JPH0634575A - Bottle inspection method - Google Patents

Bottle inspection method

Info

Publication number
JPH0634575A
JPH0634575A JP19384392A JP19384392A JPH0634575A JP H0634575 A JPH0634575 A JP H0634575A JP 19384392 A JP19384392 A JP 19384392A JP 19384392 A JP19384392 A JP 19384392A JP H0634575 A JPH0634575 A JP H0634575A
Authority
JP
Japan
Prior art keywords
bottle
image
inspection
defect
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19384392A
Other languages
Japanese (ja)
Inventor
Sumio Ikejiri
澄雄 池尻
Hiroyuki Katayama
裕之 片山
Hiroshi Ito
啓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19384392A priority Critical patent/JPH0634575A/en
Publication of JPH0634575A publication Critical patent/JPH0634575A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To achieve higher bottle inspection accuracy by a method wherein defect detection sensitivity is set for each of a plurality of inspection areas with respect to an image of the bottom part of a bottle to arrange an image processing means corresponding to the respective areas since incident light from a first light source is not uniform completely with respect to the bottom of the bottle. CONSTITUTION:A first light source projects light from the side perimeter of the body of a bottle to obtain a first image containing foreign matters on internal and external surfaces of the bottom part of the bottle and inside the bottle and a second light source 2 projects light to the bottom part of the bottle to obtain a second image of the external surface alone of the bottom part of the bottle. The first image is divided into a plurality of inspection areas and then, an average luminance is calculated for each of bottles to be inspected. Thus, defect detection sensitivity is set for each of the areas to judge a defect by adding the results of each of the inspection areas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、瓶検査装置に関し、詳
しくは、ビールやジュース等のほぼ透明な液を収容する
瓶底部に異物の混入や、割れ、欠け、および汚れ等の欠
陥が存在するか否かを検出可能な瓶検査装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottle inspecting apparatus, and more specifically, it has defects such as foreign matter, cracks, chips and stains at the bottom of a bottle that contains almost transparent liquid such as beer or juice. The present invention relates to a bottle inspection device capable of detecting whether or not to perform.

【0002】[0002]

【従来の技術】一般に、上述したような瓶には洗浄ミス
等が原因で瓶の内面に付着物などが残ったり、大きな傷
等のつくことがあり、こういった欠陥のある瓶は、当然
のことながら商品価値を低下させるだけでなく、食品衛
生および、安全上大きな問題となる。 従来このような
欠陥があるかどうかの検査は主として目視によって行わ
れてきたが、目視にて瓶内を観察し欠陥の有無を判定す
るのでは、検査員の体調や、能力等に結果が左右される
ことになり、時には信じられない程大きな欠陥を見逃す
こともある。このような目視検査は人間の視覚のみに頼
る部分が多いので欠陥の見逃しが多くなることは避けら
れない。
2. Description of the Related Art Generally, in the above-mentioned bottle, deposits and the like may be left on the inner surface of the bottle due to cleaning mistakes or the like, and large scratches may be formed. However, this not only lowers the product value but also poses a serious problem for food hygiene and safety. Conventionally, inspections for such defects have mainly been conducted by visual inspection, but if the inside of the bottle is visually inspected to determine the presence or absence of defects, the results will depend on the physical condition and ability of the inspector. And sometimes miss an incredibly large flaw. Since such a visual inspection often depends only on human vision, it is inevitable that defects will be overlooked frequently.

【0003】そこで、近年では、瓶の欠陥を自動的に検
出する装置について種々の提案がなされ、実際に空瓶欠
陥検出機として市販されているものがある。これらは主
に瓶胴部または瓶底部を検査するものであり、瓶胴部
(瓶口側面も含む)を検査するものは、高速回転してい
る被検査瓶に一方から光を照射し、その反対側に設置し
たCCDカメラで透過画像を捉え、電気信号に変換し、
画像処理装置で欠陥の有無を判定するものである。また
瓶底部を検査するものは、瓶底面の下方から照明をあ
て、その透過像を瓶口上部に設置したCCDカメラで捉
えて、この信号をデジタル化し画像処理を行うものであ
る。
Therefore, in recent years, various proposals have been made for an apparatus for automatically detecting a defect in a bottle, and there is a commercially available empty bottle defect detector. These are mainly for inspecting the bottle body or the bottle bottom, and those for inspecting the bottle body (including the side of the bottle mouth) irradiate the rotating inspected bottle with light from one side, and The CCD camera installed on the opposite side captures the transmitted image and converts it into an electrical signal.
The image processing apparatus determines the presence or absence of defects. The inspection of the bottom of the bottle is performed by illuminating from below the bottom of the bottle, capturing the transmitted image with a CCD camera installed at the top of the bottle, and digitizing this signal for image processing.

