JPS638814Y2 - - Google Patents

Info

Publication number
JPS638814Y2
JPS638814Y2 JP18438382U JP18438382U JPS638814Y2 JP S638814 Y2 JPS638814 Y2 JP S638814Y2 JP 18438382 U JP18438382 U JP 18438382U JP 18438382 U JP18438382 U JP 18438382U JP S638814 Y2 JPS638814 Y2 JP S638814Y2
Authority
JP
Japan
Prior art keywords
intake
branch pipes
engine
downstream
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18438382U
Other languages
Japanese (ja)
Other versions
JPS5988222U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18438382U priority Critical patent/JPS5988222U/en
Publication of JPS5988222U publication Critical patent/JPS5988222U/en
Application granted granted Critical
Publication of JPS638814Y2 publication Critical patent/JPS638814Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 この考案は、多気筒内燃機関の吸気装置で、特
に慣性過給と呼ばれる吸気供給方式を採用したも
のの改良に関する。
[Detailed Description of the Invention] This invention relates to an improvement in an intake system for a multi-cylinder internal combustion engine, particularly one that employs an intake air supply system called inertial supercharging.

一般に、自動車用多気筒内燃機関においても、
吸気の充填効率を高めるために、吸気の流路長
(この場合、吸気マニホールドの各ブランチ部が
集合する合流点)を可変にするなどして、吸気圧
力振動の周期と機関回転数によつて変化する吸気
弁開閉周期とを可及的に機関の広い運転領域にお
いてマツチングさせることにより、良好な慣性吸
気作用を得るようにした吸気装置を採用してい
る。
Generally, in multi-cylinder internal combustion engines for automobiles,
In order to increase the intake air filling efficiency, the length of the intake air flow path (in this case, the confluence point where each branch of the intake manifold gathers) is made variable, and the length of the intake air flow path is varied depending on the period of intake pressure vibration and the engine speed. An intake system is used that achieves good inertial intake action by matching the changing intake valve opening/closing cycle over as wide an operating range as possible of the engine.

従来、この種の吸気装置として例えば第1図に
示すようなものがある(特開昭56−115818号公
報)。
BACKGROUND ART Conventionally, there is an air intake device of this type as shown in FIG. 1 (Japanese Patent Application Laid-open No. 115818/1983).

これは、まず6気筒機関の吸気マニホールド1
が機関の各気筒#1〜#6に各々接続されるブラ
ンチ部2と、これらブランチ部2が集合される下
流側集合室3とから構成されると共に、該下流側
集合室3にはその中央に位置して切換弁4が介装
される。
This is the intake manifold 1 of a 6-cylinder engine.
is composed of branch portions 2 connected to each cylinder #1 to #6 of the engine, and a downstream gathering chamber 3 where these branch portions 2 are assembled, and the downstream gathering chamber 3 has a central A switching valve 4 is interposed at the position.

つまり、上記切換弁4によつて下流側集合室3
が、上述した各気筒#1〜#6が等間隔爆発(点
火順序が#1→#4→#2→#6→#3→#5等
の場合)となるようにし、#1〜#3気筒からな
る第1気筒群Aに連通する空間3Aと、#4〜
#6気筒からなる第2気筒群Bに連通する空間3
Bとに画成されるのである。
In other words, the switching valve 4 controls the downstream gathering chamber 3.
However, each of the cylinders #1 to #6 mentioned above is made to explode at equal intervals (when the ignition order is #1 → #4 → #2 → #6 → #3 → #5, etc.), and A space 3A communicating with the first cylinder group A consisting of cylinders, and #4 to
Space 3 communicating with second cylinder group B consisting of #6 cylinders
It is defined by B.

そして、上記下流側集合室3の空間3A側に下
流端を開口接続した通路5と、空間3B側に下流
端を開口接続した通路6とを並列して配設し、両
通路5,6の上流端を上流側集合室7に開口して
接続する。上流側集合室7には吸気導入管8が接
続され、この吸気導入管8は直接大気へ解放して
も良いし、エアクリーナ等へ接続しても良い。
A passage 5 whose downstream end is open-connected to the space 3A side of the downstream gathering room 3 and a passage 6 whose downstream end is open-connected to the space 3B side are arranged in parallel. The upstream end is opened and connected to the upstream gathering chamber 7. An intake air introduction pipe 8 is connected to the upstream gathering chamber 7, and this intake air introduction pipe 8 may be directly released to the atmosphere or may be connected to an air cleaner or the like.

