JPS6388431A - Foreign matter detecting method and apparatus therefor - Google Patents

Foreign matter detecting method and apparatus therefor

Info

Publication number
JPS6388431A
JPS6388431A JP61233737A JP23373786A JPS6388431A JP S6388431 A JPS6388431 A JP S6388431A JP 61233737 A JP61233737 A JP 61233737A JP 23373786 A JP23373786 A JP 23373786A JP S6388431 A JPS6388431 A JP S6388431A
Authority
JP
Japan
Prior art keywords
container
light
foreign matter
transparent container
foreign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61233737A
Other languages
Japanese (ja)
Other versions
JPH0570784B2 (en
Inventor
Fumitaka Hayata
早田 文隆
Hideo Koide
英夫 小出
Toshio Yamadera
山寺 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP61233737A priority Critical patent/JPS6388431A/en
Publication of JPS6388431A publication Critical patent/JPS6388431A/en
Publication of JPH0570784B2 publication Critical patent/JPH0570784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enable the detecting of a foreign matter in a solution accurately free from the viscosity hereof, by monitoring the locus of reflected lights from the foreign matter in the solution exposed to an irradiating light. CONSTITUTION:A container 10 is irradiated with an irradiation light 13 from a light source 12. The container 10 is turned with a rotating device 11 while a data take-in timing signal 24 is transmitted to a camera tube 20 from a monitor 22. Data of reflected lights 15, 17 and 19 received with the camera tube 20 are taken into the monitor 22 as data signal 26 for a fixed period. The data signal 26 for the fixed period is processed two-dimensionally with the device 22 and monitored as locus of the reflected lights. Then, a surface flaw 16 measured in the length almost equal to the diameter of the container 10 and loci 16A and 18A of the reflected lights 17 and 19 due to a surface flaw 16 and a foul 18 are erased from the data with a checking mechanism in the device 22 and thus, the locus 14A of the reflected light 15 based on a foreign matter 14 is checked thereby enabling the detection of the foreign matter 14.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は異物検出方法並びにその装置に係り、特に透明
容器内の溶液中に浮遊する異物を検出する異物検出方法
並びにその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and device for detecting foreign matter, and more particularly to a method and device for detecting foreign matter floating in a solution in a transparent container.

〔発明の背景〕[Background of the invention]

薬品アンプル又は、ビン内の異物の検査は、製品欠陥に
つながるビン内部の異物と、製品欠陥とは無関係な、ビ
ン表面の傷、あるいは汚れ等との区別が自動認識困難な
ため、目視検査に依っている。しかし、この方法は、検
査のスルーフットが遅れ大量生産されるアンプルに適用
できない。又、デジタル画像処理による方法では、アン
プル内の異物サイズは数十μm以下と細か(、アンプル
ビンの表面の傷、あるいは汚れと略同サイズなため、識
別が困難である。従って、通常の画像処理方法は異物の
検出に適用できない。
Inspection of foreign objects in chemical ampoules or bottles requires visual inspection because it is difficult to automatically distinguish between foreign objects inside the bottle that could lead to product defects and scratches or stains on the bottle surface that are unrelated to product defects. It depends. However, this method cannot be applied to mass-produced ampoules due to the slow inspection throughput. In addition, with the method using digital image processing, it is difficult to identify the foreign matter inside the ampoule because it is small, several tens of micrometers or less (approximately the same size as a scratch or dirt on the surface of the ampoule bottle. The processing method cannot be applied to detect foreign objects.

又、最近では、アンプルを高速回転させた後、ブレーキ
をかけて急停止させて、内容液と共に異物を浮遊回転さ
せ、アンプル側面より透過光を照射することにより異物
が透過光を遮るために生じる影像の変化(光量の変化)
を検知し、良、不良の選別をする装置が開発されている
Also, recently, after the ampoule is rotated at high speed, the brake is applied to stop it suddenly, causing the foreign matter to float around with the liquid inside the ampoule, and the transmitted light is irradiated from the side of the ampoule, causing the foreign matter to block the transmitted light. Changes in image (changes in light amount)
A device has been developed that detects and distinguishes between good and bad products.