【0004】さらに、実瓶検査機については瓶を一定時
間回転後に静止させ、慣性により回転している異物(内
溶液)軌跡から検査する方法(オプティカルフロー方
式)が提案されている。
Further, as for an actual bottle inspecting machine, a method (optical flow method) has been proposed in which a bottle is kept stationary after being rotated for a certain period of time and inspected from a trajectory of a foreign matter (internal solution) rotating due to inertia.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の瓶検査装置は主として空瓶を対象としており、
液が充填された後の瓶検査については、目視に頼るもの
が主流をなしてきた。特に瓶底部にはエンボスやナーリ
ング等があり、光の屈折現象でその部分が影になる等の
ために欠陥と識別し難い点があり、それらの影響を除去
するための処理が必要となり、処理が複雑かつ時間がか
かる。
However, the above-mentioned conventional bottle inspection apparatus is mainly intended for empty bottles,
As for the bottle inspection after the liquid is filled, the method mainly relying on the visual observation has become mainstream. In particular, there is embossing and knurling at the bottom of the bottle, and there is a point that it is difficult to identify it as a defect because the part becomes a shadow due to the phenomenon of light refraction, and it is necessary to perform processing to remove those effects. Is complex and time consuming.

【0006】また、液充填後の瓶において特に重大な欠
陥として挙げられるのは、異物などが混入して浮遊した
り付着したりする場合で、しかもそれが瓶底に沈降して
いると、目視検査ではその確認が困難であるし、オプテ
ィカルフロー方式では原理的に浮遊物のみしか検出でき
ないといった問題がある。更にまた、瓶底部欠陥からの
乱反射光を得るため瓶胴部の側方から光源を投光する
と、瓶の搬送進行方向側への入射光は瓶胴部表面で反射
するため瓶内部へ充分な光が届かなかったり、底部ナー
リングや胴部擦り傷による反射光が邪魔になる等して欠
陥部とノイズの識別が困難であった。
Further, a particularly serious defect in the bottle after liquid filling is when foreign matter or the like is mixed and floats or adheres, and when it is settled at the bottom of the bottle, it is visually observed. It is difficult to confirm it by inspection, and the optical flow method has the problem that only suspended matter can be detected in principle. Furthermore, when a light source is projected from the side of the bottle body in order to obtain diffused reflection light from the bottle bottom defect, the light incident on the bottle conveyance direction side is reflected on the surface of the bottle body, so that it is sufficient for the inside of the bottle. It was difficult to distinguish the defective portion from the noise because the light did not reach and the reflected light caused by the knurling on the bottom and the scratches on the body interfered.

【0007】そこで、本発明の目的は、上述したような
従来の問題点の解決を図り、液充填瓶、特にこれらの瓶
底部に存在する欠陥を迅速かつ正確に検出可能な瓶検査
方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned conventional problems and to provide a bottle inspection method capable of quickly and accurately detecting a defect present in a liquid-filled bottle, particularly in the bottom of these bottles. To do.

【0008】[0008]

【課題を解決するための手段】本発明は、瓶底部からの
反射光を受光して画像信号に変換するための撮像手段を
前記瓶底部の下方に配設し、前記瓶の胴側方周辺より光
を照射する第1光源を点灯させることにより、前記撮像
手段から、前記瓶底部の内外面および瓶内の異物を含む
第1画像を取得し、前記瓶底部に向けて瓶底部下部から
第2光源を点灯させることにより、前記撮像手段から、
前記瓶底部の外面のみの第2画像を取得し、2つの画像
間比較等の画像処理手段により前記瓶底部にかかわる欠
陥を検査する方法において、前記第1画像を複数の検査
領域に区分した後、各領域毎に欠陥検出感度を設定し、
各検査結果の論理和をもって欠陥判定することを特徴と
する瓶検査方法である。
According to the present invention, an image pickup means for receiving the reflected light from the bottom of the bottle and converting it into an image signal is arranged below the bottom of the bottle, and around the side of the bottle body. By turning on the first light source that emits more light, a first image including the inner and outer surfaces of the bottle bottom and foreign matter in the bottle is acquired from the imaging means, and a first image is obtained from the bottom of the bottle bottom toward the bottle bottom. By turning on the two light sources,
In a method of acquiring a second image of only the outer surface of the bottle bottom and inspecting defects related to the bottle bottom by an image processing means such as comparison between two images, after dividing the first image into a plurality of inspection regions , Set the defect detection sensitivity for each area,
The bottle inspection method is characterized in that a defect is determined by a logical sum of the inspection results.

