JPS62247577A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPS62247577A
JPS62247577A JP61090437A JP9043786A JPS62247577A JP S62247577 A JPS62247577 A JP S62247577A JP 61090437 A JP61090437 A JP 61090437A JP 9043786 A JP9043786 A JP 9043786A JP S62247577 A JPS62247577 A JP S62247577A
Authority
JP
Japan
Prior art keywords
layer
znse
emitting diode
light emitting
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61090437A
Other languages
Japanese (ja)
Inventor
Tsuneo Mitsuyu
常男 三露
Kazuhiro Okawa
和宏 大川
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61090437A priority Critical patent/JPS62247577A/en
Publication of JPS62247577A publication Critical patent/JPS62247577A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a ZnSe blue light emitting diode having a high light emitting efficiency by preventing a decline of a hole injection efficiency on an interface by composing an insulating layer also out of ZnSe single crystal so as to enable continuous formation of an N-type ZnSe layer and the insulating layer. CONSTITUTION:This light emitting diode comprises an N-type GaAs single crystal substrate 1, an N-type ZnSe layer 2 epitaxially grown on the substrate 1, an insulating ZnSe layer 3, a metallic electrode layer 4, and an ohmic electrode 5 which are epitaxially grown further on said layer 2. The reason why CaAs is used for the substrate 1 is that its lattice constant is almost the same as that of ZnSe and a good ZnSe single crystal layer can be epitaxially grown. As a method for this epitaxial growth, for example, molecular beam epitaxy is suitable. In this case, a proper impurity is evaporated together with a crystalline matrix material ZnSe and by changing a kind of the impurity, the N-type ZnSe layer 2 and the insulating ZnSe layer 3 can be grown continuously in order.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は発光ダイオードの構造に関し、特にセレン化亜
鉛半導体を用いた高効率の青色発光ダイオードの構造に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure of a light emitting diode, and more particularly to the structure of a highly efficient blue light emitting diode using a zinc selenide semiconductor.

従来の技術 ■−■族化合物半導体であるセレン化亜鉛(ZnSa)
は、青色発光ダイオードの材料として有望である。従来
、このZn5eを用いた発光ダイオードとして第2図に
示すような構造の素子が考案されている〔例えばジャパ
ニーズ ジャーナルオプ アプライド フィジックス(
、rapaneseJournal  of  App
li6d  Physics)  誌、第16巻第1号
(昭和52年)P、77−84〕。
Conventional technology Zinc selenide (ZnSa), a ■-■ group compound semiconductor
is a promising material for blue light-emitting diodes. Conventionally, an element with a structure as shown in Fig. 2 has been devised as a light emitting diode using this Zn5e [for example, Japanese Journal Op Applied Physics (
,rapaneseJournal of App
li6d Physics), Vol. 16, No. 1 (1977) P, 77-84].

同図で12はN型Zn5e単結晶、13は二酸化硅素(
SiO□)からなる絶縁層、4は金属電極、6はオーム
性電極である。この素子の両電極間に、金属電極4が正
となるような電圧を印加すると、トンネル効果により金
属電極からN型Zn5e単結晶中へ正孔が注入さγし、
これが自由電子と再結合して青色の発光を生じる。
In the figure, 12 is N-type Zn5e single crystal, 13 is silicon dioxide (
4 is a metal electrode, and 6 is an ohmic electrode. When a voltage is applied between both electrodes of this element so that the metal electrode 4 becomes positive, holes are injected from the metal electrode into the N-type Zn5e single crystal due to the tunnel effect.
This recombines with free electrons to produce blue light.

発明が解決しようとする問題点 しかしながら上述のような従来の構成では、絶縁層の素
材がZn5eとは全く異なるため、両者を連続的に形成
することは不可能である。このため両者の界面に不純物
が堆積したり、欠陥が発生することになり、その結果注
入された正孔が有効に再結合せず、発光効率が低下する
という問題点があった。
Problems to be Solved by the Invention However, in the conventional structure as described above, since the material of the insulating layer is completely different from Zn5e, it is impossible to form both continuously. For this reason, impurities are deposited or defects are generated at the interface between the two, resulting in a problem that the injected holes are not effectively recombined and the luminous efficiency is reduced.

本発明はかかる点に濫みてなされたもので、高効率のZ
 n S e”青色発光ダイオードを提供することを目
的としている。
The present invention has been made to take advantage of these points, and is a highly efficient Z
The present invention aims to provide an "n S e" blue light emitting diode.