かかる構成において更に、機関回転数の所定値
以下では上述した切換弁4を閉じて空間3Aと空
間3Bとを遮断し、所定値を越えると切換弁4を
開いて空間3Aと空間3Bとを連通するように構
成する。
In this configuration, furthermore, when the engine speed is below a predetermined value, the above-mentioned switching valve 4 is closed to cut off the space 3A and the space 3B, and when the engine speed exceeds a predetermined value, the switching valve 4 is opened to communicate the space 3A and the space 3B. Configure it to do so.

このように構成すれば、切換弁4が閉じた機関
低速域では、第1気筒群Aに連通する吸気通路と
第2気筒群Bに連通する吸気通路とは上流側集合
室7において合流する。
With this configuration, in a low engine speed range when the switching valve 4 is closed, the intake passage communicating with the first cylinder group A and the intake passage communicating with the second cylinder group B merge in the upstream gathering chamber 7.

上流側集合室7は全気筒#1〜#6に連通して
各気筒からの吸入負圧を連続的に受けて略一定の
負圧に保持されている。一方、第1及び第2の
夫々の気筒群A,Bにおける各気筒相互は吸気弁
開時期が実質的にオーバラツプしないから、下流
側集合室3の切換弁4で画成された空間3A及び
3Bは、夫々対応する気筒群において吸入行程の
ある1個の気筒からの吸気圧力の影響のみを受け
る。
The upstream collecting chamber 7 communicates with all the cylinders #1 to #6 and continuously receives the suction negative pressure from each cylinder to maintain a substantially constant negative pressure. On the other hand, since the intake valve opening timings of the cylinders in the first and second cylinder groups A and B do not substantially overlap with each other, the spaces 3A and 3B defined by the switching valves 4 in the downstream collective chamber 3 is affected only by the intake pressure from one cylinder having an intake stroke in each corresponding cylinder group.

従つて、第1気筒群A及び第2気筒群Bにおい
て吸入行程にある気筒から生じる吸気圧力振動の
圧力波は、該気筒の燃焼室から対応するマニホー
ルドブランチ部2及び空間3Aまたは3Bを経由
して上流側集合室7に至る流路を往復伝播するた
め、該吸気圧力振動の周期(固有振動数)は上流
側集合室7即ち吸気通路の合流点位置によつて定
まる。
Therefore, the pressure waves of intake pressure vibration generated from the cylinders in the intake stroke in the first cylinder group A and the second cylinder group B are transmitted from the combustion chambers of the cylinders via the corresponding manifold branches 2 and spaces 3A or 3B. Since the intake pressure oscillation propagates back and forth through the flow path leading to the upstream gathering chamber 7, the period (natural frequency) of the intake pressure vibration is determined by the upstream gathering chamber 7, that is, the position of the confluence of the intake passages.

このため、上流側集合室7の取付位置によつて
定まる吸気圧力振動の周期を、機関低速域におけ
る吸気弁の開閉サイクルに対応して設定すること
により、該低速域での吸気慣性過給を良行に行な
うことができる。
Therefore, by setting the period of intake pressure vibration determined by the mounting position of the upstream gathering chamber 7 in accordance with the opening/closing cycle of the intake valve in the low speed range of the engine, intake inertia supercharging in the low speed range can be achieved. You can do good deeds.

一方、切換弁4が開かれる機関高速域において
は、下流側集合室3において空間3Aと空間3B
とが連通されるため該集合室3内空間全体が全気
筒#1〜#6の負圧を連続的に受けて略一定の負
圧に保持される。
On the other hand, in the engine high speed range where the switching valve 4 is opened, the space 3A and the space 3B in the downstream gathering chamber 3
Since these are in communication with each other, the entire space within the collective chamber 3 continuously receives the negative pressure of all cylinders #1 to #6 and is maintained at a substantially constant negative pressure.