【0009】また、前記第1画像の検査領域が中央部と
ナーリング部の2つに区分され、さらにナーリング部に
ついては領域Iとして第1光源照射方向側、領域IIと
して被検査瓶の搬送進行方向側の2つに細区分されるこ
とを特徴とする。前記画像処理手段において被検査瓶の
第1画像における平均の明るさ(平均輝度)を中央部お
よびナーリング部について各々算出し、それを基準に各
領域毎に欠陥検出感度を自動設定することを特徴とす
る。
The inspection area of the first image is divided into a central portion and a knurling portion. Further, regarding the knurling portion, an area I is the irradiation direction of the first light source, and an area II is the traveling direction of the bottle to be inspected. It is characterized by being subdivided into two on the side. In the image processing means, average brightness (average brightness) in the first image of the bottle to be inspected is calculated for each of the central portion and the knurling portion, and the defect detection sensitivity is automatically set for each area based on the calculated average brightness. And

【0010】前記ナーリング部検査領域I、IIについ
ては、円周方向に低周波数成分除去フィルター処理を実
施し2値化処理等の画像処理手段により欠陥判定するこ
とを特徴とする。前記ナーリング部検査領域Iについて
はさらに、円周方向に低周波数成分除去フィルター処理
後、前記第2画像との減算処理を実施し2値化処理等の
画像処理手段により欠陥判定することを特徴とする。
The knurling portion inspection regions I and II are characterized in that low frequency component removal filter processing is performed in the circumferential direction and defect determination is performed by image processing means such as binarization processing. The knurling portion inspection region I is further characterized in that after low-frequency component removal filter processing in the circumferential direction, subtraction processing with the second image is performed and image processing means such as binarization processing determines a defect. To do.

【0011】前記中央部検査領域については、2値化処
理等の画像処理手段により欠陥判定することを特徴とす
る。
The central inspection area is characterized in that a defect is judged by image processing means such as binarization processing.

【0012】[0012]

【作用】本発明では第1光源から発せられた光が瓶胴部
から瓶内において屈折、反射しながら瓶底部を通過し、
撮像手段に入射するので、瓶底部の主にナーリング部お
よび瓶内の異物が撮像される。これに対して第2光源か
ら発せられた光は瓶底部のナーリング部外表面で反射す
る。
In the present invention, the light emitted from the first light source passes through the bottom of the bottle while being refracted and reflected in the bottle from the bottle body.
Since the light enters the imaging means, the knurling part at the bottom of the bottle and the foreign matter in the bottle are imaged. On the other hand, the light emitted from the second light source is reflected on the outer surface of the knurling portion at the bottom of the bottle.

【0013】ナーリング部の画像は第1画像および第2
画像に含まれ、欠陥画像は第2画像に含まれないので、
第1画像と第2画像を比較することにより上記ナーリン
グ部画像と欠陥画像とを区別し、欠陥存在の有無を判定
することができる。また本発明では被検査瓶毎にその平
均輝度を算出して欠陥検出感度を自動設定するため、瓶
個体差による検査結果への影響が少ない。
The images of the knurling portion are the first image and the second image.
Since it is included in the image and the defect image is not included in the second image,
By comparing the first image and the second image, the knurling image and the defect image can be distinguished from each other, and the presence or absence of the defect can be determined. Further, in the present invention, since the average luminance is calculated for each bottle to be inspected and the defect detection sensitivity is automatically set, the influence of the individual bottle difference on the inspection result is small.

【0014】さらに瓶胴部に擦り傷等が存在する場合に
第1画像に環状の高輝度ノイズが現れるが、低周波数成
分除去フィルター処理によりノイズを除去するため、擦
り傷ノイズ部を欠陥部と誤認識することはない。さらに
また第1光源からの入射光が瓶底に対して完全均一でな
いため、瓶底部画像を複数の検査領域に区分し個々の領
域に応じた画像処理手段を施して欠陥判定するので、検
査部位による欠陥検出精度のバラツキがない。
Further, when there is a scratch or the like on the bottle body, a ring-shaped high brightness noise appears in the first image, but since the noise is removed by the low frequency component removal filter processing, the scratch noise part is erroneously recognized as a defective part. There is nothing to do. Furthermore, since the incident light from the first light source is not completely uniform with respect to the bottom of the bottle, the bottle bottom image is divided into a plurality of inspection regions, and image processing means according to each region is applied to determine a defect. There is no variation in defect detection accuracy due to.

【0015】[0015]

【実施例】本発明を適用した瓶検査装置の平面および側
面構成図を図1および図2に示す。まず被検査瓶1はス
ターホイル2、瓶支持板3および瓶滑走板4に保持され
て搬送されかつ被検査瓶1が撮像位置にきたとき、スタ
ーホイル2と同期して逆方向に回転しているロータリマ
スク5が被検査瓶1の底側面部を挟み込むようにして把
持する。その時撮像カメラ6により瓶底部画像を撮像
し、その後画像処理装置7により検査を実施する。
1 is a plan view of a bottle inspection apparatus to which the present invention is applied. FIG. First, the bottle to be inspected 1 is held and conveyed by the star wheel 2, the bottle supporting plate 3 and the bottle sliding plate 4, and when the bottle to be inspected 1 reaches the imaging position, it rotates in the opposite direction in synchronization with the star wheel 2. The rotary mask 5 is held so as to sandwich the bottom side surface of the bottle 1 to be inspected. At that time, the image of the bottom of the bottle is picked up by the image pickup camera 6, and thereafter, the inspection is carried out by the image processing device 7.

