JPS6113708Y2 - - Google Patents

Info

Publication number
JPS6113708Y2
JPS6113708Y2 JP16073880U JP16073880U JPS6113708Y2 JP S6113708 Y2 JPS6113708 Y2 JP S6113708Y2 JP 16073880 U JP16073880 U JP 16073880U JP 16073880 U JP16073880 U JP 16073880U JP S6113708 Y2 JPS6113708 Y2 JP S6113708Y2
Authority
JP
Japan
Prior art keywords
intake
switching valve
passages
chambers
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16073880U
Other languages
Japanese (ja)
Other versions
JPS5783232U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16073880U priority Critical patent/JPS6113708Y2/ja
Publication of JPS5783232U publication Critical patent/JPS5783232U/ja
Application granted granted Critical
Publication of JPS6113708Y2 publication Critical patent/JPS6113708Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Description

【考案の詳細な説明】 本考案は多気筒機関の共鳴過給を利用した吸気
装置に関する。
[Detailed Description of the Invention] The present invention relates to an intake system that utilizes resonance supercharging for a multi-cylinder engine.

内燃機関においては、共鳴過給(又は慣性過
給)と呼称される吸気供給方式を採用したものが
ある。
Some internal combustion engines employ an intake air supply system called resonance supercharging (or inertia supercharging).

このものは、吸気開始時吸気ポート付近に発生
した負の圧力波が吸気導入管方向に向けて吸気上
流側に伝播し、正の圧力波となつて吸気ポート方
向へ戻される吸気圧力振動が生じることを利用し
ている。
In this case, a negative pressure wave generated near the intake port at the start of intake propagates upstream toward the intake pipe, becoming a positive pressure wave and returning toward the intake port, causing intake pressure oscillations. I'm taking advantage of that.

即ち、吸気弁が閉じる寸前に正の圧力波が吸気
弁のところまで伝達されるように吸気圧力振動の
周期と吸気弁開閉サイクルの周期とをマツチング
(共鳴)させることにより正の圧力波を有した空
気が慣性によつて燃焼室に押し込まれるようにし
たものであり、該慣性による過給で吸気充填効率
を改善できる。
In other words, by matching (resonating) the period of intake pressure vibration with the period of the intake valve opening/closing cycle so that the positive pressure wave is transmitted to the intake valve just before the intake valve closes, a positive pressure wave is generated. The air is forced into the combustion chamber by inertia, and the intake air filling efficiency can be improved by supercharging by inertia.

ところで、多気筒機関においては、相互に吸気
干渉し合う気筒(吸気弁開時期が相互にオーバラ
ツプする気筒)に接続する吸気通路の合流点にお
いて、各気筒からの吸入行程を連続的に受けるた
め略一定の負圧に保持される。
By the way, in a multi-cylinder engine, the intake stroke from each cylinder is continuously received at the confluence point of the intake passages connecting the cylinders that have intake interference with each other (cylinders whose intake valve opening timings overlap with each other). Maintained at constant negative pressure.

このため、各気筒から発生する吸気負圧波は前
記合流点に達すると該合流点における一定負圧に
緩衝されると共に正圧波となつて吸気ポート方向
に戻され、吸気圧力振動は実質的に燃焼室と前記
合流点との間を往復伝播する振動となり、従つて
吸気圧力振動の共鳴周波数は燃焼室から合流点に
至る間の吸気通路部分(以下共鳴吸気通路とい
う)の寸法、形状によつて決定される。
Therefore, when the intake negative pressure waves generated from each cylinder reach the merging point, they are buffered by the constant negative pressure at the merging point and are turned into positive pressure waves and returned toward the intake port. The vibration propagates back and forth between the combustion chamber and the merging point, and the resonant frequency of the intake pressure vibration depends on the size and shape of the intake passage between the combustion chamber and the merging point (hereinafter referred to as the resonant intake passage). It is determined.

しかしながら、かかる共鳴過給方式を採用した
従来の機関においては共鳴吸気通路形状が一定で
あるため、特定の機関運転領域しか吸気弁開閉周
波数と吸気通路の共鳴周波数とを共鳴させること
ができず、良好な共鳴過給が行なえる運転領域が
限られていた。
However, in conventional engines that employ such resonant supercharging, the shape of the resonant intake passage is constant, so the intake valve opening/closing frequency and the resonant frequency of the intake passage can only resonate in a specific engine operating range. The operating range in which good resonance supercharging can be achieved is limited.