第5図は従来のアンプルの高速回転による異物検出方法
並びにその装置の説明図である。第5図に示すように検
査対象であるアンプル70は光源72からの照射光74
が投光レンズ76を介して照射される。照射光74はア
ンプル70内の溶液中を透光した後、結像レンズ78を
通って受光器80に達する。アンプル内の異物82或い
はビンの表面傷84、汚れ86等は、照射光74を遮断
して影像となる。これ等の影像は受光器80に投影され
る。
FIG. 5 is an explanatory diagram of a conventional method for detecting foreign matter by rotating an ampoule at high speed and an apparatus therefor. As shown in FIG.
is irradiated via the light projecting lens 76. After the irradiation light 74 passes through the solution in the ampoule 70, it passes through the imaging lens 78 and reaches the light receiver 80. Foreign matter 82 in the ampoule, surface scratches 84 on the bottle, dirt 86, etc. block the irradiation light 74 and form an image. These images are projected onto the light receiver 80.

このような従来の異物検出方法並びにその装置に於いて
は、アンプル70は高速回転された後、ブレーキが掛け
られて急停止される。異物82は慣性力により浮遊回転
し側面からの透過光74を遮る。異物82の影像は変動
して受光器80に受光変動量として検知される。この場
合に異物82は光量変化を起こすが、アンプル表面の傷
84及び汚れ86は、静止しているために光量変化を起
こさない。この為、異物82はアンプル表面の傷84及
び汚れ86との識別が可能になる。又、アンプル70の
大きさに対応して、一定の面積毎に区切った受光素子8
8が設置され、これらの受光素子88は光電管やフォト
ダイオードが用いられており、速い検査が可能となって
いる。
In such a conventional foreign object detection method and apparatus, the ampoule 70 is rotated at a high speed, and then the brake is applied to suddenly stop the ampoule 70. The foreign object 82 floats and rotates due to inertia and blocks the transmitted light 74 from the side. The image of the foreign object 82 fluctuates and is detected by the light receiver 80 as a variation in received light. In this case, the foreign matter 82 causes a change in the amount of light, but the scratches 84 and dirt 86 on the ampoule surface do not cause a change in the amount of light because they are stationary. Therefore, the foreign matter 82 can be distinguished from the scratches 84 and dirt 86 on the ampoule surface. In addition, the light receiving elements 8 are divided into certain areas corresponding to the size of the ampoule 70.
8 are installed, and phototubes or photodiodes are used for these light receiving elements 88, enabling quick inspection.

しかしながら、このようなアンプル70を高速回転して
溶液中の異物82を慣性回転させる方法では、低粘度(
IOC3T以下)の溶液中の異物82に関しては適用で
きるが、高粘度(100C3T以上)の溶液中の異物8
2ではアンプル70を高速回転させた後、ブレーキを掛
けて急停止させても、内溶液が充分に慣性回転せず、浮
遊異物82は充分に回転されない。従って、異物が透過
光74を遮るために起こる影像の変化も充分生じないた
め、光量の変化が起こらず異物の検出が出来ない。また
、高粘度の溶液(100C3T以上)中の異物82に慣
性回転を与えるため、アンプル70を高速回転(約30
0Orpm以上)させた場合、アンプル70は破損する
虞がある。このため、実用のアンプル回転速度には限界
がある。
However, in this method of rotating the ampoule 70 at high speed to inertially rotate the foreign matter 82 in the solution,
It can be applied to foreign matter 82 in solutions with high viscosity (IOC3T or less), but foreign matter 82 in solutions with high viscosity (100C3T or more)
In No. 2, even if the ampoule 70 is rotated at high speed and then suddenly stopped by applying the brake, the internal solution does not undergo sufficient inertial rotation, and the floating foreign matter 82 is not rotated sufficiently. Therefore, changes in the image caused by the foreign object blocking the transmitted light 74 do not occur sufficiently, so that the amount of light does not change and the foreign object cannot be detected. In addition, the ampoule 70 is rotated at high speed (approximately 30° C.
0 rpm or higher), there is a risk that the ampoule 70 will be damaged. For this reason, there is a limit to the practical ampoule rotation speed.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもので、特に
?′8液中の異物が内溶液の粘度に左右されずに正確に
検出される異物検出方法並びにその装置を捉供すること
を目的としている。
The present invention has been made in view of these circumstances. '8 It is an object of the present invention to provide a method and apparatus for detecting foreign matter in which foreign matter in a liquid can be detected accurately without being affected by the viscosity of the internal solution.