【0016】撮像位置には被検査瓶1の搬送進行方向の
両側に2つの第1光源8が設置され、撮像カメラ6の上
方には第2光源9と撮像視野のための開口穴10が瓶滑
走板4に設けられている。第1光源8から被検査瓶1に
入射し、瓶胴部表面や瓶と内溶液との界面あるいは胴エ
ンボス部で屈折・透過した光は撮像カメラ6のレンズに
直接入射しないため、撮像カメラ6で捉える画像は内溶
液中の異物・ナーリング・瓶表面の傷による乱反射光の
みとなる。また第2光源9を照射すると瓶底部外縁部の
ナーリング像が得られる。
At the image pickup position, two first light sources 8 are installed on both sides of the inspected bottle 1 in the traveling direction, and above the image pickup camera 6, a second light source 9 and an opening hole 10 for an image pickup field are provided. It is provided on the sliding board 4. Light incident on the bottle 1 to be inspected from the first light source 8 and refracted / transmitted at the surface of the bottle body portion, the interface between the bottle and the inner solution, or the body embossing portion does not directly enter the lens of the image pickup camera 6, so that the image pickup camera 6 The image captured by is only diffused light due to foreign matter in the inner solution, knurling, and scratches on the bottle surface. When the second light source 9 is irradiated, a knurling image of the outer edge of the bottom of the bottle is obtained.

【0017】撮像カメラ6は光源、被検査瓶の分光特
性、検査精度等を考慮して選択する。この場合、高速移
動瓶を連続して2枚撮像する必要があるため、CCDエ
リアカメラでかつ画像の静止化のためシャッタ付きカメ
ラを用い、光路中にハーフミラーあるいは適当なビーム
スプリッタを用い、2台のカメラで各々第1画像、第2
画像を順番に撮像する。
The image pickup camera 6 is selected in consideration of the light source, the spectral characteristics of the bottle to be inspected, the inspection accuracy and the like. In this case, since it is necessary to image two high-speed moving bottles in succession, a CCD area camera and a camera with a shutter for staticizing the image are used, and a half mirror or an appropriate beam splitter is used in the optical path. The first image and the second image with two cameras
Images are taken in order.

【0018】また赤外線カットフィルター等を用いて可
視光線だけを利用しても良い。なお、撮像カメラ6によ
る撮像タイミングを得るために搬送手段に関連して設け
られる位置検出手段、不良瓶の排出手段およびそれらの
動作についてはこれを省略する。画像処理装置7の構成
は図3に示すように中央演算処置装置(CPU)10
0、リードオンリメモリ(ROM)110、ランダムア
クセスメモリ(RAM)120、画像専用フレームメモ
リ(FRAM)130、キーボード入力装置140、デ
イスプレイ(表示装置)150、アナログ−デジタル
(A/D)変換器160、デジタル−アナログ(D/
A)変換器170が共通バスに接続されている。
Alternatively, only visible light may be used by using an infrared cut filter or the like. It should be noted that the position detection means, the defective bottle ejection means, and their operations, which are provided in association with the conveying means for obtaining the image pickup timing by the image pickup camera 6, are omitted. As shown in FIG. 3, the image processing device 7 has a central processing unit (CPU) 10 as shown in FIG.
0, read only memory (ROM) 110, random access memory (RAM) 120, image dedicated frame memory (FRAM) 130, keyboard input device 140, display (display device) 150, analog-digital (A / D) converter 160 , Digital-analog (D /
A) The converter 170 is connected to the common bus.

【0019】本実施例における瓶検査方法のフローを図
6を示し、以下に詳細を説明する。画像の取り込みは、
被検査瓶1が開口穴10の真上にきた位置で、第1光源
8を点灯させて第1画像を撮像(図6のステップ10)
し、続いて第2光源9を点灯させて第2画像を撮像(図
6のステップ20)して行う。撮像カメラ6から撮像結
果として出力される2つのアナログ画像信号はA/D変
換器160によってデジタル形態で画素ごとの輝度レベ
ルを示す信号に変換され、CPU100によってFRA
M130に書き込まれる。
The flow of the bottle inspection method in this embodiment is shown in FIG. 6 and will be described in detail below. Image capture
At the position where the bottle 1 to be inspected is located directly above the opening hole 10, the first light source 8 is turned on to capture the first image (step 10 in FIG. 6).
Then, subsequently, the second light source 9 is turned on to capture the second image (step 20 in FIG. 6). The two analog image signals output as the image pickup result from the image pickup camera 6 are converted into a signal indicating the luminance level of each pixel in a digital form by the A / D converter 160, and the CPU 100 FRA.
Written to M130.

