JPS6388919A - Odd number frequency dividing circuit - Google Patents

Odd number frequency dividing circuit

Info

Publication number
JPS6388919A
JPS6388919A JP23502986A JP23502986A JPS6388919A JP S6388919 A JPS6388919 A JP S6388919A JP 23502986 A JP23502986 A JP 23502986A JP 23502986 A JP23502986 A JP 23502986A JP S6388919 A JPS6388919 A JP S6388919A
Authority
JP
Japan
Prior art keywords
odd number
clock
number frequency
output
frequency dividing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23502986A
Other languages
Japanese (ja)
Inventor
Kimiyoshi Okada
岡田 公芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23502986A priority Critical patent/JPS6388919A/en
Publication of JPS6388919A publication Critical patent/JPS6388919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pulse Circuits (AREA)

Abstract

PURPOSE:To output an odd number frequency dividing clock corresponding to an inputted select signal and coincident with the leading edge by adding the output of an odd number frequency division means and an output via a D type flip-flog inputted with an inverted clock to a selector means. CONSTITUTION:An odd number frequency dividing clock from an odd number frequency division means 1 and a clock shifting the odd number frequency division clock by using the inverted phase clock of a D FF 5 are fed to a selector means 6. The means 6 selects odd frequency clocks having a minimum duty factor and different phase corresponding to the select signal to take OR. Then the trailing is shifted by a half bit each to obtain odd number frequency division with different duty factor. Thus, odd number frequency clocks corresponding to the inputted select signal and coincident with the leading edge are obtained.

Description

【発明の詳細な説明】 〔概要〕 奇数分周回路において、入力クロックを奇数分周して得
られた奇数分周クロックと、反相クロックを用いてこの
奇数分周クロックを半ピットシフトさせたものとをセレ
クトして論理和を取ることにり、立上りエツジが一致し
たデユーティファクタの異なる分周クロックが得られる
と共に、 LSI化に適する様にしたものである。
[Detailed Description of the Invention] [Summary] In an odd number frequency dividing circuit, an odd number divided clock obtained by dividing an input clock by an odd number and an antiphase clock are used to shift the odd number divided clock by half a pit. By selecting these and calculating the logical sum, it is possible to obtain divided clocks with different duty factors that have the same rising edge, and to make them suitable for LSI implementation.

〔産業上の利用分野〕[Industrial application field]

本発明は奇数分周回路の改良に関するものである。 The present invention relates to an improvement in an odd frequency divider circuit.

一般に、クロックを3分周回路で3分周するとそのまま
ではデユティファクタは1/3. 5分周回路の場合は
デユーティファクタは215となるが、例えば論理回路
の動作マージンを試験する為に。
Generally, if a clock is divided by 3 using a divide-by-3 circuit, the duty factor will be 1/3. In the case of a divide-by-5 circuit, the duty factor is 215, but this is used, for example, to test the operating margin of a logic circuit.

3分周回路から出力されるクロックのデユーティファク
タをほぼ33.3%、 50χ、 66.6%の3段階
に切替え可能にすることが要求されることがある。
It is sometimes required to be able to switch the duty factor of the clock output from the divide-by-3 circuit into three stages: approximately 33.3%, 50χ, and 66.6%.

一方、近年、装置の小型化に対応して回路のLSI化が
進められているので、奇数分周回路もLSI化に適した
回路構成にすることが必要である。
On the other hand, in recent years, in response to the miniaturization of devices, circuits have been made into LSIs, so it is necessary that the odd frequency divider circuit also have a circuit configuration suitable for LSIs.

〔従来の技術〕[Conventional technology]

第4図は従来例のブロック図、第5図は第4図のタイム
チャートを示し、第5図中の左側の数字は第4図中の同
じ数字の部分のタイムチャートを示す。以下、入力クロ
ックを3分周する場合について、第5図を参照しながら
第4図の動作を説明する。
FIG. 4 is a block diagram of the conventional example, and FIG. 5 is a time chart of FIG. 4, and the numbers on the left side of FIG. 5 indicate the time charts of the portions with the same numbers in FIG. The operation of FIG. 4 will be described below with reference to FIG. 5 in the case where the input clock is frequency-divided by three.

