JPS63887B2 - - Google Patents

Info

Publication number
JPS63887B2
JPS63887B2 JP2007380A JP2007380A JPS63887B2 JP S63887 B2 JPS63887 B2 JP S63887B2 JP 2007380 A JP2007380 A JP 2007380A JP 2007380 A JP2007380 A JP 2007380A JP S63887 B2 JPS63887 B2 JP S63887B2
Authority
JP
Japan
Prior art keywords
welding
metal plate
base metal
cup
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2007380A
Other languages
Japanese (ja)
Other versions
JPS56118240A (en
Inventor
Toshiharu Higuchi
Tooru Yakabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2007380A priority Critical patent/JPS56118240A/en
Publication of JPS56118240A publication Critical patent/JPS56118240A/en
Publication of JPS63887B2 publication Critical patent/JPS63887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/13Solid thermionic cathodes
    • H01J1/20Cathodes heated indirectly by an electric current; Cathodes heated by electron or ion bombardment
    • H01J1/28Dispenser-type cathodes, e.g. L-cathode

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)
  • Solid Thermionic Cathode (AREA)

Description

【発明の詳細な説明】 この発明はブラウン管のような電子管に使用し
て好適な含浸形陰極構体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an impregnated cathode structure suitable for use in an electron tube such as a cathode ray tube.

一般に電子管例えばブラウン管の電子銃には、
陰極が使用されている。この種の含浸形陰極構体
は、従来、第1図に示すように構成され、内部に
ヒータ13を収容した有底カツプ12に、基体金
属板11が部材14,14を介して固着されてい
る。
In general, an electron gun for an electron tube, such as a cathode ray tube, has
A cathode is used. This type of impregnated cathode structure has conventionally been constructed as shown in FIG. 1, in which a base metal plate 11 is fixed via members 14 to a bottomed cup 12 that houses a heater 13 therein. .

