合には、結晶性
の低下のため発光効率が低くなることがあり、また厚く
とも直列抵抗の増加のため効率が低下する。
Next, in order to increase the luminous efficiency, the electron density of the luminescent layer 3 is
In principle, it is considered desirable to make it as high as possible. However, the inventors have found that when the electron density is 1 x 1018/- or more, the efficiency of the desired blue light emission is rather reduced, and instead, light emission in the yellow/red region occurs. As a result of detailed study, it was found that a suitable range of electron density is 5×10 16 to 1×10 18 /square. Further, the thickness of this light-emitting layer is preferably 0.5 to 6 μm. If it is thinner than this range, the luminous efficiency may decrease due to a decrease in crystallinity, and even if it is thick, the efficiency decreases due to an increase in series resistance.

次に絶縁層4については、Zn、 Ssの原料が高純度
であれば不純物を全く添加しなくても得られるが、窒素
、燐、砒素、リチウム、ナトリウムの何れかを添加する
とより高抵抗化し好適である。
Next, regarding the insulating layer 4, if the raw materials of Zn and Ss are of high purity, it can be obtained without adding any impurities, but if any of nitrogen, phosphorus, arsenic, lithium, or sodium is added, the resistance becomes higher. suitable.

また絶縁性Zn5a層4の厚さは60〜500オングス
トロームの範囲内に選ぶことが望ましい。この範囲より
も薄い場合には電圧印加時に絶縁破壊をおこすことがあ
り、また厚い場合にはトンネル効果による電流が流れに
くくなシ、効率が低下する。なお、陽電極6の材料とし
ては、正孔の注入効率を高めるためなるべく仕事関数の
大きい金属が望ましく、特に金が好適である。またその
厚さは発生した光を効率よく外部に取り出すため、導電
性を損わない範囲でなるべく薄いことが望ましく100
〜500オングストロームとするのが好適である。また
、陰電極6の材料としては、N型Zn5aに対しオーム
性接触を示す金属であればよいが、特にインジュウムが
好適である。
Further, the thickness of the insulating Zn5a layer 4 is desirably selected within the range of 60 to 500 angstroms. If it is thinner than this range, dielectric breakdown may occur when a voltage is applied, and if it is thicker, it becomes difficult for current to flow due to the tunnel effect, resulting in a decrease in efficiency. Note that as the material for the positive electrode 6, a metal with as large a work function as possible is desirable in order to improve hole injection efficiency, and gold is particularly preferred. In addition, in order to efficiently extract the generated light to the outside, it is desirable that the thickness be as thin as possible without impairing conductivity.
500 angstroms is preferred. The material for the negative electrode 6 may be any metal that exhibits ohmic contact with the N-type Zn5a, and indium is particularly suitable.

以上に述べた発光ダイオードの動作原理は従来例と同様
であるが、本発明の場合には発光層3と絶縁層4が連続
的にエピタキシャル成長されているため界面に不純物や
欠陥が存在せず、陽電極5から注入された正孔が有効に
発光に寄与し、高い発光効率が得られることになる。
The operating principle of the light emitting diode described above is the same as that of the conventional example, but in the case of the present invention, since the light emitting layer 3 and the insulating layer 4 are epitaxially grown continuously, there are no impurities or defects at the interface. The holes injected from the positive electrode 5 effectively contribute to light emission, resulting in high light emission efficiency.

なお、上述した実施例では、陰電極6が、絶縁層4と発
光層3の一部を除去して露出した導電層2に直接接続さ
れているが、この構造は必須ではなく、例えば絶縁層4
のみを除去して発光層3に陰電極6が接続されていても
よい。これは、発光層3が薄くまたある程度低い抵抗率
を持っているため、直列抵抗の増加はほとんどないため
である。
In the embodiment described above, the negative electrode 6 is directly connected to the conductive layer 2 exposed by removing part of the insulating layer 4 and the light emitting layer 3, but this structure is not essential, and for example, the insulating layer 4
The cathode 6 may be connected to the light emitting layer 3 by removing only the light emitting layer 3. This is because the light emitting layer 3 is thin and has a somewhat low resistivity, so there is almost no increase in series resistance.

また第2図に示すように、陰電極6が絶縁層4の表面に
設けられ、絶縁層6の陰電極に接する部分41がN型化
されている構造であっても同様に良好な動作が行なえる
。このような構造は、例えば陰電極6を設けた後、適当
な温度で熱処理を行なうと、電極材料の拡散により形成
することができ素子作製プロセスが簡単になるという利
点がある。
Further, as shown in FIG. 2, even if the structure is such that the cathode 6 is provided on the surface of the insulating layer 4 and the portion 41 of the insulating layer 6 in contact with the cathode is N-type, the same good operation can be achieved. I can do it. Such a structure has the advantage that, for example, by performing heat treatment at an appropriate temperature after providing the cathode 6, it can be formed by diffusion of the electrode material, thereby simplifying the device fabrication process.