従つて、上記下流側集合室3が前記機関低速域
における上流側集合室7と同様な圧力緩衝機能を
有し、今度は吸気圧力振動の圧力波は吸入行程に
ある気筒の燃焼室から下流側集合室3に至る流路
を往復伝播する。
Therefore, the downstream gathering chamber 3 has the same pressure buffering function as the upstream gathering chamber 7 in the engine low speed region, and this time, the pressure wave of intake pressure vibration is transmitted downstream from the combustion chamber of the cylinder in the intake stroke. It propagates back and forth through the flow path leading to the collection chamber 3.

この場合、圧力波の伝播流路が機関低速域の場
合に比べて短縮されるため、吸気圧力振動の周期
が増大し、機関高速域における吸気弁開閉周期に
うまくマツチングして該高速域においても良好な
吸気慣性過給が行なわれるのである。
In this case, the pressure wave propagation path is shortened compared to the case in the low engine speed range, so the cycle of intake pressure oscillation increases, and it matches well with the intake valve opening/closing cycle in the high engine speed range, even in the high speed range. This results in good intake inertia supercharging.

この結果、機関回転数Nに対する吸入空気の充
填効率ηvは第2図に示すように、切換弁4が閉じ
る機関低速域と開かれる機関高速域とで、夫々吸
気圧力振動の周期と吸気弁開閉周期とが最も良好
な慣性過給の行なえるようにマツチングした二つ
の極大点C,Dを有し、これによつて、機関の広
い速度域に亘つて良好な吸気充填効率が得られる
のである。
As a result, the filling efficiency η v of the intake air with respect to the engine speed N is determined by the period of the intake pressure vibration and the intake valve 4, respectively, in the engine low speed range where the switching valve 4 is closed and in the engine high speed range where the switching valve 4 is opened, as shown in FIG. The opening/closing period has two maximum points C and D that are matched to achieve the best inertial supercharging, and this allows good intake air filling efficiency to be obtained over a wide speed range of the engine. be.

また、同様の技術思想から第3図に示すよう
に、第1気筒群Aに連通する空間3Aに接続した
通路5と第2気筒群Bに連通する空間3Bに接続
した通路6とを仕切る隔壁9を、その終端9A即
ち吸気通路の合流点が機関回転数の増大に応じて
下流側に徐々に移動できる移動隔壁で構成したも
のも提案されている。図中10は機関回転数検出
装置で、11は該検出装置10からの検出信号に
基づいて移動隔壁9を移動制御するモータであ
る。
Further, based on the same technical concept, as shown in FIG. 3, a partition wall partitions a passage 5 connected to a space 3A communicating with the first cylinder group A and a passage 6 connected to a space 3B communicating with the second cylinder group B. It has also been proposed that 9 is constructed of a movable partition whose terminal end 9A, that is, the confluence of the intake passages, can be gradually moved downstream as the engine speed increases. In the figure, 10 is an engine rotational speed detection device, and 11 is a motor that controls the movement of the movable bulkhead 9 based on a detection signal from the detection device 10.

これによれば、機関の全速度域に亘つて吸気圧
力振動の振動周期と吸気弁開閉周期とを最適にマ
ツチングさせることができ、常時最適な慣性過給
作用が得られるのである。
According to this, the vibration period of the intake pressure vibration and the intake valve opening/closing period can be optimally matched over the entire speed range of the engine, and an optimal inertial supercharging effect can always be obtained.

ところが、このような従来の吸気装置にあつて
は、第1図のように吸気マニホールド1の下流側
集合室3内に設けた切換弁4によつて吸気通路の
合流点を可変にするものは、せいぜい1個の切換
弁4の開閉により流路長を2段階に切換るのがや
つとであり、従つて機関の全速度域に亘つて吸気
圧力振動の周期と吸気弁開閉周期とを最適にマツ
チングさせることは到底望めず、慣性過給効果が
フルに得られないという問題点があつた。
However, in such conventional intake devices, the confluence point of the intake passages is made variable by the switching valve 4 provided in the downstream gathering chamber 3 of the intake manifold 1 as shown in FIG. The flow path length can be switched in two stages by opening and closing at most one switching valve 4, and therefore the period of intake pressure vibration and the period of opening and closing of the intake valve can be optimized over the entire speed range of the engine. However, there was a problem in that it was impossible to achieve matching, and the full effect of inertial supercharging could not be obtained.