この場合、基体金属板11は多孔質タングステ
ン製にして、電子放射物質が含浸されている。そ
して、多孔質タングステンは、陰極完成後におけ
る電子放射率および電子放射物質の熱蒸発の防止
などの点から、一般にその見かけ比重が16程度の
ものが使用されている。さらに電子放射物質とし
ては、一般的にBaOとCaOとAl2O3がモル比で
4:1:1の比率にしたものが用いられており、
この電子放射物質を炭酸塩の状態BaCO3
CaCO3にしたもの(但しAl2O3は酸化物の状態)
をミキサーでよく混合した後、前記多孔質タング
ステン製基体金属板11の上に載せ、水素炉中で
約1000℃に加熱し、前記炭酸塩を酸化物に分解せ
しめ、その後、急速に温度を上昇し電子放射物質
を溶融して多孔質タングステンの空孔部に含浸し
ている。又、有底カツプ12は、モリブデンやタ
ンタル等の高融点金属あるいはこの高融点金属を
主体とした合金からなり、図に示す如く基体金属
板11を動作温度(1000〜1100℃)まで加熱する
ヒータ13を収納すること、および陰極を支持す
るためのものである。第1図においてカツプ12
が有底状となつている理由は、含浸形陰極を動作
させたとき基体金属板11の裏面から電子放射物
質がヒータ13に被覆されている絶縁物に蒸発
し、ヒータ13と陰極との絶縁劣化を防止するた
めであり、このためカツプ12は有底状に形成さ
れ、カツプ12の底部分は電子放射物質の飛散を
防止している。さらに部材14,14は、基体金
属板11と有底カツプ12を抵抗溶接により固着
するために、前記基体金属板11と有底カツプ1
2の間に挿入された白金等の線よりなつている。
この部材14,14を用いる理由は、基体金属板
11と有底カツプ12がタングステン、モリブデ
ン、タンタル等の金属およびそれらの合金よりな
るため、それらの金属を直接に抵抗溶接法で溶接
することは困難である。何故ならば、溶接電極用
材料として銅あるいは銅−ニツケル−ベリリウム
合金、あるいは多孔質タングステンに銅を含浸し
た材料が用いられるが、被溶接物同士が2700℃以
上の高融点金属であるために、溶接の際、溶接電
極の方が先に溶融して被溶接物に付着してしまう
ためである。さらに実際の溶接においては、カツ
プ12の中に溶接電極を挿入する必要があるため
に、溶接電極の形状をカツプ12の内径以下に設
計する必要があるので、溶接の際、溶接電極の加
熱がさらに激しくなる等の理由があるからであ
る。
In this case, the base metal plate 11 is made of porous tungsten and is impregnated with an electron emitting material. Porous tungsten with an apparent specific gravity of about 16 is generally used from the viewpoint of electron emissivity and prevention of thermal evaporation of the electron emitting material after the cathode is completed. Furthermore, as an electron-emitting substance, a substance containing BaO, CaO, and Al 2 O 3 in a molar ratio of 4:1:1 is generally used.
This electron-emitting substance is converted into carbonate state BaCO 3 ,
CaCO 3 (however, Al 2 O 3 is in an oxide state)
After mixing thoroughly with a mixer, it is placed on the porous tungsten base metal plate 11 and heated to about 1000°C in a hydrogen furnace to decompose the carbonate into oxides, and then the temperature is rapidly increased. The electron emitting material is melted and impregnated into the pores of the porous tungsten. The bottomed cup 12 is made of a high melting point metal such as molybdenum or tantalum, or an alloy mainly composed of this high melting point metal, and is equipped with a heater that heats the base metal plate 11 to the operating temperature (1000 to 1100°C) as shown in the figure. 13 and to support the cathode. Cup 12 in Figure 1
The reason why the impregnated cathode is operated is that when the impregnated cathode is operated, electron emitting material evaporates from the back surface of the base metal plate 11 to the insulating material coated on the heater 13, and the insulation between the heater 13 and the cathode is reduced. This is to prevent deterioration, and for this reason, the cup 12 is formed with a bottom, and the bottom portion of the cup 12 prevents the electron emitting material from scattering. Further, the members 14, 14 are connected to the base metal plate 11 and the bottomed cup 12 in order to fix the base metal plate 11 and the bottomed cup 12 by resistance welding.
It consists of a wire made of platinum or the like inserted between the two.
The reason why these members 14, 14 are used is that the base metal plate 11 and the bottomed cup 12 are made of metals such as tungsten, molybdenum, tantalum, and alloys thereof, so it is impossible to weld these metals directly by resistance welding. Have difficulty. This is because copper, copper-nickel-beryllium alloy, or porous tungsten impregnated with copper is used as the welding electrode material, but since the objects to be welded are high melting point metals of 2700℃ or higher, This is because during welding, the welding electrode melts first and adheres to the workpiece. Furthermore, in actual welding, it is necessary to insert the welding electrode into the cup 12, so the shape of the welding electrode must be designed to be smaller than the inner diameter of the cup 12, so that the welding electrode cannot be heated during welding. This is because it may become even more intense.

上記のような理由のために、白金の円板を被溶
接物つまり基体金属板11と有底カツプ12の間
に介在させて溶接する方法が用いられていたが、
含浸形陰極を量産的に製造する場合には、やはり
溶接電極の消耗が激しく実用化は困難であつた。
さらに溶接性を向上させる手段として、部材14
を線材にして溶接電流を線材に集中させて溶接す
る方法、即ち、プロジエクシヨン溶接法が用いら
れていた。このプロジエクシヨン溶接法によつて
基体金属板11と有底カツプ12の溶接は可能で
あるが、やはり量産化に際しては、次のような欠
点があることが判つた。
For the reasons mentioned above, a method was used in which a platinum disk was interposed between the object to be welded, that is, the base metal plate 11 and the bottomed cup 12, and welded.
When impregnated cathodes are mass-produced, the welding electrodes are severely worn out, making it difficult to put them into practical use.
Furthermore, as a means to improve weldability, the member 14
A method of welding by concentrating the welding current on the wire rod, that is, a projection welding method, was used. Although it is possible to weld the base metal plate 11 and the bottomed cup 12 by this projection welding method, it has been found that there are the following drawbacks in mass production.