−フリップフロップ(以下、D−FPと省略する)11
゜12の端子QがLになっているとすると、D−FF 
11の端子りには第5図−■に示す様にHが加えられ、
このHは第5図−■に示すクロックの立上りで入力して
端子QはHに変化し、次のクロックの立上りでLに戻る
(第5図−■の前半参照)。
-Flip-flop (hereinafter abbreviated as D-FP) 11
If terminal Q of ゜12 is set to L, then D-FF
H is added to the terminal 11 as shown in Figure 5-■,
This H is input at the rising edge of the clock shown in FIG. 5-2, and the terminal Q changes to H, and returns to L at the next rising edge of the clock (see the first half of FIG. 5-2).

そこで、D−FF 12の端子Qは第5図−■の前半に
示す様にD−FF 11より1ビツト遅れてLからHに
なった後に再びしに戻るので、D−FF 11の端子り
は第5図−■のA点で再び初期状態のHに戻ってD−F
FII及び12は点線矢印の様に前記の動作を繰り返す
Therefore, as shown in the first half of Figure 5-■, the terminal Q of the D-FF 12 changes from L to H with a delay of 1 bit from the D-FF 11, and then returns to the high state. returns to the initial state H at point A in Figure 5-■ and returns to D-F.
FII and 12 repeat the above operation as indicated by the dotted arrows.

そして、D−FP 12の端子Qの出力(デユーティフ
ァクタが173の3分周クロック)は例えば遅延線2で
半ビツト遅延させられてセットリセットフリップフロッ
プ(以下、 R3−FPと省略する)3の端子Rに加え
られる(第5図−■参照)。
Then, the output of the terminal Q of the D-FP 12 (a 3-frequency divided clock with a duty factor of 173) is delayed by half a bit by the delay line 2, for example, and then sent to the set-reset flip-flop (hereinafter abbreviated as R3-FP) 3. (See Figure 5-■).

このR5−FFの端子SにはD−FF 11の端子Qの
出力が加えられるので、D−FP 11の出力でセット
され、遅延線2の出力でリセットされ第5図−■に示す
様にほぼ50χのデユーティファクタを持つ3に示すデ
ユーティファクタ50χの3分周クロックがノア回路4
L 44を通って出力され、セレクト信号S2がLにな
るとデユーティファクタがほぼ33.3z(50χ−%
ビット)の3分周クロックが、セレクタ信号S、がLに
なると第5図−〇のデユーティファクタがほぼ66.6
χ(50χ+Aビツト)の3分周クロックがそれぞれノ
ア回路42.43.44を通って出力される。
Since the output of the terminal Q of the D-FF 11 is applied to the terminal S of this R5-FF, it is set by the output of the D-FP 11 and reset by the output of the delay line 2, as shown in Fig. 5-■. The NOR circuit 4 is a clock divided by 3 with a duty factor of 50χ shown in 3, which has a duty factor of approximately 50χ.
When the select signal S2 becomes L, the duty factor becomes approximately 33.3z (50χ-%
When the selector signal S of the frequency-divided clock (bit) becomes L, the duty factor in Figure 5-0 becomes approximately 66.6.
The 3-divided clocks of χ (50χ+A bits) are outputted through NOR circuits 42, 43, and 44, respectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記で説明した様に、デユーティファクタをほぼ50χ
にする為の半ビットシフト部分として遅延線又は多段接
続されたゲートを利用しているので、広いスペースが必
要となり、又は素子の特性の偏差により遅延量が許容範
囲外になる可能性がある。
As explained above, the duty factor is approximately 50χ
Since a delay line or gates connected in multiple stages is used as a half-bit shift portion for the purpose of achieving this, a large space is required, or the amount of delay may fall outside of the allowable range due to deviations in the characteristics of the elements.