〔発明の概要〕[Summary of the invention]

本発明は前記目的を達成するために、透明容器内の溶液
中に浮遊する異物を検出する異物検出方法に於いて、前
記透明容器は対称形状に形成されて回転対称軸を中心に
回転されると共に透明容器には光が照射され、照射光を
受けた溶液内の異物から発せられる反射光の軌跡をモニ
タすることよって溶液中の異物を検出することを特徴と
する。
To achieve the above object, the present invention provides a foreign object detection method for detecting foreign objects floating in a solution in a transparent container, in which the transparent container is formed in a symmetrical shape and rotated around an axis of rotational symmetry. At the same time, the transparent container is irradiated with light, and the foreign matter in the solution is detected by monitoring the locus of reflected light emitted from the foreign matter in the solution that has received the irradiated light.

〔実施例〕〔Example〕

以下添付図面に従って、本発明に係る異物検出方法並び
にその装置に係る好ましい実施例を詳説する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the foreign object detection method and device according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明に係る異物検出方法並びにその装置の説
明図である。第1図に示すように容器10は略円筒形状
(対称形状)に形成されたガラス製の透明容器から形成
される。尚、場合によっては容器10は透明なプラスチ
ックで形成してもよい。容器10は回転装置11により
容器10の円筒軸を中心に360度以上回転される。容
器10の下方には光源12が設けられ、光源12からの
照射光13は投光レンズを介して容器10及び容器10
内の溶液に向けて照射される。容器10内の溶液中の異
物14、容器10の表面傷16及び汚れ18は照射光を
受けて反射光15.17.19を発する。容器10の側
方には撮像管20が設けられ、撮像管20は異物14、
表面傷16及び汚れ18からの反射光15.17.19
を受光する受光器である。撮像管20はモニタ装置22
が接続され、モニタ装置22からはデータ取り込みタイ
ミング信号24が撮像管20に発信される。
FIG. 1 is an explanatory diagram of a foreign object detection method and apparatus according to the present invention. As shown in FIG. 1, the container 10 is formed from a transparent glass container formed into a substantially cylindrical shape (symmetrical shape). In some cases, the container 10 may be made of transparent plastic. The container 10 is rotated more than 360 degrees around the cylindrical axis of the container 10 by the rotating device 11. A light source 12 is provided below the container 10, and irradiation light 13 from the light source 12 is transmitted to the container 10 and the container 10 through a projection lens.
Irradiation is directed toward the solution inside. Foreign matter 14 in the solution in the container 10, surface scratches 16 and dirt 18 on the container 10 receive the irradiated light and emit reflected light 15, 17, 19. An imaging tube 20 is provided on the side of the container 10, and the imaging tube 20 detects foreign objects 14,
Reflected light from surface scratches 16 and dirt 18 15.17.19
It is a light receiver that receives light. The image pickup tube 20 is a monitor device 22
is connected, and a data capture timing signal 24 is transmitted from the monitor device 22 to the image pickup tube 20.

このタイミング信号24により、モニタ装置22には撮
像管20から反射光15.17.19のデータがデータ
信号26として一定期間入力される。データ信号26は
容器10の回転開始から停止するまでの間、即ち、容器
10が少なくとも360度回転する期間入力される。デ
ータ信号2Gはモニタ装置22によってビデオ信号から
2値化ビデオ信号に処理される。尚データ信号26をC
RTモニタ等で観察した場合には、第2図に示すように
溶液中の異物14、容器の表面傷16、及び汚れ18の
夫々反射光の軌跡14A、16A、18Aは、2次元投
影画像としてモニタされる。
Due to this timing signal 24, the data of reflected light 15, 17, and 19 from the image pickup tube 20 is input as a data signal 26 to the monitor device 22 for a certain period of time. The data signal 26 is input from the time when the container 10 starts to rotate until it stops, that is, during the period when the container 10 rotates at least 360 degrees. The data signal 2G is processed by the monitor device 22 from a video signal to a binary video signal. Note that the data signal 26 is
When observed with an RT monitor or the like, the trajectories 14A, 16A, and 18A of the reflected light from the foreign matter 14 in the solution, the surface scratches 16 on the container, and the dirt 18, respectively, are shown as two-dimensional projected images, as shown in FIG. be monitored.