即ち、その1つは溶接状態にばらつきがあり、
安定に溶接されているものと、溶接が不十分なも
のがあることが判つた。この場合、溶接状態の確
認法としては、第2図に示す如く有底カツプ12
の下部12aをピンセツトで変形させたとき、溶
接箇所がはがれるか否かによつて調べた。更に溶
接不良の箇所を光学顕微鏡で観察してみると、溶
接不良品は、白金線は潰されているが、溶融され
ていないことが判つた。この理由は、溶接する
際、白金は柔かい金属であるために、加圧すると
同時に潰されて溶融電流が流れる部分の面積が大
きくなる。従つて、この部分の抵抗が小さくな
り、そこに発生するジユール熱が小さくなつて溶
融されないためと考えられる。この現象を生じさ
せなくするためには、加圧と溶融電流とが同期す
れば良い訳けであるが、実際の溶接機ではスプリ
ングによつて加圧力をきめるタイプのものが多い
ので、ある一定の加圧力になつたとき、溶接電流
が流れるような構造となつている。従つて、ある
一定の加圧力に達するまでの間に、スプリングの
力によつて白金線材が潰されてしまう訳けであ
る。然るに、加圧力を小さくして溶接電流を大き
くすれば、上記した現象は小さくなる訳けである
が、溶接電流を大きくすると溶接電極に流れる電
流が大きくなり、第1図に示す如き有底カツプ1
2を有する陰極構体の場合は、溶接電極をカツプ
12の中に挿入しなければならないために溶接電
極を大きくすることができず、このため溶接電極
が極度に加熱され被溶接物に溶接電極の材料であ
る銅が付着してしまう不都合を生じる。更にもう
1つの欠点として、第1図に示す陰極構体では白
金線の部材14を2本使用したが(2本使用した
理由はカツプ12の軸線A−A′に対し基体金属
板11の電子放射面が垂直になるようにするため
である)、前述の如く白金線は柔い物質であるた
めに、溶接時に白金線が潰されてカツプ12の軸
線A−A′に対して電子放射面の直角度が失なわ
れる。電子管陰極において、カツプ12の軸線に
対する電子放射面の直角度は特に重要であり、含
浸形陰極を陰極線管に用いた場合、第1グリツド
と電子放射面との間隔は0.15mm程度に設定される
場合が多く、この場合、直径0.05mmの白金線を用
いると、電子放射面の周辺部において0.03mm程度
の垂直度不良が発生し易く、電子管のカツトオフ
特性上不都合である。
That is, one of them is that there are variations in the welding condition,
It was found that some items were stably welded, while others were poorly welded. In this case, the method for checking the welding condition is to use a bottomed cup 12 as shown in Figure 2.
When the lower part 12a of the test piece was deformed with tweezers, the welded part was examined to see if it peeled off. Furthermore, when the defective welding area was observed using an optical microscope, it was found that in the defective welding product, the platinum wire was crushed but not melted. The reason for this is that when welding, platinum is a soft metal, so it is crushed as soon as it is pressurized, increasing the area of the part through which the melting current flows. Therefore, it is thought that this is because the resistance of this part becomes smaller and the Joule heat generated there becomes smaller, so that it is not melted. In order to prevent this phenomenon from occurring, it is sufficient to synchronize the pressurization and the melting current, but since most actual welding machines use springs to determine the pressurizing force, it is necessary to keep the pressure at a certain level. The structure is such that welding current flows when the pressure reaches . Therefore, the platinum wire is crushed by the force of the spring until a certain pressure is reached. However, if the welding current is increased by decreasing the applied force, the above-mentioned phenomenon will be reduced, but if the welding current is increased, the current flowing through the welding electrode will increase, resulting in a bottomed cup as shown in Figure 1. 1
In the case of the cathode assembly having the welding electrode 2, the welding electrode cannot be made large because the welding electrode must be inserted into the cup 12, and as a result, the welding electrode is extremely heated and the welding electrode is exposed to the workpiece. This causes the inconvenience that the copper material adheres. Yet another drawback is that although two platinum wire members 14 are used in the cathode structure shown in FIG. As mentioned above, since the platinum wire is a soft material, the platinum wire is crushed during welding and the electron emitting surface becomes vertical with respect to the axis A-A' of the cup 12. Squareness is lost. In the electron tube cathode, the perpendicularity of the electron emitting surface to the axis of the cup 12 is particularly important, and when an impregnated cathode is used in the cathode ray tube, the distance between the first grid and the electron emitting surface is set to about 0.15 mm. In this case, if a platinum wire with a diameter of 0.05 mm is used, a perpendicularity defect of about 0.03 mm is likely to occur at the periphery of the electron emitting surface, which is inconvenient in terms of the cut-off characteristics of the electron tube.

以上の点から鑑みて、基体金属板11と有底カ
ツプ12とを量産的にかつ精度良く固着すること
のできる陰極構体の製造方法が要望されていた。
In view of the above points, there has been a need for a method of manufacturing a cathode structure that can mass-produce and accurately secure the base metal plate 11 and the bottomed cup 12.