【0020】FRAM130に書き込まれた2次元の第
1画像信号について、図4に示すように検査領域を中央
部とナーリング部に分けて処理することとする。瓶底部
中心を基準に一定半径の円内部を中央部領域とし、その
周辺の環状部分をナーリング領域とする。半径の値は任
意に設定するが、ナーリング部領域とオーバーラップし
てもかまわない。ただし、周辺の環状部分については、
ナーリング像および瓶胴部擦り傷による環状ノイズが含
まれるように設定されなければならない。
The two-dimensional first image signal written in the FRAM 130 is processed by dividing the inspection area into a central portion and a knurling portion as shown in FIG. The inside of a circle having a constant radius based on the center of the bottom of the bottle is defined as the central region, and the annular portion around it is defined as the knurling region. The value of the radius is set arbitrarily, but it may overlap with the knurling region. However, for the surrounding annular part,
It should be set to include knurled images and ring noise due to bottle body abrasions.

【0021】これらの位置情報はあらかじめアドレステ
ーブルとしてRAM120またはROM110に記録し
ておく(直交座標系におけるナーリング部の円周方向に
沿った画素の位置つまりアドレス値を記憶する)。この
第1、第2画像信号のデータをあらかじめプログラムさ
れたメモリ(ROM110)の順序で以下の手順に従っ
て読み出し演算処理する。
The position information is recorded in advance in the RAM 120 or the ROM 110 as an address table (the position of the pixel along the circumferential direction of the knurling portion in the orthogonal coordinate system, that is, the address value is stored). The data of the first and second image signals are read out and processed according to the following procedure in the order of the preprogrammed memory (ROM 110).

【0022】(手順1) 2つの検査領域(中央部とナ
ーリング部)の任意の画素の輝度データを複数個抽出し
その平均値を求めて、各検査領域の欠陥検出感度(また
は閾値)設定の基準値(dAV)とする。(図6のステッ
プ30) あらかじめ被検査瓶1の瓶透過率(瓶の明るさ)のバラ
ツキ(dMAX 、dMIN)に応じた欠陥検出閾値の範囲
(THMAX 、THMIN )をRAM120またはROM1
10に記録し、被検査瓶1の輝度値がdAVの場合には欠
陥検出閾値THを数1から計算し自動設定する。
(Procedure 1) A plurality of brightness data of arbitrary pixels in two inspection areas (center portion and knurling portion) are extracted, an average value thereof is obtained, and a defect detection sensitivity (or threshold value) of each inspection area is set. The reference value (dAV) is used. (Step 30 in FIG. 6) The range (THMAX, THMIN) of the defect detection threshold corresponding to the variation (dMAX, dMIN) in the bottle transmittance (brightness) of the bottle 1 to be inspected is set in advance in the RAM 120 or the ROM 1.
If the luminance value of the bottle 1 to be inspected is dAV, the defect detection threshold value TH is calculated from the equation 1 and automatically set.

【0023】[0023]

【数1】 TH = (dAV−dMIN )×Z+THMIN (1) 但し、dMIN ≦dAV≦dMAX 、 Z=(THMAX −THMIN )/(dMAX −dMIN ) ここで、dMIN 〜dMAX やTHMIN 〜THMAX の範囲は
図5に示すように種々の被検査瓶1の統計的データを収
集し決定することとする。
## EQU1 ## TH = (dAV-dMIN) * Z + THMIN (1) where dMIN≤dAV≤dMAX, Z = (THMAX-THMIN) / (dMAX-dMIN) where dMIN-dMAX and THMIN-THMAX are As shown in FIG. 5, statistical data of various inspected bottles 1 will be collected and determined.

【0024】前記式(1)を用い、CPU100が各検
査領域毎に欠陥検出閾値THi を求める(図6のステッ
プ40)。 (手順2) ナーリング部検査領域に対する以下の画像
処理を行う。 アドレステーブルに基づき、円周方向の画素の輝度デー
タを読みだし、本出願人が特願H2−402610にて
発明している低周波数成分除去フィルター処理を施して
(図6のステップ50)、フィルター補正後の輝度デー
タを、FRAM130に更新する。(フィルター処理後
の第1画像を画像AN とする) フィルター処理後、CPU100は図4に示すように、
領域Iとして第1光源照射方向側と領域IIとして被検
査瓶1の搬送進行方向側の2つに細区分して次の2つの
処理を行う。
Using the equation (1), the CPU 100 obtains the defect detection threshold value THi for each inspection area (step 40 in FIG. 6). (Procedure 2) The following image processing is performed on the knurling portion inspection region. Luminance data of pixels in the circumferential direction is read out based on the address table, and the low frequency component removal filter processing invented by the present applicant in Japanese Patent Application H2-402610 is applied (step 50 in FIG. 6) to obtain a filter. The corrected luminance data is updated in the FRAM 130. (The first image after the filter processing is referred to as image AN) After the filter processing, the CPU 100 displays the image as shown in FIG.
The following two processes are performed by subdividing the region I into two, that is, the first light source irradiation direction side and the region II, that is, the conveyance traveling direction side of the bottle 1 to be inspected.