また、第3図のように移動隔壁9によつて合流
点を連続的に変化させるものにあつては、理論上
は上述したような最適制御が可能であるが、2m
余りも有る吸気通路の仕切壁を前述したような方
式で、絶えず変化する運転条件に応じて制御する
実用的な機構は不可能に近い。
In addition, as shown in Fig. 3, where the confluence point is continuously changed by the movable bulkhead 9, optimal control as described above is theoretically possible;
It is almost impossible to create a practical mechanism for controlling the excess intake passage partition wall in response to constantly changing operating conditions using the method described above.

この考案は、このような従来の問題点に着目し
てなされたものであり、各気筒に接続される吸気
通路を等間隔爆発となるように独立して集合する
すくなくても二本の慣性過給用ダクトを設け、こ
れら両ダクトの合流点の下流に位置して両ダクト
を相互に連通する枝管を、その各々の分岐点がダ
クト長さ方向に所定の間隔をおいて離間する一
方、最も下流に位置した枝管の中間部に他の枝管
の中間部が近接するまで当該他の枝管の長さを延
長するようにして複数設け、これら枝管の中間部
に当該枝管を機関の運転状態に応じて連通、遮断
する開閉弁をそれぞれ設けることにより、吸気通
路の合流点を機関の運転状態に応じて多段的に可
変にして機関の全速度域に亘つてフルに慣性過給
作用が得られる一方で、上記複数の開閉弁の集中
制御を可能にしてコスト、スペース及び信頼性の
面で有効な吸気装置を提供することを目的とす
る。
This idea was devised by focusing on these conventional problems, and the intake passage connected to each cylinder is designed to have at least two inertia filters that converge independently so that explosions occur at equal intervals. A supply duct is provided, and branch pipes that are located downstream of the confluence of these two ducts and communicate the two ducts with each other are spaced apart at predetermined intervals in the length direction of the duct, and A plurality of branch pipes are provided so that the length of the other branch pipe is extended until the middle part of the branch pipe located most downstream approaches the middle part of the branch pipe, and the branch pipe is placed in the middle part of these branch pipes. By providing open/close valves that communicate and shut off depending on the engine operating condition, the confluence point of the intake passage can be varied in multiple stages depending on the engine operating condition, completely eliminating inertia over the entire engine speed range. It is an object of the present invention to provide an intake device that is effective in terms of cost, space, and reliability by making it possible to centrally control the plurality of on-off valves while providing a feeding function.

以下、この考案の実施例を図面に基づいて説明
する。
Hereinafter, embodiments of this invention will be described based on the drawings.

第4図に示すように、6気筒機関の吸気マニホ
ールド1の下流側集合室3が、第1気筒群Aに連
通する左方集合室3Aと第2気筒群Bに連通する
右方集合室3Bとに完全に分離形成され、これら
集合室3A,3Bから各々慣性過給用ダクト5,
6が並列に導出されると共に、これら両ダクト
5,6はその上流端部で合流され上流側集合室7
を形成する。
As shown in FIG. 4, the downstream collecting chamber 3 of the intake manifold 1 of a six-cylinder engine is a left collecting chamber 3A communicating with the first cylinder group A and a right collecting chamber 3B communicating with the second cylinder group B. The inertia supercharging ducts 5,
6 are led out in parallel, and both these ducts 5 and 6 are joined at their upstream ends to form an upstream gathering chamber 7.
form.

そして、上記慣性過給用ダクト5,6の合流点
の下流に位置して、両ダクト5,6を相互に連通
する枝管12〜14が複数(図中では三本)設け
られる。
A plurality of branch pipes 12 to 14 (three in the figure) are provided downstream of the confluence of the inertial supercharging ducts 5 and 6 to communicate the two ducts 5 and 6 with each other.