前記の如く構成された本発明に係る異物検出方法並びに
その装置によれば、容器10には光源12からの照射光
13が照射される。容器10は回転装置11によって回
転が開始されると共に、モニタ装置22からはデータ取
り込みタイミング信号24が撮像管20に発信される。
According to the foreign object detection method and device thereof according to the present invention configured as described above, the container 10 is irradiated with the irradiation light 13 from the light source 12. The rotation of the container 10 is started by the rotation device 11, and a data capture timing signal 24 is transmitted from the monitor device 22 to the image pickup tube 20.

タイミング信号24により、撮像管20が受光した反射
光15.17.19のデータがデータ信号26として一
定期間モニタ装置22に取り込まれる。これらの一定期
間のデータ信号26は、モニタ装置22において2次元
的に処理されて反射光の軌跡としてモニタされる。モニ
タされる解像度は少なくとも640(水平)x512(
垂直)X64 (H度)階調が可能である。
Due to the timing signal 24, the data of the reflected light 15, 17, and 19 received by the image pickup tube 20 is taken into the monitor device 22 as a data signal 26 for a certain period of time. These fixed period data signals 26 are two-dimensionally processed in the monitor device 22 and monitored as a trajectory of reflected light. The monitored resolution is at least 640 (horizontal) x 512 (
Vertical) x 64 (H degree) gradation is possible.

この場合に於いて、容器の表面傷16及び汚れ18によ
る反射光17.19の軌跡16A、18Aは第2図に示
すようにその軌跡長が容器lOの直径と略同じ長さにな
る。一方、異物″14による反射光15の軌跡14Aは
、容器10の直径より短い軌跡長となる。このため、容
器10の直径と略同じ長さとして計測される表面傷16
及び汚れ18による反射光17.19の軌跡16A、1
8Aをモニタ装置22内に備えるチェック機構によって
データから容易に消却することができる。従って、異物
14のみに由来する反射光15の軌跡14Aは容易に検
知され、異物14の検出を正確にすることが出来る。
In this case, the trajectories 16A, 18A of the reflected light 17, 19 due to the surface flaws 16 and dirt 18 of the container have approximately the same length as the diameter of the container 1O, as shown in FIG. On the other hand, the trajectory 14A of the reflected light 15 by the foreign object "14" has a trajectory length shorter than the diameter of the container 10. Therefore, the surface flaw 16 is measured as being approximately the same length as the diameter of the container 10.
and the locus 16A, 1 of the reflected light 17.19 by the dirt 18
8A can be easily deleted from the data by a check mechanism provided in the monitor device 22. Therefore, the locus 14A of the reflected light 15 originating only from the foreign object 14 can be easily detected, and the foreign object 14 can be detected accurately.

第3図は本発明に係る第2実施例を示す説明図である。FIG. 3 is an explanatory diagram showing a second embodiment of the present invention.

第3図に示す容器IO1光源12、撮像管20は、第1
実施例と同様なものが使用される。第3図に示す容器1
0の回転装置30は、少なくとも容器10を180度以
上回転させるようになっている。又、モニタ装置32は
、第1実施例と同様にデータ取り込みタイミング信号2
4を撮像管20に発信し、この取り込みタイミング信号
24により撮像管20が受光した反射光15.17.1
9のデータをデータ信号26として一定期間入力してい
る。このデータ信号26の人力期間は第1実施例と異な
り、容器10が180度以上回転する期間に設定されて
いる。又、データ信号26は第1実施例のモニタ装置2
2と同様にモニタ装置32によって2次元処理され、異
物14等の反射光はモニタ装置32によって反射光の軌
跡としてモニタされる。モニタ装置32は撮像管20の
反射光データを2次元的に処理する他に第4図に示すよ
うに、外側指定エリア34と中央指定エリア36とを区
別してモニタ出来るエリア指定機構を備えている。外側
指定エリア34は容器10の内径の路外側に相当する領
域を占め、中央指定エリア36は容器10の内径内に相
当する領域を占めている。
The container IO1 light source 12 and image pickup tube 20 shown in FIG.
Something similar to the example is used. Container 1 shown in Figure 3
The rotation device 30 of No. 0 rotates at least the container 10 by 180 degrees or more. Further, the monitor device 32 receives the data capture timing signal 2 as in the first embodiment.
4 is transmitted to the image pickup tube 20, and the reflected light 15.17.1 is received by the image pickup tube 20 according to this capture timing signal 24.
9 is input as the data signal 26 for a certain period of time. Unlike the first embodiment, the manual power period of this data signal 26 is set to a period during which the container 10 rotates 180 degrees or more. Further, the data signal 26 is transmitted to the monitor device 2 of the first embodiment.
Similarly to 2, the monitor device 32 performs two-dimensional processing, and the reflected light from the foreign object 14 and the like is monitored by the monitor device 32 as a trajectory of the reflected light. The monitor device 32 not only processes reflected light data from the image pickup tube 20 two-dimensionally, but also has an area designation mechanism that can distinguish and monitor an outer designated area 34 and a central designated area 36, as shown in FIG. . The outer designated area 34 occupies an area corresponding to the outer side of the inner diameter of the container 10, and the central designated area 36 occupies an area equivalent to the inner diameter of the container 10.