【0025】〔処理1〕被検査瓶1のFRAM130に
書き込まれている第2画像のナーリング部の搬送進行方
向側(領域II)にマスク処理を施し、あらかじめRO
M110またはRAM120に設定しておいた閾値との
比較により、2値化処理を行い(図6のステップ60)
FRAM130に書き込む。(処理後の第2画像を画像
Bとする) CPU100により画像AN から画像Bを減算し、(手
順1)にて求めた欠陥検出閾値TH1 で2値化(図6の
ステップ70)し、場合によっては、収縮処理を施して
微小ノイズを除いた後、CPU100が画素数をカウン
ト(図6のステップ80)し、この値が一定値以上であ
れば、この被検査瓶1を不良瓶として判定する(図6の
ステップ130)。
[Process 1] A mask process is applied to the knurling portion of the second image written in the FRAM 130 of the bottle to be inspected 1 in the conveying direction (region II), and RO is preliminarily set.
Binarization processing is performed by comparison with the threshold value set in M110 or RAM 120 (step 60 in FIG. 6).
Write to FRAM130. (The second image after processing is referred to as image B) The image B is subtracted from the image AN by the CPU 100 and binarized by the defect detection threshold TH1 obtained in (procedure 1) (step 70 in FIG. 6). In some cases, the CPU 100 counts the number of pixels (step 80 in FIG. 6) after the shrinking process is performed to remove the minute noise, and if this value is a certain value or more, the bottle 1 to be inspected is determined as a defective bottle. (Step 130 in FIG. 6).

【0026】ここで搬送進行方向側のマスク領域は任意
に設定して良いが、第1画像上においてナーリング像が
生じない箇所に設定する。つまり瓶底に対する第1光源
からの入射光が完全均一でないため第1画像上の位置で
明暗差ができ、特に搬送進行方向側ではナーリング像が
生じなくなる。よって、その領域についてはノイズ成分
であるナーリング像を第1画像から減算する必要がない
ためである。
Here, the mask area on the transporting direction side may be arbitrarily set, but it is set at a portion where a knurling image does not occur on the first image. That is, since the incident light from the first light source to the bottom of the bottle is not completely uniform, there is a difference in brightness between the positions on the first image, and a knurling image does not particularly occur on the side of the transporting direction. Therefore, it is not necessary to subtract the knurling image, which is a noise component, from the first image in that region.

【0027】〔処理2〕FRAM130に記録された画
像AN に対して、領域I、IIの各々ついて(手順1)
にて求めた欠陥検出閾値TH2 、TH3 で2値化(図6
のステップ90)し、場合によっては収縮処理を施し微
小ノイズを除いた後、CPU100が画素数をカウント
(図6のステップ100)し、この値が一定値以上であ
ればこの被検査瓶1を不良瓶として判定する(図6のス
テップ130)。
[Processing 2] With respect to the image AN recorded in the FRAM 130, for each of the regions I and II (procedure 1)
Binarization by the defect detection thresholds TH2 and TH3 obtained in
Step 90), and if necessary contraction processing is performed to remove minute noises, the CPU 100 counts the number of pixels (step 100 in FIG. 6). It is determined as a defective bottle (step 130 in FIG. 6).

【0028】(手順3) 中央部検査領域に対する以下
の画像処理を行う。 アドレステーブルに基づきまたはFRAM130に書き
込まれている第1画像に対してマスク処理を施して中央
部の画像データを読出し、(手順1)にて求めた欠陥検
出閾値TH4 で2値化(図6のステップ110)し、場
合によっては収縮処理を施し微小ノイズを除いた後、C
PU100が画素数をカウント(図6のステップ12
0)し、この値が一定値以上であればこの被検査瓶1を
不良瓶として判定する(図6のステップ130)。
(Procedure 3) The following image processing is performed on the central inspection area. The first image written in the FRAM 130 is masked based on the address table to read the image data of the central portion, and the defect detection threshold TH4 obtained in (procedure 1) is binarized (see FIG. 6). Step 110), and if necessary, contraction processing is performed to remove minute noise, and then C
The PU 100 counts the number of pixels (step 12 in FIG. 6).
0) and if this value is equal to or greater than a certain value, the bottle 1 to be inspected is determined as a defective bottle (step 130 in FIG. 6).

【0029】あるいは2値画像(図6のステップ11
0)をラベリングしてFRAM130に書き込んだ後、
CPU100が面積値(画素数)最大のラベリング番号
を探索し、その面積値が一定値以上であれば欠陥判定す
るという方法を用いても良い。さらに中央部にエンボス
像などの環状ノイズが発生するようであれば、ナーリン
グ部検査のときと同様に、円周方向に低周波数成分除去
フィルター処理を施しても良い。
Alternatively, a binary image (step 11 in FIG. 6)
0) is labeled and written in FRAM130,
A method may be used in which the CPU 100 searches for a labeling number having the largest area value (number of pixels), and if the area value is a certain value or more, a defect determination is performed. Further, if annular noise such as an embossed image is generated in the central portion, low frequency component removal filter processing may be performed in the circumferential direction as in the case of the knurling portion inspection.