上記枝管12〜14は、その各々の分岐点12
a〜14aがダクト長さ方向に所定の間隔をおい
て離間する一方、最も下流に位置した枝管14の
中間部14bに他の枝管12,13の中間部12
b,13bが近接するまで当該他の枝管12,1
3の長さを延長するようにして配設される。
The branch pipes 12 to 14 have their respective branch points 12
a to 14a are spaced apart from each other at predetermined intervals in the duct length direction, while the intermediate portion 14b of the branch pipe 14 located most downstream is located at the intermediate portion 12 of the other branch pipes 12 and 13.
b, 13b approach the other branch pipes 12, 1.
It is arranged so as to extend the length of 3.

更に、各枝管12〜14は慣性過給用ダクト
5,6より細くなるように所定の管径に設定され
る。
Further, each of the branch pipes 12 to 14 is set to have a predetermined pipe diameter so as to be thinner than the inertial supercharging ducts 5 and 6.

また、上記各枝管12〜14の中間部12b〜
14bに、当該枝管12A〜12Cを機関の運転
状態に応じて連通、遮断する開閉弁15A〜15
Cがそれぞれ介装される。
Further, the intermediate portions 12b to 12b of each of the branch pipes 12 to 14 are
14b, on-off valves 15A to 15 that connect and shut off the branch pipes 12A to 12C depending on the operating state of the engine.
C is interposed respectively.

上記開閉弁15A〜15Cは、機関回転数を検
出するセンサ等からの検出信号に応動し、回転数
が増大するに伴つて上流側に位置した開閉弁15
Aから下流側に位置した開閉弁15Cへと順次開
弁作動するように構成される。
The on-off valves 15A to 15C respond to a detection signal from a sensor that detects the engine speed, and as the engine speed increases, the on-off valve 15 is positioned on the upstream side.
It is configured to sequentially open the on-off valve 15C located downstream from A.

その他の構成は第1図と同様なので、第1図と
同一部材には同一符号を付して詳しい説明は省略
する。
The rest of the structure is the same as in FIG. 1, so the same members as in FIG. 1 are given the same reference numerals and detailed explanations will be omitted.

このように構成されるため、本実施例では上述
した開閉弁15A〜15Cの開閉作動により、吸
気圧力振動の周期を決定する吸気通路の合流点が
4箇所において可変となる。
Because of this configuration, in this embodiment, the confluence points of the intake passages that determine the period of intake pressure vibration can be varied at four locations by opening and closing the on-off valves 15A to 15C described above.

つまり、開閉弁15A〜15Cがすべて閉じら
れた場合の上流側集合室7と、開閉弁15Aが開
かれて開閉弁15B及び15Cが閉じられた場合
の枝管12と、開閉弁15Bが開かれて開閉弁1
5Cが閉じられた場合(この時、開閉弁15Aは
どちらでも良い)の枝管13と、開閉弁15Cが
開かれた場合(この時、開閉弁15A及び15B
はどちらでも良い)の枝管14の4箇所である。
In other words, the upstream gathering chamber 7 when all on-off valves 15A to 15C are closed, the branch pipe 12 when on-off valve 15A is opened and on-off valves 15B and 15C are closed, and the on-off valve 15B is opened. Open/close valve 1
5C is closed (at this time, the on-off valve 15A may be either one), and when the on-off valve 15C is opened (at this time, the on-off valves 15A and 15B are
are the four locations of the branch pipe 14 (whichever is acceptable).

そして、上述したような開閉弁15A〜15C
の開閉制御により、その有効な合流点は機関回転
数が増大するに伴つて下流側(即ち、流路長を短
縮する方向)に切換移動される。
And the on-off valves 15A to 15C as described above.
By controlling the opening and closing of the flow path, the effective merging point is switched and moved downstream (in other words, in the direction of shortening the flow path length) as the engine speed increases.

従つて、上述した各合流点の取付位置(管径に
よつて決まる容積も含む)を機関回転数により変
化する吸気弁開閉サイクルに対応して順次設定す
れば、第5図に示すように機関の全速度域に亘つ
て良好な慣性過給作用が得られ、これに伴つて吸
気充填効率を向上できるので機関性能特に出力性
能を大巾に改善できる。
Therefore, if the mounting positions of the above-mentioned merging points (including the volume determined by the pipe diameter) are set sequentially in accordance with the intake valve opening/closing cycle that changes depending on the engine speed, the engine will be as shown in Fig. 5. A good inertial supercharging effect can be obtained over the entire speed range, and since the intake air filling efficiency can be improved accordingly, the engine performance, especially the output performance, can be greatly improved.