問題点を解決するだめの手段 本発明は上記問題点を解決するため、絶縁層をもZn5
a単結晶で構成し、N型Zn5e層と絶縁層を連続的に
形成し得るようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention also uses Zn5 for the insulating layer.
It is constructed of a single crystal, and is designed to allow continuous formation of an N-type Zn5e layer and an insulating layer.

作用 本発明は上記の手段により、N型Zn5e層と絶縁層の
界面を不純物や欠陥のない良好な状態にし、注入された
正孔を有効に発光に寄与せしめて発光効率を高めるもの
である。
Operation The present invention uses the above-mentioned means to make the interface between the N-type Zn5e layer and the insulating layer in a good condition free of impurities and defects, and allows the injected holes to effectively contribute to light emission, thereby increasing the light emission efficiency.

実施例 以下、本発明を実施例により詳細に説明する。Example Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は、本発明による発光ダイオードの構造を模式的
に示す断面図である。同図において、1はN型砒化ガリ
ウム(GaムS)単結晶基板、2は前記基板1上にエピ
タキシャル成長させたN型Zn5e層、3はさらにその
上にエピタキシャル成長させた絶縁性Zn5e層、4は
金属電極層、6はオーム性電極である。ここで、基板に
GaAgを用いるのは、格子定数がZn5eとほぼ同一
であり、良好なZn5a単結晶層をエピタキシャル成長
させることができるためである。このエピタキシャル成
長の方法としては、例えば分子線エピタキシー法が好適
である。この場合、結晶母体原料のZn5eと共に適切
な不純物を蒸発させ、その種類を変えることによりN型
Zn5e層2と絶縁性Zn5e層3を順次連続的に成長
させることができる。またMocvn法などの気相成長
法でも不純物原料ガスを切シ換えることによシ、同様の
成長を行うことができる。ここで、N型Zn5e層に添
加する不純物としては、アルミニウム、ガリウム。
FIG. 1 is a cross-sectional view schematically showing the structure of a light emitting diode according to the present invention. In the figure, 1 is an N-type gallium arsenide (GaM S) single crystal substrate, 2 is an N-type Zn5e layer epitaxially grown on the substrate 1, 3 is an insulating Zn5e layer epitaxially grown thereon, and 4 is an N-type Zn5e layer epitaxially grown on the substrate 1. The metal electrode layer 6 is an ohmic electrode. Here, GaAg is used for the substrate because its lattice constant is almost the same as that of Zn5e, and a good Zn5a single crystal layer can be epitaxially grown. As a method for this epitaxial growth, for example, molecular beam epitaxy is suitable. In this case, the N-type Zn5e layer 2 and the insulating Zn5e layer 3 can be successively grown in sequence by evaporating appropriate impurities together with Zn5e, which is the crystal host raw material, and changing the types of impurities. Further, similar growth can be performed using a vapor phase growth method such as the Mocvn method by switching the impurity source gas. Here, aluminum and gallium are used as impurities added to the N-type Zn5e layer.

インジウム、弗素、塩素の何れかが好適である。Any one of indium, fluorine, and chlorine is suitable.

このN型Zn5e層2の電子密度は高効率を得るために
、es x 1o’V crA以上とすることが望まし
い。
In order to obtain high efficiency, the electron density of this N-type Zn5e layer 2 is desirably greater than es x 1o'V crA.

また絶縁性znse層3は、Zn5aの原料が高純度で
あれば不純物を全く添加しなくても得られるが、窒素、
燐、砒素、リチウム、ナトリウムの何れかを添加すると
より高抵抗化し、好適である。
Furthermore, the insulating Znse layer 3 can be obtained without adding any impurities if the Zn5a raw material is of high purity;
It is preferable to add any one of phosphorus, arsenic, lithium, and sodium to increase the resistance.

上記N型Zn5e層2の厚さは1μm以上とすることが
望ましい。これよりも薄い場合には、結晶性の低下のた
め発光効率が低くなることがある。また絶縁性Zn5e
層3の厚さは50〜500オングストロームの範囲内に
選ぶことが望ましい。この範囲よりも薄い場合には電圧
印加時に絶縁破壊をおこすことがあり、また厚い場合に
はトンネル効果による電流が流れにくくなり、効率が低
下する。
The thickness of the N-type Zn5e layer 2 is preferably 1 μm or more. If it is thinner than this, the luminous efficiency may decrease due to a decrease in crystallinity. Also insulating Zn5e
The thickness of layer 3 is preferably selected within the range of 50 to 500 angstroms. If it is thinner than this range, dielectric breakdown may occur when a voltage is applied, and if it is thicker, it becomes difficult for current to flow due to the tunnel effect, resulting in a decrease in efficiency.