前記の如く構成された本発明に係る異物検出装置に於い
ては、データ信号26は少なくとも容器10が180度
以上回転される期間、モニタ装置32に入力される。容
器100表面の表面傷16及び汚れ18は容器10の外
側に形成されているので、その反射光の軌跡16A、1
8Aは第4図に示すように少なくとも一端部、16B、
18Bが外側指定エリア34に位置することがある。一
方異吻14による反射光の軌跡14Aは外側指定工リア
34に入域することがなく常に中央指定エリア36内に
留まる。このため、外側指定エリア34に反射光の軌跡
が入るもの、即ち表面傷16及び汚れ18の反射光の軌
跡16A、18Aは容易に異物14に由来する反射光の
軌跡14Aと区別することが出来る。これにより、異物
14のみの検出を容易にすることが出来る。
In the foreign object detection device according to the present invention configured as described above, the data signal 26 is input to the monitor device 32 at least during a period when the container 10 is rotated by 180 degrees or more. Since the surface scratches 16 and dirt 18 on the surface of the container 100 are formed on the outside of the container 10, the trajectories 16A, 1 of the reflected light are
8A is at least one end, 16B, as shown in FIG.
18B may be located in the outer designated area 34. On the other hand, the trajectory 14A of the light reflected by the proboscis 14 never enters the outer designated area 34 and always remains within the central designated area 36. Therefore, the trajectories 16A and 18A of the reflected light that enter the outer specified area 34, that is, the trajectories 16A and 18A of the reflected light from the surface scratches 16 and dirt 18, can be easily distinguished from the trajectory 14A of the reflected light originating from the foreign object 14. . Thereby, only the foreign object 14 can be easily detected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係る異物検出方法並びにそ
の装置によれば、透明容器を回転させると共に透明容器
に光を照射して、溶液内の異物から発せられる反射光の
軌跡をモニタ装置によって検出するので、容器内の異物
は溶液の粘度に左右されることなく容器の表面傷或いは
汚れ等と識別が明確出来ると共に異物の検出を確実にす
ることが出来る。
As explained above, according to the method and device for detecting foreign matter according to the present invention, the transparent container is rotated and light is irradiated onto the transparent container, and the trajectory of the reflected light emitted from the foreign matter in the solution is detected by the monitor device. Therefore, foreign matter in the container can be clearly distinguished from surface scratches or dirt on the container without being affected by the viscosity of the solution, and the foreign matter can be detected reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る異物検出方法並びにその装置の説
明図、第2図は第1図の異物検出装置のモニタ装置によ
ってデータ信号を処理したときのCRTモニタの2次元
投影画像図、第3図は本発明に係る第2実施例の説明図
、第4図は第2実施例のモニタ装置によってデータ信号
を処理したときのCRTモニタの2次元投影画像図、第
5図は従来の異物検出装置の説明図である。 10・・・容器、  11・・・回転装置、  12・
・・光源、  14・・・異物、 20・・・撮像管、
 22.32・・・モニタ装置。 出願人 日立プラント建設株式会社 第1図 第2図 第3図 第4図
FIG. 1 is an explanatory diagram of the foreign object detection method and apparatus according to the present invention, and FIG. 2 is a two-dimensional projected image diagram of a CRT monitor when a data signal is processed by the monitor device of the foreign object detection device of FIG. 3 is an explanatory diagram of the second embodiment of the present invention, FIG. 4 is a two-dimensional projected image diagram of a CRT monitor when a data signal is processed by the monitor device of the second embodiment, and FIG. 5 is a diagram of a conventional foreign object. It is an explanatory view of a detection device. 10... Container, 11... Rotating device, 12.