つまり、従来例では第2図に示したように、吸
気圧力振動の周期と吸気弁開閉周期とが最も良好
な慣性過給の行なえるようにマツチングした極大
点C,Dが二個であつたのが、本実施例では第5
図のように、従来例と変わらない実用回転数域内
に四個の極大点C,D,E,Fを有した吸気充填
効率特性となるのである。
In other words, in the conventional example, as shown in Fig. 2, there were two maximum points C and D where the cycle of intake pressure vibration and the intake valve opening/closing cycle were matched to achieve the best inertial supercharging. In this example, the fifth
As shown in the figure, the intake air filling efficiency characteristic has four maximum points C, D, E, and F within the practical rotational speed range, which is the same as in the conventional example.

また、本実施例では複数の枝管12,13の長
さを延長するなどして、開閉弁15A〜15Cが
介装される中間部12b〜12cを一箇所に近接
して配設するようにしたので、上記開閉弁15A
〜15Cを一個のアクチユエータで集中制御する
ことが可能となり、コスト、スペース及び信頼性
の面で有効な吸気装置が実現されるという利点が
ある。
In addition, in this embodiment, the lengths of the plurality of branch pipes 12 and 13 are extended so that the intermediate portions 12b to 12c, in which the on-off valves 15A to 15C are interposed, are arranged close to one location. Therefore, the above on-off valve 15A
-15C can be centrally controlled with a single actuator, which has the advantage of realizing an effective intake device in terms of cost, space, and reliability.

つまり、枝管12〜14の中間部12b〜12
cを近接しない場合において、離間した位置にあ
る開閉弁15A〜15Cの各々にアクチユエータ
を設置するかまたは一個のアクチユエータにより
複数の開閉弁15A〜15Cを遠隔作動させるな
どして、装置をむやみに繁雑化することが回避さ
れるのである。
That is, the intermediate portions 12b to 12 of the branch pipes 12 to 14
If the on-off valves 15A to 15C are not close to each other, the device may be unnecessarily complicated by installing an actuator for each of the on-off valves 15A to 15C located at a distance, or by remotely operating a plurality of on-off valves 15A to 15C with one actuator. This avoids the possibility of