この発明は、以上のような事情に鑑みてなされ
たもので容易且つ高精度に組立て得る含浸形陰極
構体の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing an impregnated cathode structure that can be assembled easily and with high precision.

以下、図面を参照してこの発明の実施例を説明
する。この発明は第3図に示すように、後にヒー
タ33を収容する有底カツプ32の底部外面に、
被覆部材34,34を介して基体金属板31を載
せ、この状態で図示しない溶接電極を有底カツプ
および基体金属板間に接続して抵抗溶接する。こ
の場合、ヒータ33、有底カツプ32、基体金属
板31は従来例と同一材質と同一形状であり、同
一製造方法により得られたものである。即ち、有
底カツプ32はモリブデンやタンタル等の高融点
金属またはこの高融点金属を主体とした合金より
なり、基体金属板31は電子放射物質を含浸せし
めた多孔質タングステンからなつている。さらに
被覆部材34,34は有底カツプ32と基体金属
板31とを安定にかつ精度良く溶接固着するため
に用いるもので、この発明の特徴となつており、
拡大して示すと第4図のようになる。即ち、この
被覆部材34は、予め直径0.05mmの高融点金属例
えばタングステンの芯線34aに白金をメツキ法
によつて約10μmの厚さに被覆して被覆層34b
を形成したものである。この被覆部材34,34
を2本、基体金属板31と有底カツプ32との間
に介在させて抵抗溶接法で溶接固着する訳けであ
る。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 3, this invention includes a bottom outer surface of a bottomed cup 32 that later accommodates a heater 33.
The base metal plate 31 is mounted via the covering members 34, 34, and in this state, a welding electrode (not shown) is connected between the bottomed cup and the base metal plate to perform resistance welding. In this case, the heater 33, the bottomed cup 32, and the base metal plate 31 are made of the same material and have the same shape as in the conventional example, and are obtained by the same manufacturing method. That is, the bottomed cup 32 is made of a high melting point metal such as molybdenum or tantalum, or an alloy mainly composed of this high melting point metal, and the base metal plate 31 is made of porous tungsten impregnated with an electron emitting substance. Furthermore, the covering members 34, 34 are used for stably and accurately welding the bottomed cup 32 and the base metal plate 31, and are a feature of the present invention.
When enlarged, it becomes as shown in Fig. 4. That is, this covering member 34 is made by coating a core wire 34a of a high melting point metal such as tungsten with a diameter of 0.05 mm with platinum to a thickness of about 10 μm using a plating method to form a covering layer 34b.
was formed. This covering member 34, 34
Two of them are interposed between the base metal plate 31 and the bottomed cup 32 and welded and fixed by resistance welding.

この発明の陰極構体の製造方法は上記説明及び
図示のように構成され、被覆部材34,34はタ
ングステンのような高融点金属よりなる芯線34
aに白金よりなる被覆層34bを覆つてなつてい
るため、予めこの被覆部材を製作することが容易
で、したがつてまた量産性に富んでいる。また抵
抗溶接に際して、白金が溶融した状態においても
芯線34aであるタングステン線材はほとんど変
形されない。従つて、従来の陰極構体の場合に発
生した垂直度不良は殆んど発生せず、僅かに傾い
たものでも、その値は電子放射面の周辺部におい
て最大0.003mm程度であり、従来構造の十分の一
に精度を向上させることができた。更に前述の如
く、溶接時に芯線34aが潰されることがないた
めに、溶接電流の流れる部分の面積が変化するこ
とがないので、個々の陰極の組立作業において、
溶接部に発生する熱量は一定であり、白金の被覆
層34bのみを溶融した溶接が可能となる。従つ
て含浸形陰極を量産的に製造する場合において
も、精度良く、かつ歩留良く製造することができ
る。
The method for manufacturing a cathode structure according to the present invention is constructed as described above and shown in the drawings, and the covering members 34 are made of a core wire 34 made of a high melting point metal such as tungsten.
Since the covering layer 34b made of platinum is covered with the covering layer 34b, it is easy to manufacture this covering member in advance, and it is therefore highly suitable for mass production. Furthermore, during resistance welding, the tungsten wire that is the core wire 34a is hardly deformed even when the platinum is molten. Therefore, the perpendicularity defects that occur in the case of conventional cathode structures almost never occur, and even if there is a slight inclination, the maximum value is about 0.003 mm at the periphery of the electron emitting surface, which is much higher than that of conventional cathode structures. We were able to improve the accuracy by a factor of ten. Furthermore, as mentioned above, since the core wire 34a is not crushed during welding, the area of the part through which the welding current flows does not change, so in the assembly work of each cathode,
The amount of heat generated in the welding part is constant, and welding can be performed in which only the platinum coating layer 34b is melted. Therefore, even when mass-producing impregnated cathodes, they can be manufactured with high accuracy and high yield.