本考案はかかる従来の難点に鑑み為されたもの
で、相互に吸気干渉し合う気筒に接続された一対
の共鳴吸気通路の一部を1個の切換弁によつて画
成された2つの容積室に機関運転状態に応じた切
換弁の切換制御によつて連通、遮断制御する構成
とし、もつてコンパクトな構造にして機関の全運
転領域で良好な共鳴過給性能が得られるようにし
た共鳴過給型吸気装置を提供するものである。
The present invention was devised in view of the above-mentioned difficulties in the conventional art. The resonator chamber is configured to be connected and shut off by switching control of the switching valve according to the engine operating status, and the structure is compact, ensuring good resonant supercharging performance in all engine operating ranges. The present invention provides a supercharging type intake device.

以下に、本考案を図示した実施例に基づいて詳
細に説明する。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.

一実施例を示す第1図において、6気筒機関1
における気筒〓1〜〓6のクランク角度120゜毎
の着火順序は〓1→〓4→〓2→〓6→〓3→〓
5となつている。従つて気筒〓1,〓2及び〓3
(以下第1気筒群Aという)と気筒〓4,〓5及
び〓6(以下第2気筒群Bという)とは、夫々の
気筒群内における各気筒相互は吸気弁開時期が実
質的にオーバラツプしないが、両気筒群は相互に
吸気弁開時期がオーバラツプする気筒を対応して
有する関係にある。
In FIG. 1 showing one embodiment, a six-cylinder engine 1
The ignition order for cylinders 1 to 6 at every 120° crank angle is 1 → 4 → 2 → 6 → 3 →
5. Therefore, cylinders 〓1, 〓2 and 〓3
(hereinafter referred to as the first cylinder group A) and cylinders 4, 5, and 6 (hereinafter referred to as the second cylinder group B) are cylinders in each cylinder group whose intake valve opening timings substantially overlap. However, both cylinder groups have corresponding cylinders whose intake valve opening timings overlap with each other.

かかる機関の両気筒群A,Bに夫々吸気マニホ
ルド2A,2Bを接続し、さらに、各吸気マニホ
ルド2A,2Bを接続し、さらに、各吸気マニホ
ルド2A,2Bの集合部に接続した吸気管3A,
3Bの上流端をサージタンク4内に合流接続す
る。サージタンク4の入口には吸気導入管5を介
してエアクリーナ6が接続される。
Intake manifolds 2A and 2B are connected to both cylinder groups A and B of such an engine, respectively, and intake pipes 3A and 2B are connected to each intake manifold 2A and 2B, respectively, and further, an intake pipe 3A is connected to a gathering part of each intake manifold 2A and 2B.
The upstream end of 3B is connected to the inside of the surge tank 4. An air cleaner 6 is connected to the inlet of the surge tank 4 via an intake pipe 5.

ここに、本考案では、前記両吸気マニホルド2
A,2Bを容積室7を介して連結した構造とす
る。容積室7は球状(又は円筒状)に形成し、吸
気マニホルド2A,2Bの開口部から夫々容積室
7内の中心方向に突出する点対称状の隔壁8,9
を設けて構成する。該容積室7にはその中心に軸
支した初換弁10が介装され、該切換弁10の両
端を夫々容積室7の球状の内壁面に摺接させるこ
とによつて2つの室11,12が画成される。そ
して、機関回転速度を検出する速度センサ13か
らの信号を受けて伸縮制御されるアクチユエータ
14をレバー15を介して切換弁10の支軸10
aに連結させ、切換弁10を次のように回転切換
制御する。即ち、機関回転速度が所定値No以下
の低・中速域では切換弁10は前記隔壁8,9の
表面に当接する切換位置(実線で図示)にセツト
され、2つの室11,12が夫々、気筒群A,B
の吸気マニホルド2A,2Bに連通する。
Here, in the present invention, both the intake manifolds 2
A and 2B are connected via a volume chamber 7. The volume chamber 7 is formed into a spherical (or cylindrical) shape, and has point-symmetric partition walls 8 and 9 that protrude toward the center of the volume chamber 7 from the openings of the intake manifolds 2A and 2B, respectively.
and configure it. The volume chamber 7 is provided with an initial changeover valve 10 which is pivotally supported at the center thereof, and two chambers 11 and 12 are formed by sliding both ends of the changeover valve 10 into sliding contact with the spherical inner wall surface of the volume chamber 7, respectively. is defined. Then, the actuator 14, which is controlled to expand and contract in response to a signal from the speed sensor 13 that detects the engine rotational speed, is connected to the support shaft 10 of the switching valve 10 via the lever 15.
a, and the rotation of the switching valve 10 is controlled as follows. That is, in a low/medium speed range where the engine speed is below a predetermined value No., the switching valve 10 is set to the switching position (shown by a solid line) in which it contacts the surfaces of the partition walls 8, 9, and the two chambers 11, 12 are closed, respectively. , cylinder groups A, B
It communicates with the intake manifolds 2A and 2B.