更に、クロック周波数を変化させた時にデユーティファ
クタを一定にする為には半ビットシフト部分を再調整し
なければならないので、小型化。
Furthermore, in order to keep the duty factor constant when changing the clock frequency, the half-bit shift part must be readjusted, so it has to be made smaller.

調整個所の削減を図ってLSI化に適する回路にしてけ
ればならない。
The circuit must be suitable for LSI integration by reducing the number of adjustment points.

又、第5図−■に示す様にデユーティファクタを切替え
ると立上りエツジが変化するのでジッタが発生すると云
う2つの問題点がある。
Furthermore, as shown in FIG. 5-2, when the duty factor is switched, the rising edge changes, resulting in two problems: jitter occurs.

〔問題点を解決する為の手段〕[Means for solving problems]

第1図は本発明の原理図を示す。奇数分周手段1の出力
を及び反相クロックが入力されるDタイプフリップフロ
ップ5を介した出力をセレクト手段6に加える。そして
、入力するセレクト信号に対応した奇数分周クロックが
ここから出力される構成にしである。
FIG. 1 shows a diagram of the principle of the present invention. The output of the odd number frequency dividing means 1 and the output via the D type flip-flop 5 to which the anti-phase clock is input are applied to the selection means 6. The configuration is such that an odd-number frequency-divided clock corresponding to the input select signal is output from here.

〔作用〕[Effect]

本発明は奇数分周手段1からの奇数分周クロックと、こ
の奇数分周クロックをDタイプフリップフロップ5で反
相クロックを用いて半ビットシフトさせたものとをセレ
クト手段6に加える。
In the present invention, the odd number frequency divided clock from the odd number frequency dividing means 1 and the half bit shifted version of this odd number frequency divided clock using a D type flip-flop 5 using an antiphase clock are added to the selection means 6.

セレクト手段ではデユーティファクタが最小で。The duty factor is the minimum in the selection means.

位相がすべて異なる奇数分周クロックをセレクト信号に
対応してセレクトし、論理和を取ることにより、立下り
部分を半ビットずつシフトさせてデユーティファクタの
異なる奇数分周クロックを得る様にしているので、立上
りエツジはデユーティファクタが変化しても変化しない
By selecting odd-numbered frequency-divided clocks with all different phases in accordance with the select signal and performing a logical sum, the falling part is shifted by half a bit to obtain odd-numbered frequency-divided clocks with different duty factors. Therefore, the rising edge does not change even if the duty factor changes.

又、半ビットシフト手段としてDタイプフリップフロッ
プを使用し、遅延線や多段接続されたゲートを利用しな
いので回路の小型化、調整個所の削減を図り、LSI化
に適する。
Further, since a D-type flip-flop is used as the half-bit shifting means and no delay line or multi-stage connected gates are used, the circuit can be miniaturized and the number of adjustment parts can be reduced, making it suitable for LSI implementation.

〔実施例〕〔Example〕

第2図は本発明の実施例のブロック図、第3図は第2図
のタイムチャートを示す。又、D−FF 11゜12、
ノア回路13は奇数分周手段1、ノア回路61〜64は
セレクト手段6に相当する。
FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a time chart of FIG. 2. Also, D-FF 11°12,
The NOR circuit 13 corresponds to the odd frequency dividing means 1, and the NOR circuits 61 to 64 correspond to the selection means 6.

尚、企図を通じて同一符号は同一対象物で、第3図の左
側の数字は第2図中の数字の部分のタイムチャートを示
す。
Incidentally, the same reference numerals refer to the same objects throughout the plan, and the numbers on the left side of FIG. 3 indicate the time charts of the numbers in FIG. 2.

以下、入力クロックを3分周する場合を例にして第3図
を参照しながら第2図の動作を示す。
The operation of FIG. 2 will be described below with reference to FIG. 3, taking as an example the case where the input clock frequency is divided by three.

先ず、D−FF 11.12とノア回路13で構成され
る奇数分周手段1の動作は前記及び第3図−〇、■。
First, the operation of the odd frequency dividing means 1, which is composed of the D-FF 11.12 and the NOR circuit 13, is as described above and in FIG.