発明の効果 以上述べてきたように本発明によれば、界面における正
孔注入効率の低下を防止し、高い発光効率を有するZn
5a青色発光ダイオードを実現することができ実用的に
きわめて有用である。
Effects of the Invention As described above, according to the present invention, reduction in hole injection efficiency at the interface is prevented and Zn having high luminous efficiency
It is possible to realize a 5a blue light emitting diode, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の発光ダイオードを示す断面
図、第2図は他の実施例の発光ダイオードを示す断面図
、第3図は従来の発光ダイオードを示す断面図である。 1・・・・・・GaAs基板、2・・・・・・Zn5e
発光層、3・・・・・・Zn5e発光層、4・・・・・
・Zn5a導電層、5・旧・・陽電極、6・・・・・・
陰電極、12・・・]・・Zn5e単結晶、13・・・
・・・SiO□層。
FIG. 1 is a sectional view showing a light emitting diode according to one embodiment of the present invention, FIG. 2 is a sectional view showing a light emitting diode according to another embodiment, and FIG. 3 is a sectional view showing a conventional light emitting diode. 1...GaAs substrate, 2...Zn5e
Light-emitting layer, 3...Zn5e light-emitting layer, 4...
・Zn5a conductive layer, 5. Old positive electrode, 6...
Cathode, 12...]...Zn5e single crystal, 13...
...SiO□ layer.

Claims (14)

【特許請求の範囲】[Claims] (1)砒化ガリウム単結晶基板上に順次エピタキシャル
成長させたN型セレン化亜鉛からなる導電層と、前記導
電層よりも電子密度の低いN型セレン化亜鉛からなる発
光層と、絶縁性セレン化亜鉛からなる絶縁層とを備え、
前記絶縁層の表面の一部に、N型セレン化亜鉛に対しシ
ョットキー型接触を示す金属からなる陽電極を設け、更
に前記導電層または発光層に対しオーム性接触を有する
陰電極を設けた発光ダイオード。
(1) A conductive layer made of N-type zinc selenide grown epitaxially on a gallium arsenide single crystal substrate, a light-emitting layer made of N-type zinc selenide having a lower electron density than the conductive layer, and an insulating zinc selenide layer. and an insulating layer consisting of
A positive electrode made of a metal that exhibits Schottky contact with N-type zinc selenide is provided on a part of the surface of the insulating layer, and a negative electrode that has ohmic contact with the conductive layer or the light emitting layer is further provided. light emitting diode.
(2)陰電極を絶縁層の表面の一部に設け、前記絶縁層
の前記陰電極に接する部分をN型化した特許請求の範囲
第1項記載の発光ダイオード。
(2) The light emitting diode according to claim 1, wherein a cathode is provided on a part of the surface of the insulating layer, and a portion of the insulating layer in contact with the cathode is N-type.
(3)絶縁層の一部を除去して露出した発光層に陰電極
を設けた特許請求の範囲第1項記載の発光ダイオード。
(3) The light emitting diode according to claim 1, wherein a part of the insulating layer is removed and a cathode is provided on the exposed light emitting layer.
(4)絶縁層と発光層の一部を除去して露出した導電層
に陰電極を設けた特許請求の範囲第1項記載の発光ダイ
オード。
(4) The light emitting diode according to claim 1, wherein a negative electrode is provided on the conductive layer exposed by removing a portion of the insulating layer and the light emitting layer.
(5)絶縁層に窒素、燐、砒素、リチウム、ナトリウム
のうち少くとも一種が不純物として添加されている特許
請求の範囲第1項乃至第4項の何れかに記載の発光ダイ
オード。
(5) The light emitting diode according to any one of claims 1 to 4, wherein at least one of nitrogen, phosphorus, arsenic, lithium, and sodium is added as an impurity to the insulating layer.
(6)絶縁層の厚さを50乃至500オングストローム
とした特許請求の範囲第1項乃至第5項の何れかに記載
の発光ダイオード。
(6) The light emitting diode according to any one of claims 1 to 5, wherein the insulating layer has a thickness of 50 to 500 angstroms.
(7)導電層と発光層に、アルミニウム、ガリウム、イ
ンジウム、弗素、塩素、臭素のうち少くとも一種が不純
物として添加されている特許請求の範囲第1項記載の発
光ダイオード。
(7) The light emitting diode according to claim 1, wherein at least one of aluminum, gallium, indium, fluorine, chlorine, and bromine is added as an impurity to the conductive layer and the light emitting layer.
(8)発光層の電子密度を5×10^1^6/cm^3
以上1×10^1^8/cm^3以下とした特許請求の
範囲第1項記載の発光ダイオード。
(8) The electron density of the light emitting layer is 5×10^1^6/cm^3
The light emitting diode according to claim 1, wherein the light emitting diode is 1×10^1^8/cm^3 or less.
(9)発光層の厚さを0.5ミクロン以上、5ミクロン
以下とした特許請求の範囲第1項記載の発光ダイオード
(9) The light emitting diode according to claim 1, wherein the thickness of the light emitting layer is 0.5 microns or more and 5 microns or less.
(10)導電層の電子密度を1×10^1^8/cm^
3以上とした特許請求の範囲第1項記載の発光ダイオー
ド。
(10) The electron density of the conductive layer is 1×10^1^8/cm^
The light emitting diode according to claim 1, wherein the light emitting diode is three or more.
(11)導電層の厚さを1ミクロン以上とした特許請求
の範囲第1項記載の発光ダイオード。
(11) The light emitting diode according to claim 1, wherein the conductive layer has a thickness of 1 micron or more.
(12)陽電極層に金を用いた特許請求の範囲第1項記
載の発光ダイオード。
(12) The light emitting diode according to claim 1, wherein gold is used for the anode layer.
(13)陽電極層の厚さを100乃至600オングスト
ロームとした特許請求の範囲第1項記載の発光ダイオー
ド。
(13) The light emitting diode according to claim 1, wherein the anode layer has a thickness of 100 to 600 angstroms.
(14)陰電極にインジウムを用いた特許請求の範囲第
1項記載の発光ダイオード。
(14) The light emitting diode according to claim 1, wherein indium is used for the negative electrode.
JP61153112A 1986-06-30 1986-06-30 Light-emitting diode Pending JPS639165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153112A JPS639165A (en) 1986-06-30 1986-06-30 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153112A JPS639165A (en) 1986-06-30 1986-06-30 Light-emitting diode

