JPS638177B2 - - Google Patents

Info

Publication number
JPS638177B2
JPS638177B2 JP14406278A JP14406278A JPS638177B2 JP S638177 B2 JPS638177 B2 JP S638177B2 JP 14406278 A JP14406278 A JP 14406278A JP 14406278 A JP14406278 A JP 14406278A JP S638177 B2 JPS638177 B2 JP S638177B2
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
alloys
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14406278A
Other languages
Japanese (ja)
Other versions
JPS5573842A (en
Inventor
Saburo Wakita
Akihiko Sakonooka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP14406278A priority Critical patent/JPS5573842A/en
Publication of JPS5573842A publication Critical patent/JPS5573842A/en
Publication of JPS638177B2 publication Critical patent/JPS638177B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた耐溶融亜鉛侵食性を有
し、したがつて溶融亜鉛メツキ装置において、溶
融亜鉛に直接さらされる構造部材の製造に用いる
のに適したCo基合金に関するものである。 従来、溶融亜鉛メツキ装置において、溶融亜鉛
に直接さらされる構造部材、すなわち浴槽、シン
クロール、およびスナウトなどの製造にはAGス
チール、ステンレス鋼(SUS304,316)、および
ステライトなどの合金が使用されているが、浴槽
に使用されているAGスチールは耐溶融亜鉛侵食
性(以下耐侵食性と略記する)がきわめて悪く、
またシンクロール軸受の製造に使用されているス
テンレス鋼も同様に耐侵食性に劣るために比較的
耐侵食性のよいステライトを盛金して使用しなけ
ればならないことから高価につき、さらに、例え
ばステライト25(標準組成;Co:52%、Cr:20
%、W:15%、Ni:10%、以上重量%)に見ら
れるように、ステライトの使用もWの含有量が高
いために高価につくばかりでなく、Niを含有す
るために十分な耐侵食性を示さないのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、合金成分としてWおよびNiを含有せずに、
耐侵食性のすぐれた合金を開発すべく研究を行な
つた結果、重量%で(以下%は重量%を示す)、 C:0.01〜0.5%未満、 Si:0.05〜2%、 Mn:0.05〜2%、 Fe:15%超〜30%、 Cr:15〜35%、 Coおよび不可避不純物:残り、 からなる組成を有するCo基合金は、合金成分と
してWを含有しないので比較的安価である上に、
すぐれた耐侵食性を示し、したがつて、このCo
基合金を溶融亜鉛メツキ装置の構造部材として用
いると著しく長期に亘つてすぐれた性能を発揮す
るという知見を得たのである。 この発明は、上記知見に基いてなされたもので
あつて、以下に成分組成範囲を上記の通りに限定
した理由を説明する。 (a) C C成分には、合金の強度を向上させる作用があ
るが、その含有量が0.01%未満では所望の強度を
確保することができず、一方0.5%以上含有させ
ると、合金の加工性が低下するようになることか
ら、その含有量を0.01〜0.5%未満と定めた。 (b) SiおよびMn これらの成分には、脱酸および脱硫作用がある
ので、合金の溶製には不可欠の成分であるが、そ
の含有量がそれぞれ0.05%未満では脱酸および脱
硫作用が不十分であり、一方それぞれ2%を越え
て含有させても前記作用は飽和するばかりでな
く、脆化することから、その含有量を、それぞれ
Si:0.05〜2%、Mn:0.05〜2%と定めた。 (c) Fe Fe成分には、Coとの共存において合金の耐侵
食性を著しく向上させる作用があるが、その含有
量が15%以下では所望のすぐれた耐侵食性を確保
することができず、一方その含有量が30%を越え
ると耐侵食性に低下傾向が現われるようになるこ
とから、その含有量を15%超〜30%と定めた。 (d) Cr Cr成分には、合金の強度を向上させる作用が
あるが、その含有量が15%未満では所望の強度を
確保することができず、一方35%を越えて含有さ
せると合金の耐侵食性が低下するようになること
から、その含有量を15〜35%と定めた。 (e) Co Co成分には、上記の通りFeとの共存において
合金の耐侵食性を著しく改善する作用があるが、
その含有量が45%未満では所望の耐侵食性を確保
するのが難かしく、一方60%を越えて含有させて
もより一層の向上効果が得られず、コスト高の原
因ともなることから、その含有量を45〜60%とす
るのが望ましい。 特にNiは、耐侵食性を劣化させる成分であり、
しかもCo中に若干含有すると共に、合金製造工
程中に多少の混入を避けることができない成分で
あるが、3%までの含有では合金に何らの悪影響
も及ぼさないことから、不純物としてのNiの含
有量は3%以下にするのが望ましい。 ついで、この発明のCo基合金を実施例により
比較合金および従来合金と対比しながら説明す
る。 実施例 高周波炉を使用し、通常の大気溶解法により、
それぞれ第1表に示される成分組成をもつた本発
明合金1〜12、比較合金1〜6、および従来合金
1〜3を溶製し、下面直径:75mmφ×上面直径:
65mmφ×高さ:150mmの寸法をもつたインゴツト
に鋳造した後、熱間鍛造にて直径:12mmφの丸棒
とし、ついでこれより直径:10mmφ×長さ:30mm
の寸法をもつた耐侵食性試験用試験片と、引張り
試験用JIS5号試験片を削り出した。 なお、比較合金1〜6は、構成成分のうちのい
ずれかの成分(第1表に※印を付した成分)がこ
の発明の範囲から外れた組成をもつものであり、
また従来合金1はAGスチール、従来合金2はス
テンレス鋼(JIS・SUS304)、さらに従来合金3
はステライト25にそれぞれ相当する成
The present invention relates to a Co-based alloy that has excellent resistance to molten zinc erosion and is therefore suitable for use in the manufacture of structural members directly exposed to molten zinc in hot-dip galvanizing equipment. Traditionally, in hot-dip galvanizing equipment, alloys such as AG steel, stainless steel (SUS304, 316), and Stellite are used to manufacture structural components that are directly exposed to molten zinc, such as bathtubs, sink rolls, and snouts. However, the AG steel used in bathtubs has extremely poor corrosion resistance against molten zinc (hereinafter abbreviated as corrosion resistance).
In addition, the stainless steel used in the manufacture of sink roll bearings similarly has poor corrosion resistance, so it is expensive because it must be filled with stellite, which has relatively good corrosion resistance. 25 (standard composition; Co: 52%, Cr: 20
%, W: 15%, Ni: 10%, or more by weight), the use of stellite is not only expensive due to its high W content, but also requires sufficient durability because it contains Ni. Currently, it does not show any erosive properties. Therefore, from the above-mentioned point of view, the present inventors have developed an alloy that does not contain W and Ni as alloy components.