【0030】[0030]

【発明の効果】第1光源から被検査瓶の瓶底への入射光
が不均一であっても、本発明の画像処理手段を用いれば
精度の高い検査が可能となり、現在の目視検査に代わっ
て品質、能力の安定した自動検査機の導入が実現でき
る。
Even if the incident light from the first light source to the bottle bottom of the bottle to be inspected is non-uniform, the image processing means of the present invention enables highly accurate inspection and replaces the present visual inspection. Introduce an automatic inspection machine with stable quality and ability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための瓶検査装置の側面図を
示す。
FIG. 1 shows a side view of a bottle inspection device for practicing the present invention.

【図2】本発明を実施するための瓶検査装置の平面図を
示す。
FIG. 2 shows a plan view of a bottle inspection device for carrying out the present invention.

【図3】画像処理装置の構成図を示す。FIG. 3 shows a block diagram of an image processing apparatus.

【図4】瓶底画像における検査領域の区分を示す。FIG. 4 shows divisions of an inspection area in a bottle bottom image.

【図5】欠陥検出閾値設定直線を示す。FIG. 5 shows a defect detection threshold setting straight line.

【図6】本発明における瓶検査フローを示す。FIG. 6 shows a bottle inspection flow in the present invention.

【符号の説明】[Explanation of symbols]

1…被検査瓶 2…スターホイル 3…瓶支持板 4…瓶滑走板 5…ロータリマスク 6…撮像カメラ 7…画像処理装置 8…第1光源 9…第2光源 10…開口穴 DESCRIPTION OF SYMBOLS 1 ... Bottle to be inspected 2 ... Star wheel 3 ... Bottle support plate 4 ... Bottle sliding plate 5 ... Rotary mask 6 ... Imaging camera 7 ... Image processing device 8 ... First light source 9 ... Second light source 10 ... Open hole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 瓶底部からの反射光を受光して画像信号
に変換するための撮像手段を前記瓶底部の下方に配設
し、 前記瓶の胴側方周辺より光を照射する第1光源を点灯さ
せることにより、前記撮像手段から、前記瓶底部の内外
面および瓶内の異物を含む第1画像を取得し、前記瓶底
部に向けて瓶底部下部から第2光源を点灯させることに
より、前記撮像手段から、前記瓶底部の外面のみの第2
画像を取得し、2つの画像間比較等の画像処理手段によ
り前記瓶底部にかかわる欠陥を検査する方法において、
前記第1画像を複数の検査領域に区分した後、各領域毎
に欠陥検出感度を設定し、各検査結果の論理和をもって
欠陥判定することを特徴とする瓶検査方法。
1. A first light source for arranging an image pickup means for receiving reflected light from the bottom of the bottle and converting it into an image signal below the bottom of the bottle, and irradiating the light from the lateral side of the body of the bottle. By illuminating, by acquiring from the imaging means, a first image including the inside and outside surfaces of the bottle bottom and foreign matter in the bottle, by turning on the second light source from the bottom of the bottle bottom toward the bottle bottom, From the imaging means, the second outer surface of the bottle bottom only
In a method of acquiring an image and inspecting a defect relating to the bottle bottom by image processing means such as comparison between two images,
A bottle inspection method, characterized in that after the first image is divided into a plurality of inspection areas, a defect detection sensitivity is set for each area, and a defect is determined by a logical sum of the inspection results.
【請求項2】 前記第1画像の検査領域が中央部とナー
リング部の2つに区分され、さらにナーリング部につい
ては領域Iとして第1光源照射方向側、領域IIとして
被検査瓶の搬送進行方向側の2つに細区分されることを
特徴とする請求項1に記載の瓶検査方法。
2. The inspection area of the first image is divided into a central portion and a knurling portion. Further, regarding the knurling portion, an area I is the irradiation direction side of the first light source, and an area II is the traveling direction of the bottle to be inspected. The bottle inspection method according to claim 1, wherein the bottle inspection method is subdivided into two on the side.
【請求項3】 前記画像処理手段において被検査瓶の第
1画像における平均の明るさ(平均輝度)を中央部およ
びナーリング部について各々算出し、それを基準に各領
域毎に欠陥検出感度を自動設定することを特徴とする請
求項1に記載の瓶検査方法。
3. The image processing means calculates the average brightness (average brightness) in the first image of the bottle to be inspected for each of the central portion and the knurling portion, and the defect detection sensitivity is automatically calculated for each region based on the calculated average brightness. The bottle inspection method according to claim 1, wherein the bottle inspection method is performed.
【請求項4】 前記ナーリング部検査領域I、IIにつ
いては、円周方向に低周波数成分除去フィルター処理を
実施し2値化処理等の画像処理手段により欠陥判定する
ことを特徴とする請求項1に記載の瓶検査方法。
4. The inspection areas I and II of the knurling portion are subjected to low frequency component removal filter processing in the circumferential direction and defect determination is performed by image processing means such as binarization processing. Bottle inspection method described in.
【請求項5】 前記ナーリング部検査領域Iについては
さらに、円周方向に低周波数成分除去フィルター処理
後、前記第2画像との減算処理を実施し2値化処理等の
画像処理手段により欠陥判定することを特徴とする請求
項1に記載の瓶検査方法。
5. The knurling portion inspection region I is further subjected to a low frequency component removal filter process in the circumferential direction, then a subtraction process with the second image, and a defect determination by an image processing means such as a binarization process. The bottle inspection method according to claim 1, wherein:
【請求項6】 前記中央部検査領域については、2値化
処理等の画像処理手段により欠陥判定することを特徴と
する請求項1に記載の瓶検査方法。
6. The bottle inspection method according to claim 1, wherein a defect determination is performed on the central inspection region by image processing means such as binarization processing.
JP19384392A 1992-07-21 1992-07-21 Bottle inspection method Withdrawn JPH0634575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19384392A JPH0634575A (en) 1992-07-21 1992-07-21 Bottle inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19384392A JPH0634575A (en) 1992-07-21 1992-07-21 Bottle inspection method