また、この溶接部分の溶接強度を調べるため
に、強度試験を行なつた。その1つは前述した如
く、有底カツプ32の下の部分を第2図に示した
ようにピンセツトで潰して、溶接部がはがれるか
否かの試験である。この試験において、有底カツ
プ32の下の部分を極度に変形させても、溶接は
がれを生じるものはなく、十分良好な溶接がなさ
れていることを確かめた。
In addition, a strength test was conducted to examine the welding strength of this welded portion. One of these tests, as described above, is to crush the lower part of the bottomed cup 32 with tweezers as shown in FIG. 2 to see if the welded part can be peeled off. In this test, even if the bottom portion of the bottomed cup 32 was extremely deformed, no welding occurred, and it was confirmed that sufficiently good welding was achieved.

さらに、この発明の実施により得られた陰極構
体を陰極線管に組み込み、ヒータ回路をオン・オ
フ動作させた場合、溶接部に変形が生じるか否か
を調べたところ、溶接部に変形を生じることな
く、十分良好な溶接がなされていることが確認で
きた。
Furthermore, when the cathode assembly obtained by implementing the present invention was incorporated into a cathode ray tube and the heater circuit was turned on and off, it was investigated whether or not the welded part would be deformed. It was confirmed that the welding was sufficiently good.

尚、上記実施例においては、被覆部材34の芯
線34aとしてタングステン線を用いて説明した
が、芯線材としてはモリブテンあるいはルテニウ
ム−タングステン合金線材等の高融点金属および
高融点金属を主体にした合金を用いても良好な結
果を得ることができる。
In the above embodiment, a tungsten wire was used as the core wire 34a of the covering member 34, but the core wire material may be a high melting point metal such as molybdenum or a ruthenium-tungsten alloy wire, or an alloy mainly composed of a high melting point metal. Good results can be obtained even when used.

さらに被覆材としては、白金以外にロジウム、
ルテニウム、パラジウム、イリジウム等の白金属
の金属または白金属を主体とした合金、例えば白
金−ロジウム合金を用いても良好な結果を得るこ
とができる。その理由は、ロジウムの融点が1996
℃、パラジウムが1554℃、ルテニウムが2450℃、
イリジウムが2454℃であるため、芯線材としてモ
リブデンを用いた場合でも被覆材の融点の方が低
いからである。
In addition to platinum, rhodium,
Good results can also be obtained using platinum metals such as ruthenium, palladium, and iridium, or alloys mainly composed of platinum metals, such as platinum-rhodium alloys. The reason is that the melting point of rhodium is 1996
℃, palladium is 1554℃, ruthenium is 2450℃,
This is because since the temperature of iridium is 2454°C, the melting point of the coating material is lower even when molybdenum is used as the core wire material.

また、上記実施例においては被覆部材34,3
4を2本平行に並べて用いた場合について述べた
が、有底カツプ32の軸線A−A′と基体金属板
31の電子放射面との垂直度をより向上させるた
めに第5図に示す如く被覆線材を網状に形成した
部材44を用いてもよい。
Further, in the above embodiment, the covering members 34, 3
4 are used in parallel, but in order to further improve the perpendicularity between the axis A-A' of the bottomed cup 32 and the electron emitting surface of the base metal plate 31, as shown in FIG. A member 44 formed of a covered wire material in a net shape may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の含浸形陰極構体を示す一部断面
を含む正面図、第2図は従来の含浸形陰極構体の
溶接部のはがれ試験を行なうために有底カツプを
変形させた状態を示す正面図、第3図はこの発明
の一実施例に係る含浸形陰極構体製造方法の溶接
前の状態を示す一部断面を含む正面図、第4図は
第3図の要部(被覆部材)を拡大して示した断面
図、第5図はこの発明の他の実施例を示す分解斜
視図である。 31……基体金属板、32……有底カツプ、3
3……ヒータ、34……被覆部材、34a……芯
線、34b……被覆層。
Figure 1 is a partially cross-sectional front view of a conventional impregnated cathode assembly, and Figure 2 shows a conventional impregnated cathode assembly in which the bottomed cup has been deformed in order to perform a peel test on the welded part. 3 is a front view including a partial cross section showing a state before welding of a method for manufacturing an impregnated cathode assembly according to an embodiment of the present invention, and FIG. 4 is a main part (coated member) of FIG. 3. FIG. 5 is an exploded perspective view showing another embodiment of the present invention. 31... Base metal plate, 32... Bottomed cup, 3
3... Heater, 34... Covering member, 34a... Core wire, 34b... Covering layer.