As a result of research to develop an alloy with excellent corrosion resistance, we found that in weight percent (hereinafter % indicates weight percent), C: 0.01 to less than 0.5%, Si: 0.05 to 2%, Mn: 0.05 to less. 2%, Fe: more than 15% to 30%, Cr: 15 to 35%, Co and unavoidable impurities: the rest. Co-based alloys are relatively inexpensive because they do not contain W as an alloy component. To,
This Co
It was discovered that when the base alloy is used as a structural member of hot-dip galvanizing equipment, it exhibits excellent performance over a long period of time. This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) C The C component has the effect of improving the strength of the alloy, but if its content is less than 0.01%, the desired strength cannot be secured, while if it is contained more than 0.5%, the alloy will not be processed. The content was set at 0.01% to less than 0.5%, as the properties of the material would decrease. (b) Si and Mn These components have deoxidizing and desulfurizing effects, so they are essential components for melting alloys. However, if their content is less than 0.05% each, the deoxidizing and desulfurizing effects will not work. On the other hand, if the content exceeds 2% of each, the above-mentioned effect will not only be saturated, but it will also become brittle.
Si: 0.05-2%, Mn: 0.05-2%. (c) Fe The Fe component has the effect of significantly improving the corrosion resistance of the alloy when coexisting with Co, but if its content is less than 15%, the desired excellent corrosion resistance cannot be achieved. On the other hand, if the content exceeds 30%, corrosion resistance tends to decrease, so the content was set at more than 15% to 30%. (d) Cr The Cr component has the effect of improving the strength of the alloy, but if the content is less than 15%, the desired strength cannot be secured, while if the content exceeds 35%, the strength of the alloy will increase. The content was set at 15 to 35% since the corrosion resistance decreased. (e) Co As mentioned above, the Co component has the effect of significantly improving the corrosion resistance of the alloy when coexisting with Fe.
If the content is less than 45%, it is difficult to secure the desired corrosion resistance, while if the content exceeds 60%, no further improvement effect can be obtained and it may cause high costs. It is desirable that the content be 45-60%. In particular, Ni is a component that deteriorates corrosion resistance.
In addition, although it is a component that is contained in a small amount in Co and cannot be avoided to some extent during the alloy manufacturing process, it does not have any adverse effects on the alloy if it is contained up to 3%, so the inclusion of Ni as an impurity is The amount is preferably 3% or less. Next, the Co-based alloy of the present invention will be explained with reference to examples and in comparison with comparative alloys and conventional alloys. Example Using a high frequency furnace and using the normal atmospheric melting method,
Inventive alloys 1 to 12, comparative alloys 1 to 6, and conventional alloys 1 to 3, each having the composition shown in Table 1, were melted, and the lower surface diameter: 75 mmφ x upper surface diameter:
After casting into an ingot with dimensions of 65mmφ x height: 150mm, it is hot forged into a round bar with a diameter of 12mmφ, which is then made into a round bar with a diameter of 10mmφ x length: 30mm.
A test piece for erosion resistance test and a JIS No. 5 test piece for tensile test were cut out with dimensions of . In addition, Comparative Alloys 1 to 6 have a composition in which one of the constituent components (components marked with * in Table 1) is outside the scope of the present invention,
In addition, conventional alloy 1 is AG steel, conventional alloy 2 is stainless steel (JIS/SUS304), and conventional alloy 3 is stainless steel (JIS/SUS304).
are respectively equivalent to Stellite 25.