Publications (1)

Publication Number Publication Date
JPS639165A true JPS639165A (en) 1988-01-14

Family

ID=15555233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153112A Pending JPS639165A (en) 1986-06-30 1986-06-30 Light-emitting diode

Country Status (1)

Country Link
JP (1) JPS639165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351867A2 (en) * 1988-07-21 1990-01-24 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor
CN100392884C (en) * 2005-08-01 2008-06-04 璨圆光电股份有限公司 Light-emitting diode and its producing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351867A2 (en) * 1988-07-21 1990-01-24 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor
EP0351868A2 (en) * 1988-07-21 1990-01-24 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor
EP0351869A2 (en) * 1988-07-21 1990-01-24 Sharp Kabushiki Kaisha Electroluminescent device of compound semiconductor
CN100392884C (en) * 2005-08-01 2008-06-04 璨圆光电股份有限公司 Light-emitting diode and its producing method

Similar Documents

Publication Publication Date Title
US7867800B2 (en) Light-emitting semiconductor device using group III nitrogen compound
US5247533A (en) Gallium nitride group compound semiconductor laser diode
EP0703631B1 (en) Light-emitting semiconductor device using group III nitride compound
US7772602B2 (en) Light emitting device having a plurality of light emitting cells and method of fabricating the same
JP3654738B2 (en) Group 3 nitride semiconductor light emitting device
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH0897468A (en) Semiconductor light emitting device
JPH1027924A (en) Nitride-group-iii element compound light emitting element
JP3595097B2 (en) Semiconductor device
JP3278951B2 (en) Method of forming ohmic electrode
US20070108519A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP2001015852A (en) Electrode structure of p-type group iii nitride semiconductor layer and method for forming the same
JPS639165A (en) Light-emitting diode
CN111490137B (en) Light emitting diode epitaxial wafer, display array and manufacturing method thereof
JP3633018B2 (en) Semiconductor light emitting device
JPS631081A (en) Light-emitting diode
JP2000332288A (en) Gallium nitride system semiconductor light emitting element and its manufacture
JP2663814B2 (en) Nitrogen-3 element compound semiconductor light emitting device
JP2967122B2 (en) ZnSe semiconductor light emitting device
JPS62247577A (en) Light emitting diode
KR100616592B1 (en) Nitride semiconductor light emitting device comprising indium incorporated p-type nitride semiconductor layer
JPH02114677A (en) Light emitting diode
JPH01169985A (en) Semiconductor laser
JPH07335940A (en) Compound semiconductor light emitting device
KR20050001604A (en) Gallium nitride based semiconductor light emitting diode and method of producing the same