以上説明したようにこの考案によれば、すくな
くても二本の慣性過給用ダクトを相互に連通する
枝管を、その各々の分岐点をダクト長さ方向に離
間する一方、最も下流に位置した枝管の中間部に
他の枝管の中間部が近接するまで当該他の枝管の
長さを延長するようにして複数設け、これら枝管
の中間部に当該枝管を機関の運転状態に応じて連
通、遮断する開閉弁をそれぞれ設けるようにした
ので、吸気通路の合流点を機関の運転状態に応じ
て多段的に可変にして機関の全速度域に亘つてフ
ルに慣性過給作用が得られる一方で、上記複数の
開閉弁の集中制御を可能にしてコスト、スペース
及び信頼性の面で有効な吸気装置を提供できると
いう効果が得られる。
As explained above, according to this invention, the branch pipes that interconnect at least two inertial supercharging ducts are separated from each other in the length direction of the ducts, and the branch pipes are located at the most downstream position. A plurality of branch pipes are provided so that the length of the other branch pipes is extended until the middle part of the branch pipe is close to the middle part of the branch pipe, and the branch pipe is connected to the middle part of these branch pipes in accordance with the operating state of the engine. Since we have provided on-off valves that open and shut off communication depending on the engine speed, the confluence point of the intake passage can be varied in multiple stages depending on the engine operating condition, ensuring full inertial supercharging over the entire engine speed range. At the same time, it is possible to centrally control the plurality of on-off valves, thereby providing an effective intake device in terms of cost, space, and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第3図は異なつた従来例の概略構成
図で、第2図は第1図の吸気充填効率特性を示す
説明図である。第4図はこの考案の実施例の概略
構成図で、第5図はその吸気充填効率特性を示す
説明図である。 1……吸気マニホールド、3A,3B……集合
室、5,6……慣性過給用ダクト、7……上流側
集合室、12〜14……枝管、12a〜14a…
…分岐点、12b〜14b……中間部、15A〜
15C……開閉弁。
1 and 3 are schematic configuration diagrams of different conventional examples, and FIG. 2 is an explanatory diagram showing the intake air filling efficiency characteristics of FIG. 1. FIG. 4 is a schematic configuration diagram of an embodiment of this invention, and FIG. 5 is an explanatory diagram showing its intake air filling efficiency characteristics. 1... Intake manifold, 3A, 3B... Collection chamber, 5, 6... Inertia supercharging duct, 7... Upstream collection chamber, 12-14... Branch pipe, 12a-14a...
... Branching point, 12b-14b ... Middle part, 15A-
15C...Opening/closing valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 各気筒に接続される吸気通路を等間隔爆発とな
るように独立して集合するすくなくても二本の慣
性過給用ダクトを設け、これら両ダクトの合流点
の下流に位置して両ダクトを相互に連通する枝管
を、その各々の分岐点がダクト長さ方向に所定の
間隔をおいて離間する一方、最も下流に位置した
枝管の中間部に他の枝管の中間部が近接するまで
当該他の枝管の長さを延長するようにして複数設
け、これら枝管の中間部に当該枝管を機関の運転
状態に応じて連通、遮断する開閉弁をそれぞれ設
けたことを特徴とする多気筒内燃機関の吸気装
置。
At least two inertial supercharging ducts are provided that are assembled independently so that the intake passages connected to each cylinder are evenly spaced. Branch pipes that communicate with each other are spaced apart at predetermined intervals in the length direction of the duct, while the middle parts of other branch pipes are close to the middle part of the branch pipe located most downstream. A plurality of branch pipes are provided so as to extend the length of the other branch pipes, and an on-off valve is provided in the middle of each of these branch pipes to communicate or shut off the branch pipes depending on the operating state of the engine. Intake system for multi-cylinder internal combustion engine.
JP18438382U 1982-12-07 1982-12-07 Intake system for multi-cylinder internal combustion engine Granted JPS5988222U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18438382U JPS5988222U (en) 1982-12-07 1982-12-07 Intake system for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18438382U JPS5988222U (en) 1982-12-07 1982-12-07 Intake system for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5988222U JPS5988222U (en) 1984-06-14
JPS638814Y2 true JPS638814Y2 (en) 1988-03-16

Family

ID=30398808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18438382U Granted JPS5988222U (en) 1982-12-07 1982-12-07 Intake system for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5988222U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2820411B2 (en) * 1988-05-02 1998-11-05 マツダ株式会社 Engine intake system

Also Published As

Publication number Publication date
JPS5988222U (en) 1984-06-14

Similar Documents

Publication Publication Date Title
US6349541B1 (en) Exhaust silencer for an internal combustion engine and the method of operation
JPS6014169B2 (en) Intake system for multi-cylinder engines
JPH0192518A (en) Engine intake-air device
JPS6263127A (en) Suction device for engine
JPH0543871B2 (en)
US5080051A (en) Intake system for engine
JPS638814Y2 (en)
JPS638815Y2 (en)
JP3101020B2 (en) Multi-cylinder engine intake system
JPH04136420A (en) Intake device of engine
JPH0320496Y2 (en)
JPH0730698B2 (en) Multi-cylinder engine intake system
JPS59173520A (en) Suction system for maltiple cylinder internal-combustion engine
JP2782604B2 (en) Multi-cylinder engine intake system
JPS6113708Y2 (en)
JP3115078B2 (en) Engine intake system
JPS5924822Y2 (en) Internal combustion engine intake system
JPH02108818A (en) Air intake device for engine
JPH073175B2 (en) Engine intake system
JPH0717784Y2 (en) Intake device for multi-cylinder internal combustion engine
JPH0354318A (en) Intake device of multiple cylinder engine
JPH02136510A (en) Intake air system for engine
JPH0823293B2 (en) Engine intake system
JP2771176B2 (en) Engine intake system
JPS61157716A (en) Air intake device of multicylinder engine