なお、金属電極層4の材料としては、正孔の注入効率を
高めるためなるべく仕事関数の大きい金属が望ましく、
特に金が好適である。またその厚さは、発生した光を効
率よく外部に取り出すため、導電性を損わない範囲でな
るべく薄いことが望ましく、100〜5ooオングスト
ロームとするのが好適である。
Note that as the material for the metal electrode layer 4, a metal with as large a work function as possible is preferable in order to increase the hole injection efficiency.
Gold is particularly suitable. Further, in order to efficiently extract the generated light to the outside, the thickness is preferably as thin as possible without impairing conductivity, and is preferably 100 to 50 angstroms.

以上に述べた発光ダイオードの動作原理は従来例と同様
であるが、本発明の場合にはN型Zn5e層2と絶縁性
Zn5e層3が連続的にエピタキシャル成長されている
ため界面に不純物や欠陥が存在せず、金属電極層4から
注入された正孔が有効に発光に寄与し、高い発光効率が
得られることになるO 発明の効果 以上述べてきたように、本発明によれば、界面における
正孔注入効率の低下を防止し、高い発光効率を有するZ
n5e青色発光ダイオードを実現することができ、実用
的にきわめて有用である。
The operating principle of the light emitting diode described above is the same as that of the conventional example, but in the case of the present invention, since the N-type Zn5e layer 2 and the insulating Zn5e layer 3 are epitaxially grown continuously, impurities and defects are not present at the interface. O does not exist, and the holes injected from the metal electrode layer 4 effectively contribute to light emission, resulting in high luminous efficiency. Z that prevents a decrease in hole injection efficiency and has high luminous efficiency
It is possible to realize an N5E blue light emitting diode, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の発光ダイオードを示す断面
図、第2図は従来の発光ダイオードを示す断面図である
。 1・・・・・・N型GaAs単結晶基板、2・・・・・
・N型Zn5e層、3・・・・・絶縁性Zn5a層、4
・・・・・・金属電極層、5・・・・・オーム性電極層
、12・・・・・・N型Zn5e単結晶、13・・・・
・・5in2絶縁層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1〜
情’j GcLAs ?!*rak第1図    2−
、・1J4 3−・1株ヰ七54 十−−−會涜しt掻槽 S−゛χ−4扛Itn 第2図     1゜−1−99□。56細。
FIG. 1 is a sectional view showing a light emitting diode according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional light emitting diode. 1... N-type GaAs single crystal substrate, 2...
・N-type Zn5e layer, 3...Insulating Zn5a layer, 4
...Metal electrode layer, 5...Ohmic electrode layer, 12...N-type Zn5e single crystal, 13...
...5in2 insulation layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 1~
Love'j GcLAs? ! *rak Figure 1 2-
, ・1J4 3-・1 stock ヰ754 10--The meeting S-゛χ-4扛Itn Fig. 2 1゜-1-99□. 56 thin.

Claims (8)