Publications (1)

Publication Number Publication Date
JPH0634575A true JPH0634575A (en) 1994-02-08

Family

ID=16314669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19384392A Withdrawn JPH0634575A (en) 1992-07-21 1992-07-21 Bottle inspection method

Country Status (1)

Country Link
JP (1) JPH0634575A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340808A (en) * 2001-05-21 2002-11-27 Dai Ichi Seiyaku Co Ltd Detection method of in-liquid foreign matter
US7010863B1 (en) 2004-01-26 2006-03-14 Owens-Brockway Glass Container Inc. Optical inspection apparatus and method for inspecting container lean
JP2007218749A (en) * 2006-02-17 2007-08-30 Hitachi Zosen Corp Method and apparatus for discriminating matter
JP2013525804A (en) * 2010-05-04 2013-06-20 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device and method for detection of defects in glass bodies
CN106018412A (en) * 2016-05-12 2016-10-12 天津大学 Bottle cap surface production date detection method based on visible light communication
CN111080638A (en) * 2019-12-27 2020-04-28 成都泓睿科技有限责任公司 System and method for detecting dirt at bottom of molded bottle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340808A (en) * 2001-05-21 2002-11-27 Dai Ichi Seiyaku Co Ltd Detection method of in-liquid foreign matter
JP4580122B2 (en) * 2001-05-21 2010-11-10 第一三共株式会社 Detecting foreign matter in liquid
US7010863B1 (en) 2004-01-26 2006-03-14 Owens-Brockway Glass Container Inc. Optical inspection apparatus and method for inspecting container lean
JP2007218749A (en) * 2006-02-17 2007-08-30 Hitachi Zosen Corp Method and apparatus for discriminating matter
JP2013525804A (en) * 2010-05-04 2013-06-20 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Device and method for detection of defects in glass bodies
CN106018412A (en) * 2016-05-12 2016-10-12 天津大学 Bottle cap surface production date detection method based on visible light communication
CN111080638A (en) * 2019-12-27 2020-04-28 成都泓睿科技有限责任公司 System and method for detecting dirt at bottom of molded bottle

Similar Documents

Publication Publication Date Title
US5444480A (en) Method of inspecting solid body for foreign matter
US7342655B2 (en) Inspecting apparatus and method for foreign matter
JPH04166751A (en) Method and apparatus for inspecting defect in bottle and the like
JP2001523815A (en) Automatic lens inspection system
JPH10505680A (en) Container flange inspection system using an annular lens
JPH0513257B2 (en)
JPS6269154A (en) Defect inspection instrument for mouth of bottle
JP3767695B2 (en) Empty bottle inspection system
JP2005017004A (en) System for inspecting foreign matter in glass bottle
US7317524B2 (en) Method and device for detecting surface defects on the neck ring of a transparent or translucent container of revolution
JPS6098340A (en) Bottle examination device
JPH0634573A (en) Bottle inspector
JPH0634575A (en) Bottle inspection method
JPH0634574A (en) Bottle inspector
JP3340413B2 (en) Method and apparatus for detecting foreign matter settled in PET bottle
JP2005017003A (en) Vial inspection system
JP2008039444A (en) Method and apparatus for inspecting foreign matter
JPH04118546A (en) Bottle inspection device
JPH04216445A (en) Device for inspecting bottle
JPH0448251A (en) Bottle inspecting device
JPS59135353A (en) Surface flaw detecting apparatus
JPH04270951A (en) Method for inspecting bottle
JPH043820B2 (en)
JPH09304294A (en) Method and apparatus for inspecting surface of object to be inspected
JP3986534B2 (en) Empty bottle inspection system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005