... light source, 14 ... foreign object, 20 ... image pickup tube,
22.32...Monitor device. Applicant Hitachi Plant Construction Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)透明容器内の溶液中に浮遊する異物を検出する異
物検出方法に於いて、前記透明容器は対称形状に形成さ
れて回転対称軸を中心に回転されると共に透明容器には
光が照射され、照射光を受けた溶液内の異物から発せら
れる反射光の軌跡をモニタすることよって溶液中の異物
を検出することを特徴とする異物検出方法。
(1) In a foreign object detection method for detecting foreign objects floating in a solution in a transparent container, the transparent container is formed in a symmetrical shape and rotated around an axis of rotational symmetry, and the transparent container is irradiated with light. A method for detecting foreign matter, comprising: detecting a foreign matter in a solution by monitoring the locus of reflected light emitted from the foreign matter in the solution that has been exposed to the irradiated light.
(2)前記透明容器は360度以上回転されると共にモ
ニタされる反射光の軌跡の長さを計測することを特徴す
る特許請求の範囲第1項記載の異物検出方法。
(2) The foreign object detection method according to claim 1, wherein the transparent container is rotated by 360 degrees or more and the length of the trajectory of the reflected light is monitored.
(3)前記透明容器は180度以上回転されると共にモ
ニタされる反射光の軌跡域を容器径の外側領域と内側領
域とに区別することを特徴とする特許請求の範囲第1項
記載の異物検出方法。
(3) The foreign substance according to claim 1, wherein the transparent container is rotated by 180 degrees or more and the trajectory area of the reflected light to be monitored is divided into an area outside the container diameter and an area inside the container diameter. Detection method.
(4)透明容器内の溶液中に浮遊する異物を検出する異
物検出装置に於いて、対称形状に形成される前記透明容
器と、回転対称軸を中心にして透明容器を回転させる回
転装置と、透明容器に光を照射する光源と、光源からの
照射光を受けた溶液中の異物から発せられる反射光を受
光検出する受光器と、受光器によって検出された反射光
の軌跡をモニタするモニタ装置とから構成されることを
特徴とする異物検出装置。
(4) In a foreign object detection device that detects foreign objects floating in a solution in a transparent container, the transparent container is formed in a symmetrical shape, and a rotation device that rotates the transparent container around an axis of rotational symmetry; A light source that irradiates light onto a transparent container, a light receiver that receives and detects the reflected light emitted from foreign matter in the solution that receives the irradiated light from the light source, and a monitor device that monitors the trajectory of the reflected light detected by the light receiver. A foreign object detection device comprising:
JP61233737A 1986-10-02 1986-10-02 Foreign matter detecting method and apparatus therefor Granted JPS6388431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233737A JPS6388431A (en) 1986-10-02 1986-10-02 Foreign matter detecting method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233737A JPS6388431A (en) 1986-10-02 1986-10-02 Foreign matter detecting method and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS6388431A true JPS6388431A (en) 1988-04-19
JPH0570784B2 JPH0570784B2 (en) 1993-10-05