■の点線矢印に示す様に、1ビツトずつシフトしたデユ
ーティファクタ1/3の3分周クロックがD−FF 1
1及び上2の端子Qより出力される。
As shown by the dotted line arrow (2), the duty factor 1/3 divided by 3 clock shifted by 1 bit is used as D-FF 1.
It is output from terminal Q of 1 and upper 2.

そこで、D−FF 11−の端子Qの出力をノア回路6
1に加えると共に、D−FF 51に加えて反相クロッ
クを用いて半ビットシフトしたものをノア回路62に加
える。更に、D−FF 12の端子Qの出力をノア回路
63に加え、セレクト信号31〜S3によりノア回路6
1〜63をオン/オフする。
Therefore, the output of the terminal Q of the D-FF 11- is connected to the NOR circuit 6.
1, and in addition to the D-FF 51, a half-bit shifted signal using an anti-phase clock is added to the NOR circuit 62. Furthermore, the output of the terminal Q of the D-FF 12 is added to the NOR circuit 63, and the NOR circuit 6 is
Turn on/off 1 to 63.

即ち、第3図−■に示す様に31をLにしてSZ+33
をHにするとデユーティファクタが173の3分周クロ
ックが、S、と82をしにしてs3をHにするとD−F
F 11と51の端子Qの出力の論理和がオア回路64
で取られてデユーティファクタが172の3分周クロッ
クが、S + ”’ S 3をLにするとD−FF 1
1.12.51の端子Qの出力の論理和が取られてデユ
ーティファクタが273の3分周クロックが得られるが
、立上りエツジが全て一致しているのでデユーティファ
クタを切替えてもジッタは生じない。
That is, as shown in Figure 3-■, 31 is set to L and SZ+33
When set to H, a 3-frequency divided clock with a duty factor of 173 becomes S, and when s3 is set to H with S and 82 set to H, D-F
The OR circuit 64 is the logical sum of the outputs of terminal Q of F 11 and 51.
The 3-frequency divided clock with a duty factor of 172 is taken by S + "' When S 3 is set to L, D-FF 1
A 3-divided clock with a duty factor of 273 is obtained by ORing the outputs of the terminal Q of 1.12.51, but since the rising edges all match, there is no jitter even if the duty factor is switched. Does not occur.

尚、半ビットシフトさせるために遅延線や多段接続され
たゲートの代りに反相クロックと1個のD−PFを使用
してこれを行っているので、スペースが小さく、特性の
偏差も少なく、又、クロック周波数を変化させても調整
の必要がないのでLSI化に適した奇数分周回路である
In addition, in order to shift half a bit, an anti-phase clock and one D-PF are used instead of delay lines and gates connected in multiple stages, so the space is small and the deviation in characteristics is small. Furthermore, since there is no need for adjustment even if the clock frequency is changed, this odd number frequency dividing circuit is suitable for LSI implementation.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に本発明によりLSIに適した奇
数分周回路が得られると共に、立上りエツジの一致した
分周クロックが得られると云う効果がある。
As described in detail above, the present invention has the advantage that it is possible to obtain an odd number frequency dividing circuit suitable for LSI, and also to obtain a frequency divided clock whose rising edges coincide with each other.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理ブロック図、 第2図は本発明の実施例のブロック図、第3図は第2図
のタイムチャート、 第4図は従来例のブロック図、 第5図は第4図のタイムチャートを示す。 図において、 1は奇数分周手段、 5はDタイプフリップフロップ、 6はセレクト手段を示す。 宰 10 1             ・ Xぢ(≦9「)σつ1戸ち鳩り傅づσつフ”O,、ρ図
第2図 θoe■OO廚八冴 O
Fig. 1 is a block diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a time chart of Fig. 2, Fig. 4 is a block diagram of a conventional example, and Fig. 5 is a block diagram of an embodiment of the present invention. The time chart in Figure 4 is shown. In the figure, 1 is an odd frequency dividing means, 5 is a D type flip-flop, and 6 is a selecting means. 10 1 ・