Claims (1)

【特許請求の範囲】 1 ヒータを収容した有底カツプに、電子放射物
質を含浸せしめた基体金属板を溶接により固着す
る含浸形陰極構体の製造方法において、 予め高融点金属又は高融点金属を主体とした合
金よりなる芯線に白金族又は白金族を主体とした
合金よりなる被覆層を形成して被覆部材をつく
り、 この被覆部材を前記有底カツプと基体金属板と
の間に挟むとともに、これらカツプおよび基体金
属板間に溶接電極を接続し抵抗溶接により固着す
ることを特徴とする含浸形陰極構体の製造方法。
[Scope of Claims] 1. A method for manufacturing an impregnated cathode structure in which a base metal plate impregnated with an electron emitting substance is fixed by welding to a bottomed cup containing a heater, the method comprising: A covering member is made by forming a covering layer made of a platinum group metal or an alloy mainly composed of a platinum group metal on a core wire made of an alloy, and this covering member is sandwiched between the bottomed cup and the base metal plate. A method for manufacturing an impregnated cathode structure, which comprises connecting a welding electrode between a cup and a base metal plate and fixing them by resistance welding.
JP2007380A 1980-02-20 1980-02-20 Impregnated cathode structure Granted JPS56118240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007380A JPS56118240A (en) 1980-02-20 1980-02-20 Impregnated cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007380A JPS56118240A (en) 1980-02-20 1980-02-20 Impregnated cathode structure

Publications (2)

Publication Number Publication Date
JPS56118240A JPS56118240A (en) 1981-09-17
JPS63887B2 true JPS63887B2 (en) 1988-01-09

Family

ID=12016918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007380A Granted JPS56118240A (en) 1980-02-20 1980-02-20 Impregnated cathode structure

Country Status (1)

Country Link
JP (1) JPS56118240A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473068B1 (en) * 1997-09-30 2005-07-07 오리온전기 주식회사 Cathode manufacturing method of electron gun

Also Published As

Publication number Publication date
JPS56118240A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
JP2992765B2 (en) Light
JPS63887B2 (en)
US5670841A (en) Electron gun for a cathode ray tube having a plurality of electrodes layers forming a main lens
US3965383A (en) Multi-wire oxygen electrode and method of manufacturing the same
JPS6262015B2 (en)
JPS59111222A (en) Impregnated cathode member
JPS5890389A (en) Laser welding method for different kind of metal
US4004331A (en) Method of manufacturing multi-wire oxygen electrode
JP3061813B2 (en) Impregnated cathode structure
JP2738694B2 (en) Method for producing impregnated cathode assembly
JPS601720A (en) Manufacture of electron tube cathode structure
US20020113543A1 (en) Electron tube and method for producing same
JPS59108233A (en) Impregnated cathode structure
JP3460308B2 (en) Method for manufacturing impregnated cathode assembly
JPH09298027A (en) Impregnated type cathode structure, its manufacture, electron gun structure, and electron tube
JP3137406B2 (en) Manufacturing method of cathode assembly
KR100342042B1 (en) Serial cathode structure
JPS60264019A (en) Manufacture of impregnated cathode structure
JP3409967B2 (en) Manufacturing method of impregnated cathode
KR900001779B1 (en) The dispenser type cathode and this manufacturing methode
JPS61214324A (en) Thermion emission structure
JPH1040804A (en) Impregnation type cathode structure and manufacture thereof, oxide type cathode structure and manufacture thereof, electron gun structure, and electronic tube
JP2753008B2 (en) Impregnated cathode
JPH0279320A (en) Impregnated cathode structure
JPH01109633A (en) Impregnated type cathode structure