又、機関回転速度が所定値Noを超える高速域
では切換弁10は隔壁8,9の先端に当接する切
換位置(鎖線で図示)にセツトされ、2つの室1
1,12と吸気マニホルド2A,2Bとが遮断さ
れるように切換制御する。ここで、速度センサ1
3,アクチユエータ14及びレバー15が機関運
転状態の検出に応じて切換弁10を2つの室1
1,12と対応する共鳴吸気通路としての吸気マ
ニホルド2A,2Bとを連通又は遮断する位置に
切換制御する切換制御手段を構成する。
In addition, in a high-speed range where the engine rotational speed exceeds a predetermined value No., the switching valve 10 is set to the switching position (shown by chain lines) where it contacts the tips of the partition walls 8 and 9, and the two chambers 1
1 and 12 and the intake manifolds 2A and 2B are switched so that they are shut off. Here, speed sensor 1
3. The actuator 14 and the lever 15 switch the switching valve 10 between the two chambers 1 and 1 according to the detection of the engine operating state.
1 and 12 and intake manifolds 2A and 2B as corresponding resonant intake passages are configured to switch to a position where they are communicated or disconnected.

次に作用を説明する。各気筒群A,Bにおける
共鳴吸気通路容積は前記機関の低・中速域では吸
気マニホルド2A又は2Bと吸気管3A又は3B
に室11又は12を加えた吸気通路の容積で決定
され、一方高速域では室11又は12の容積を差
し引いた吸気マニホルド2A又は2Bと吸気管3
A又は3Bとの合計容積で決定される。
Next, the action will be explained. The resonant intake passage volume in each cylinder group A, B is the intake manifold 2A or 2B and the intake pipe 3A or 3B in the low/medium speed range of the engine.
In the high speed range, the volume of the intake manifold 2A or 2B and the intake pipe 3 is determined by subtracting the volume of the chamber 11 or 12.
It is determined by the total volume of A or 3B.

このように、機関回転速度の上昇に応じて共鳴
吸気通路の容積を減少して共鳴周波数を増大でき
る結果、低・中速域と高速域とで夫々吸気弁開閉
周波数と共鳴周波数とが最も良好にマツチングす
る共鳴点をもたせることができる。従つて、機関
回転速度Nに対する吸入空気の充填効率は第2図
に示す如く低・中速度及び高速域において、前記
共鳴点に対応する極大点X,Yを有し、従来の共
鳴過給方式における極大点を1個のみ有したもの
に比較し機関の全速度域に亘つて良好な吸気充填
効率特性が得られるのである。
In this way, as the engine speed increases, the volume of the resonant intake passage can be reduced and the resonant frequency can be increased. As a result, the intake valve opening/closing frequency and the resonant frequency are the best in the low/medium speed range and the high speed range, respectively. It is possible to have a resonance point that matches the Therefore, the filling efficiency of intake air with respect to the engine rotational speed N has maximum points X and Y corresponding to the resonance points in the low, medium and high speed ranges as shown in FIG. Compared to the case where there is only one maximum point in , better intake air filling efficiency characteristics can be obtained over the entire speed range of the engine.

第3図は容積室の変形態様を示し、円筒状容積
室7内に介装された切換弁10を図示実線位置と
図示鎖線位置に切換制御することにより速度域に
応じて容積を可変制御できる。
FIG. 3 shows a modification of the volume chamber, and by controlling the switching valve 10 installed in the cylindrical volume chamber 7 to the position shown by the solid line and the position shown by the chain line, the volume can be variably controlled according to the speed range. .

以下説明したように、本考案によれば一対の共
鳴吸気通路の一部を切換弁によつて画成された2
つの容積室に機関運転状態に応じて連通、遮断制
御する構成によつて機関運転領域の全域に亘つて
良好な共鳴過給が行なえ、吸気充填効率特性が改
善され、機関性能を大幅に高めることができ、特
に出力アツプ、排気改善対策としての効果が著し
い。
As explained below, according to the present invention, a portion of a pair of resonant intake passages is defined by a switching valve.
With a configuration in which two volume chambers are controlled to communicate and shut off depending on the engine operating status, good resonant supercharging can be performed over the entire engine operating range, improving intake air filling efficiency characteristics and significantly increasing engine performance. It is particularly effective in increasing output and improving exhaust emissions.