【特許請求の範囲】[Claims] (1)N型砒化ガリウム単結晶基板上に順次エピタキシ
ャル成長させたN型セレン化亜鉛層及び絶縁性セレン化
亜鉛層を備え、前記絶縁性セレン化亜鉛層の表面の少く
とも一部に金属電極層を設けたことを特徴とする発光ダ
イオード。
(1) An N-type zinc selenide layer and an insulating zinc selenide layer are sequentially epitaxially grown on an N-type gallium arsenide single crystal substrate, and a metal electrode layer is formed on at least a part of the surface of the insulating zinc selenide layer. A light emitting diode characterized by being provided with.
(2)絶縁性セレン化亜鉛層に、窒素、燐、砒素リチウ
ム、ナトリウムのうち少くとも一種が不純物として添加
されていることを特徴とする特許請求の範囲第1項記載
の発光ダイオード。
(2) The light emitting diode according to claim 1, wherein at least one of nitrogen, phosphorus, lithium arsenide, and sodium is added as an impurity to the insulating zinc selenide layer.
(3)絶縁性セレン化亜鉛層の厚さを50乃至500オ
ングストロームとしたことを特徴とする特許請求の範囲
第1項記載の発光ダイオード。
(3) The light emitting diode according to claim 1, wherein the insulating zinc selenide layer has a thickness of 50 to 500 angstroms.
(4)N型セレン化亜鉛層に、アルミニウム、ガリウム
、インジウム、弗素、塩素のうち少くとも一種が不純物
として添加されていることを特徴とする特許請求の範囲
第1項記載の発光ダイオード。
(4) The light emitting diode according to claim 1, wherein at least one of aluminum, gallium, indium, fluorine, and chlorine is added as an impurity to the N-type zinc selenide layer.
(5)N型セレン化亜鉛層の室温における電子密度を5
×10^1^6/cm^3以上としたことを特徴とする
特許請求の範囲第1項記載の発光ダイオード。
(5) The electron density of the N-type zinc selenide layer at room temperature is 5
The light-emitting diode according to claim 1, characterized in that the light-emitting diode is at least ×10^1^6/cm^3.
(6)N型セレン化亜鉛層の厚さを1ミクロン以上とし
たことを特徴とする特許請求の範囲第1項記載の発光ダ
イオード。
(6) The light emitting diode according to claim 1, wherein the thickness of the N-type zinc selenide layer is 1 micron or more.
(7)金属電極層に金を用いたことを特徴とする特許請
求の範囲第1項記載の発光ダイオード。
(7) The light emitting diode according to claim 1, wherein gold is used for the metal electrode layer.
(8)金属電極層の厚さを100乃至500オングスト
ロームとしたことを特徴とする特許請求の範囲第1項記
載の発光ダイオード。
(8) The light emitting diode according to claim 1, wherein the metal electrode layer has a thickness of 100 to 500 angstroms.
JP61090437A 1986-04-18 1986-04-18 Light emitting diode Pending JPS62247577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61090437A JPS62247577A (en) 1986-04-18 1986-04-18 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61090437A JPS62247577A (en) 1986-04-18 1986-04-18 Light emitting diode

Publications (1)

Publication Number Publication Date
JPS62247577A true JPS62247577A (en) 1987-10-28

Family

ID=13998583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61090437A Pending JPS62247577A (en) 1986-04-18 1986-04-18 Light emitting diode

Country Status (1)

Country Link
JP (1) JPS62247577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528395B2 (en) 2000-04-27 2003-03-04 Sumitomo Electric Industries, Ltd. Method of fabricating compound semiconductor device and apparatus for fabricating compound semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528395B2 (en) 2000-04-27 2003-03-04 Sumitomo Electric Industries, Ltd. Method of fabricating compound semiconductor device and apparatus for fabricating compound semiconductor device
US6815316B2 (en) 2000-04-27 2004-11-09 Sumitomo Electric Industries, Ltd. Apparatus for fabricating compound semiconductor device

Similar Documents

Publication Publication Date Title
US5247533A (en) Gallium nitride group compound semiconductor laser diode
JP3812368B2 (en) Group III nitride compound semiconductor device and method for manufacturing the same
JP2001094150A (en) Group iii nitride compound semiconductor element
JPH0897468A (en) Semiconductor light emitting device
JPH01243597A (en) Semiconductor device and semiconductor light emitting device
JP3698229B2 (en) Semiconductor device and semiconductor light emitting device
JP5061473B2 (en) Nitride semiconductor devices
US6538265B1 (en) Indium aluminum nitride based light emitter active layer with indium rich and aluminum rich areas
JP2001102623A (en) Nitride semiconductor light emitting element and fabrication thereof
JP3278951B2 (en) Method of forming ohmic electrode
JP2001015852A (en) Electrode structure of p-type group iii nitride semiconductor layer and method for forming the same
US6774402B2 (en) Pn-juction type compound semiconductor light-emitting device, production method thereof and white light-emitting diode
JPS62247577A (en) Light emitting diode
JP3724213B2 (en) Gallium nitride compound semiconductor light emitting device
JPS631081A (en) Light-emitting diode
JP2004047847A (en) Manufacturing method for boron phosphate layer, and boron phosphate semiconductor device
JPS639165A (en) Light-emitting diode
JPH05343737A (en) Manufacture of semiconductor light emitting element
JPH08222761A (en) Semiconductor light emitting device
JPH02114677A (en) Light emitting diode
JP2967122B2 (en) ZnSe semiconductor light emitting device
JP2000286499A (en) Iii nitride compound semiconductor device
JPH01169985A (en) Semiconductor laser
JPH1012924A (en) Semiconductor multilayer structure, semiconductor lightemitting device and field-effect transistor
JP3797280B2 (en) Method for producing group III nitride compound semiconductor device