【表】【table】

【表】 分組成をもつものである。 つぎに、上記試験片を用いて、機械的性質を測
定すると共に、耐侵食性試験を行なつた。これら
の結果を第1表に合せて示した。 耐侵食性試験は、温度:450℃に加熱した溶融
亜鉛中に上記試験片を125時間侵漬した後引上げ、
表面よりの侵食深さを測定することによつて行な
つた。なお、第1表には前記侵食深さを、試験期
間:1年間に換算した値で示した。 一般に、この種の溶融亜鉛に直接さらされる構
造用部材の製造に用いられる合金としては、引張
り強さ:80Kg/mm2以上、伸び:10%以上、侵食深
さ:2.0mm/年以下の条件を満足する性質をもつ
ことが望ましいとされているが、第1表に示され
るように、本発明合金1〜12は、いずれも引張り
強さ:約80〜97Kg/mm2、伸び:14〜30%のすぐれ
た機械的性質をもつと共に、侵食深さ:約0.8〜
1.6mm/年を示すにすぎず、すぐれた耐侵食性を
もつことが明らかである。 これに対して、本発明範囲から外れた成分組成
を有する比較合金1〜6においては、引張り強
さ、伸び、および侵食深さのいずれかが、上記の
望ましい条件を満足しないものとなつている。 また、従来合金1,2は、伸びが著しく高いも
のの、引張り強さおよび侵食深さの点で上記条件
を満足せず、さらに従来合金3は、機械的性質に
すぐれているが、耐侵食性については劣つたもの
となつている。 上述のように、この発明の合金は、溶融亜鉛に
直接さらされる構造部材に要求される特性、すな
わち引張り強さ:80Kg/mm2以上、伸び:10%以
上、侵食深さ:2.0mm/年以下の条件を満足する
特性を具備しており、したがつて、溶融亜鉛メツ
キ装置におけるシンクロール、浴槽、およびスナ
ウトなどの製造に用いた場合にすぐれた性能を発
揮するのである。
[Table] It has a partial composition. Next, using the above test piece, mechanical properties were measured and an erosion resistance test was conducted. These results are also shown in Table 1. The corrosion resistance test was performed by immersing the above specimen in molten zinc heated to 450°C for 125 hours and then pulling it out.
This was done by measuring the depth of erosion from the surface. In addition, Table 1 shows the erosion depth as a value converted to a test period of one year. In general, alloys used to manufacture structural members that are directly exposed to this type of molten zinc have conditions such as tensile strength: 80 Kg/mm 2 or more, elongation: 10% or more, and erosion depth: 2.0 mm/year or less. However, as shown in Table 1, alloys 1 to 12 of the present invention all have a tensile strength of approximately 80 to 97 Kg/mm 2 and an elongation of 14 to 12. Excellent mechanical properties of 30% and erosion depth: approx. 0.8~
It shows only 1.6 mm/year, which clearly shows that it has excellent erosion resistance. On the other hand, in Comparative Alloys 1 to 6, which have compositions outside the range of the present invention, any of the tensile strength, elongation, and erosion depth do not satisfy the above-mentioned desirable conditions. . In addition, although conventional alloys 1 and 2 have extremely high elongation, they do not satisfy the above conditions in terms of tensile strength and erosion depth, and conventional alloy 3 has excellent mechanical properties but has poor erosion resistance. It has become inferior in terms of As mentioned above, the alloy of this invention meets the properties required for structural members directly exposed to molten zinc, namely tensile strength: 80 Kg/ mm2 or more, elongation: 10% or more, and erosion depth: 2.0 mm/year. It has characteristics that satisfy the following conditions, and therefore exhibits excellent performance when used in the manufacture of sink rolls, bathtubs, snouts, etc. in hot-dip galvanizing equipment.