又、容積室、切換弁を1個設けるだけで済みコ
ンパクトな構造に形成できる。
In addition, only one volume chamber and one switching valve are required, resulting in a compact structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の第1実施例を示す全体構成
図、第2図は同上実施例における吸気充填効率特
性を示すグラフ、第3図は本考案の第2の実施例
を示す要部断面図である。 1……6気筒機関、2A,2B……吸気マニホ
ルド、3A,3B……吸気管、7……容積室、
8,9……隔壁、10……切換弁、11,12…
…室、13……速度センサ、14……アクチユエ
ータ、15……レバー。
Fig. 1 is an overall configuration diagram showing a first embodiment of the present invention, Fig. 2 is a graph showing intake air filling efficiency characteristics in the same embodiment, and Fig. 3 is a cross section of main parts showing a second embodiment of the present invention. It is a diagram. 1... 6-cylinder engine, 2A, 2B... Intake manifold, 3A, 3B... Intake pipe, 7... Volume chamber,
8, 9... Bulkhead, 10... Switching valve, 11, 12...
...chamber, 13...speed sensor, 14...actuator, 15...lever.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気弁開時期が相互にオーバラツプする気筒に
別々に共鳴過給通路を接続した多気筒機関におい
て、一対の共鳴過給通路の途中を夫々球状又は円
筒状に形成される容積室の2つの開口に接続する
と共に、前記容積室内壁に沿つて摺動回転自由に
中心部が軸支装着されて容積室内を2室に画成す
る切換弁を設け、かつ、相異なる機関運転状態の
検出に応じて前記切換弁を、前記2室と対応する
2つの共鳴吸気通路とを連通させる位置と、前記
2室と2つの共鳴吸気通路との連通を遮断する位
置とに切り換える切換制御手断を設けたことを特
徴とする多気筒機関の共鳴過給型吸気装置。
In a multi-cylinder engine in which resonant supercharging passages are connected separately to cylinders whose intake valve opening timings overlap with each other, a pair of resonant supercharging passages is connected midway through two openings of a volume chamber each formed in a spherical or cylindrical shape. In addition to connecting, a switching valve is provided whose central portion is pivotally supported to freely slide and rotate along the wall of the volumetric chamber to divide the volumetric chamber into two chambers, and the switching valve is connected to A switching control switch is provided for switching the switching valve between a position where the two chambers communicate with the two corresponding resonance intake passages and a position where communication between the two chambers and the two resonance intake passages is cut off. A resonant supercharging intake system for multi-cylinder engines featuring:
JP16073880U 1980-11-12 1980-11-12 Expired JPS6113708Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16073880U JPS6113708Y2 (en) 1980-11-12 1980-11-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16073880U JPS6113708Y2 (en) 1980-11-12 1980-11-12

Publications (2)

Publication Number Publication Date
JPS5783232U JPS5783232U (en) 1982-05-22
JPS6113708Y2 true JPS6113708Y2 (en) 1986-04-28

Family

ID=29519700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16073880U Expired JPS6113708Y2 (en) 1980-11-12 1980-11-12

Country Status (1)

Country Link
JP (1) JPS6113708Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998503B2 (en) * 2012-02-07 2016-09-28 マツダ株式会社 Intake and exhaust system for multi-cylinder engine
JP5998524B2 (en) * 2012-03-06 2016-09-28 マツダ株式会社 Exhaust system for multi-cylinder engine

Also Published As

Publication number Publication date
JPS5783232U (en) 1982-05-22

Similar Documents

Publication Publication Date Title
JPS61116021A (en) Engine intake-air device
JPS6113708Y2 (en)
JPS6030419Y2 (en) Resonant supercharging intake system for multi-cylinder engines
JPS60224922A (en) Suction system for multicylinder engine
JPS5924822Y2 (en) Internal combustion engine intake system
JP2563932B2 (en) Supercharged engine
JPH06280576A (en) Intake device of engine
JPH0823294B2 (en) Engine intake system
JP3624540B2 (en) Engine intake system
JPH078814Y2 (en) Engine intake and exhaust pipe structure
JPS61157716A (en) Air intake device of multicylinder engine
JPH0716031Y2 (en) Variable intake system for multi-cylinder internal combustion engine
JPH0192519A (en) Engine intake-air device
JPH0720344Y2 (en) Multi-cylinder engine intake system
JPS61201819A (en) Air intake device for engine
JPH0730911Y2 (en) Intake device for V-type internal combustion engine
JP2583529B2 (en) Engine intake system
JPH0740661Y2 (en) Engine resonance supercharger
JPH10205401A (en) Intake manifold with resonator
JP2750122B2 (en) Engine intake system
JPH01182525A (en) Valve timing control device for engine
JPH0354318A (en) Intake device of multiple cylinder engine
JPH10196373A (en) Variable intake mechanism
JPS60195328A (en) Suction device for engine
JPH03286130A (en) Air intake device for multiple cylinder engine