Claims (1)

【特許請求の範囲】[Claims] 入力クロックを奇数分周する奇数分周手段(1)と、該
奇数分周手段の出力を該入力クロックに対して位相が反
転した反相クロックを用いて半ビットシフトさせるDタ
イプフリップフロップ(5)と、該奇数分周回路の出力
と該半ビットシフト手段の出力とを外部よりのセレクト
信号でセレクトして論理和を取るセレクト手段(6)と
を有することを特徴とする奇数分周回路。
Odd frequency dividing means (1) for dividing an input clock by an odd number; and a D type flip-flop (5) for shifting the output of the odd frequency dividing means by half a bit using an anti-phase clock whose phase is inverted with respect to the input clock. ), and select means (6) for selecting the output of the odd frequency dividing circuit and the output of the half-bit shifting means using an external selection signal and calculating a logical sum. .
JP23502986A 1986-10-02 1986-10-02 Odd number frequency dividing circuit Pending JPS6388919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23502986A JPS6388919A (en) 1986-10-02 1986-10-02 Odd number frequency dividing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23502986A JPS6388919A (en) 1986-10-02 1986-10-02 Odd number frequency dividing circuit

Publications (1)

Publication Number Publication Date
JPS6388919A true JPS6388919A (en) 1988-04-20

Family

ID=16980024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23502986A Pending JPS6388919A (en) 1986-10-02 1986-10-02 Odd number frequency dividing circuit

Country Status (1)

Country Link
JP (1) JPS6388919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186718A (en) * 1989-01-13 1990-07-23 Nec Corp 1/3 frequency dividing circuit
FR2699767A1 (en) * 1992-12-03 1994-06-24 Fujitsu Ltd Frequency divider by an odd number and method of forming such a divider.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152216A (en) * 1981-03-14 1982-09-20 Fujitsu Ltd Automatic adjusting circuit for pulse width
JPS60227521A (en) * 1984-04-25 1985-11-12 Matsushita Electric Ind Co Ltd 2/3-frequency dividing circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152216A (en) * 1981-03-14 1982-09-20 Fujitsu Ltd Automatic adjusting circuit for pulse width
JPS60227521A (en) * 1984-04-25 1985-11-12 Matsushita Electric Ind Co Ltd 2/3-frequency dividing circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186718A (en) * 1989-01-13 1990-07-23 Nec Corp 1/3 frequency dividing circuit
FR2699767A1 (en) * 1992-12-03 1994-06-24 Fujitsu Ltd Frequency divider by an odd number and method of forming such a divider.

Similar Documents

Publication Publication Date Title
JPS6243568B2 (en)
US5230013A (en) PLL-based precision phase shifting at CMOS levels
US4354124A (en) Digital phase comparator circuit
US4845727A (en) Divider circuit
JPH06334515A (en) Phase locked loop oscillator
JPS6388919A (en) Odd number frequency dividing circuit
US6282255B1 (en) Frequency divider with variable modulo
US6791384B2 (en) Delay adjustment circuit for delay locked loop
US11223363B2 (en) Open loop fractional frequency divider
US20040095166A1 (en) Clock switching circuit
JPS6376617A (en) Odd number frequency-dividing circuit
JP2005159737A (en) Variable frequency dividing circuit
JPH05258589A (en) Variable length shift register
KR900000852Y1 (en) Control circuit for double extention display
JP2517020B2 (en) Digitally controlled oscillator
JPH11112296A (en) Double edge d-flip flop circuit
JPH03186912A (en) Clock signal selection circuit
JPH05275931A (en) Variable frequency oscillating circuit
CN114337661A (en) Fractional frequency division and dynamic phase shift system based on PLL circuit
KR200252001Y1 (en) Up / down switching counter
KR100290592B1 (en) Clock distributing circuit
JP2794950B2 (en) Integrator circuit
JPS6326565B2 (en)
JPH04273715A (en) Counter circuit
JPH0613892A (en) Frequency divider circuit