Claims (1)

【特許請求の範囲】 1 C:0.01〜0.5%未満、 Si:0.05〜2%、 Mn:0.05〜2%、 Fe:15%超〜30%、 Cr:15〜35%、 Coおよび不可避不純物:残り、 からなる組成(以上重量%)を有することを特徴
とする溶融亜鉛メツキ装置の構造部材用耐溶融亜
鉛侵食性Co基合金。
[Claims] 1 C: 0.01 to less than 0.5%, Si: 0.05 to 2%, Mn: 0.05 to 2%, Fe: more than 15% to 30%, Cr: 15 to 35%, Co and inevitable impurities: A molten zinc corrosion-resistant Co-based alloy for structural members of hot-dip galvanizing equipment, characterized in that it has a composition (by weight % or more) consisting of the following:
JP14406278A 1978-11-24 1978-11-24 Co-base alloy with superior molten zinc erosion resistance Granted JPS5573842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14406278A JPS5573842A (en) 1978-11-24 1978-11-24 Co-base alloy with superior molten zinc erosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14406278A JPS5573842A (en) 1978-11-24 1978-11-24 Co-base alloy with superior molten zinc erosion resistance

Publications (2)

Publication Number Publication Date
JPS5573842A JPS5573842A (en) 1980-06-03
JPS638177B2 true JPS638177B2 (en) 1988-02-22

Family

ID=15353411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14406278A Granted JPS5573842A (en) 1978-11-24 1978-11-24 Co-base alloy with superior molten zinc erosion resistance

Country Status (1)

Country Link
JP (1) JPS5573842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007797A1 (en) * 2005-07-13 2007-01-18 Mitsubishi Materials Corporation Cobalt- or iron-base alloy excellent in the resistance to corrosion from molten lead-free solder and members of lead-free soldering apparatus which are made of the alloy
JP2007023315A (en) * 2005-07-13 2007-02-01 Mitsubishi Materials Corp Co-BASED ALLOY EXCELLENT IN EROSION RESISTANCE TO MOLTEN LEAD-FREE SOLDER, AND LEAD-FREE-SOLDERING DEVICE MEMBER MADE FROM THE CO-BASED ALLOY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007797A1 (en) * 2005-07-13 2007-01-18 Mitsubishi Materials Corporation Cobalt- or iron-base alloy excellent in the resistance to corrosion from molten lead-free solder and members of lead-free soldering apparatus which are made of the alloy
JP2007023315A (en) * 2005-07-13 2007-02-01 Mitsubishi Materials Corp Co-BASED ALLOY EXCELLENT IN EROSION RESISTANCE TO MOLTEN LEAD-FREE SOLDER, AND LEAD-FREE-SOLDERING DEVICE MEMBER MADE FROM THE CO-BASED ALLOY

Also Published As

Publication number Publication date
JPS5573842A (en) 1980-06-03

Similar Documents

Publication Publication Date Title
JPS5929105B2 (en) Fe-based alloy with excellent molten zinc corrosion resistance
JPS625976B2 (en)
JPH0321622B2 (en)
US2445868A (en) Copper base alloys
JP2569712B2 (en) Ti-A ▲ -based metal compound cast alloy with excellent high temperature oxidation resistance
JPS638177B2 (en)
JP4237072B2 (en) Ferritic stainless steel sheet with excellent corrosion resistance and workability
FR2774099A1 (en) MARAGING STEEL WITHOUT COBALT
JPS6043901B2 (en) Non-heat treatment type Al-Mg alloy
JPS6144135B2 (en)
JP2817266B2 (en) High toughness stainless steel and method for producing the same
JP2936968B2 (en) High strength titanium alloy with excellent cold workability and weldability
JPH0445239A (en) Alloy for spark plug
JPH0372698B2 (en)
JPS6144128B2 (en)
JPS62260033A (en) Corrosion-resisting ni-base alloy wire rod combining high strength with high hardness
JPS60224732A (en) Heat resistant co-base alloy
JP2797914B2 (en) High strength titanium alloy with excellent cold workability and weldability
JPH0372699B2 (en)
JPH06264166A (en) Copper-base alloy excellent in corrosion resistance, machinability and workability
JPH0649564A (en) Copper-base alloy excellent in machinability and corrosion resistance
JPH07316699A (en) Corrosion-resistant nitride-dispersed nickel base alloy having high hardness and strength
JPH0243815B2 (en) GASUTAABINYOKOKYODOC0KITAINETSUGOKIN
JPH02228450A (en) Casting alloy
JPH06279901A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property