Family

ID=16959785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233737A Granted JPS6388431A (en) 1986-10-02 1986-10-02 Foreign matter detecting method and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS6388431A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083285A (en) * 2010-10-14 2012-04-26 Daido Steel Co Ltd Exterior appearance inspection method and exterior appearance inspection device
CN102918382A (en) * 2010-05-31 2013-02-06 日立信息控制系统有限公司 Foreign matter inspection device and foreign matter inspection method
JP2014525583A (en) * 2011-08-29 2014-09-29 アムジェン インコーポレイテッド Method and apparatus for non-destructive detection of non-dissolved particles in a fluid
US9704239B1 (en) 2016-09-02 2017-07-11 Amgen Inc. Video trigger synchronization for improved particle detection in a vessel
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220844A (en) * 1986-03-24 1987-09-29 Hitachi Ltd Inspection device for foreign matter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220844A (en) * 1986-03-24 1987-09-29 Hitachi Ltd Inspection device for foreign matter

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9710731B2 (en) 2010-05-31 2017-07-18 Hitachi Information & Control Solutions, Ltd. Foreign matter inspection device and foreign matter inspection method
CN102918382A (en) * 2010-05-31 2013-02-06 日立信息控制系统有限公司 Foreign matter inspection device and foreign matter inspection method
JP2012083285A (en) * 2010-10-14 2012-04-26 Daido Steel Co Ltd Exterior appearance inspection method and exterior appearance inspection device
US9892523B2 (en) 2011-08-29 2018-02-13 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US10832433B2 (en) 2011-08-29 2020-11-10 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2016197131A (en) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
US11803983B2 (en) 2011-08-29 2023-10-31 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US9418416B2 (en) 2011-08-29 2016-08-16 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2017201335A (en) * 2011-08-29 2017-11-09 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
US9842408B2 (en) 2011-08-29 2017-12-12 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2014525583A (en) * 2011-08-29 2014-09-29 アムジェン インコーポレイテッド Method and apparatus for non-destructive detection of non-dissolved particles in a fluid
US9922429B2 (en) 2011-08-29 2018-03-20 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
US11501458B2 (en) 2011-08-29 2022-11-15 Amgen Inc. Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2019215376A (en) * 2011-08-29 2019-12-19 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
TWI772897B (en) * 2011-08-29 2022-08-01 美商安美基公司 Methods and apparati for nondestructive detection of undissolved particles in a fluid
TWI708052B (en) * 2011-08-29 2020-10-21 美商安美基公司 Methods and apparati for nondestructive detection of undissolved particles in a fluid
JP2016197130A (en) * 2011-08-29 2016-11-24 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
JP2021167821A (en) * 2011-08-29 2021-10-21 アムジェン インコーポレイテッド Methods and apparatus for nondestructive detection of undissolved particles in fluid
US9704239B1 (en) 2016-09-02 2017-07-11 Amgen Inc. Video trigger synchronization for improved particle detection in a vessel
US10962756B2 (en) 2017-02-10 2021-03-30 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
US10539773B2 (en) 2017-02-10 2020-01-21 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels
US10088660B2 (en) 2017-02-10 2018-10-02 Amgen Inc. Imaging system for counting and sizing particles in fluid-filled vessels

Also Published As

Publication number Publication date
JPH0570784B2 (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US5355213A (en) Inspection system for detecting surface flaws
JPH10505680A (en) Container flange inspection system using an annular lens
US4136779A (en) Ampule score line detection
CN100547393C (en) Detect the method and apparatus of transparent or semitransparent rotary container neck ring upper surface defective
CN101313212B (en) Apparatus and method for ensuring rotation of a container during inspection
JP2010181231A (en) Device and method for inspecting foreign matter in opaque solution
JPS6098340A (en) Bottle examination device
JP2003315280A (en) Method and device for inspecting foreign matter
JPH06148095A (en) Method for detecting transparent defect of film sheets
JPS6388431A (en) Foreign matter detecting method and apparatus therefor
JPH0634573A (en) Bottle inspector
JPH0634574A (en) Bottle inspector
JPH04231854A (en) Inspection for crack in container
US6825925B2 (en) Inspecting apparatus for foreign matter
JPH08159989A (en) Method and apparatus for inspecting liquid sealed vessel
JPS6212463B2 (en)
JPS6388433A (en) Method and apparatus for detecting foreign matter
JPH0721464B2 (en) Foreign material inspection device for containers such as ampoules
JP2003202300A (en) Device for checking foreign matter on bottom of bottle
JPH02150752A (en) Device for inspecting foreign matter in powder in transparent container
JP4177204B2 (en) Container foreign matter inspection system
JPH0634575A (en) Bottle inspection method
JPS6388432A (en) Foreign matter detecting method and apparatus therefor
JP2005061932A (en) Method and device for inspecting foreign matter in liquid put in container, and method and device for removing air foam in liquid put in container
JPH1062359A (en) Method and device for inspecting defect

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees