JPS6380559A - Bipolar cmos semiconductor device - Google Patents

Bipolar cmos semiconductor device

Info

Publication number
JPS6380559A
JPS6380559A JP61225613A JP22561386A JPS6380559A JP S6380559 A JPS6380559 A JP S6380559A JP 61225613 A JP61225613 A JP 61225613A JP 22561386 A JP22561386 A JP 22561386A JP S6380559 A JPS6380559 A JP S6380559A
Authority
JP
Japan
Prior art keywords
layer
type
channel mosfet
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61225613A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shigeta
善弘 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61225613A priority Critical patent/JPS6380559A/en
Publication of JPS6380559A publication Critical patent/JPS6380559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a latchup phenomenon by providing other conductivity type isolation layer which passes one conductivity type layer between a p- channel MOSFET and a C-channel MOSFET of CMOS unit. CONSTITUTION:After an n<+> type buried layer 2 is provided partly on a p-type Si substrate 1, an n<-> type epitaxial layer 3 is grown on the substrate 1. When a bipolar unit is separated by a p<+> type diffused layer 4, a p<+> type diffused layer 41 which arrives at the substrate 1 is formed between regions formed at an n-channel MOSFET and a p-channel MOSFET of a CMOS unit, and a p<-> type well layer 5 is formed by ion implanting to an n-channel MOSFET. Then, a p-type base layer 6, an n<+> type emitter layer 7 and an n<+> type collector electrode layer 8 are provided on the bipolar unit, an n<+> type source/drain diffused layer 9 is formed in the layer 5, and a p<+> type source/drain diffused layer 10 is formed in the layer 3. Further, a base electrode 12, an emitter electrode 13 and a collector electrode 14 are provided in an n-p-n transistor 21, a gate electrode 15 is provided on an oxide film 11 between the source and the drain, and electrodes 16, 17 are provided at the source/drain 9, 10. Thus, a latchup due to a thyristor effect can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、一つの半導体基板上にバイポーラトランジス
タと0MO3を共存させたバイポーラ・CMOS半導体
装置に関する。
The present invention relates to a bipolar CMOS semiconductor device in which a bipolar transistor and an OMO3 coexist on one semiconductor substrate.

【従来技術とその問題点】[Prior art and its problems]

一つの半導体基板上にバイポーラトランジスタと0MO
3を共存させる場合、従来は第2図の工程図に示す様に
p型St基板1上の一部にn゛埋込層2を設け(図a)
、次いで基板1上にn−層3をエピタキシャル成長させ
、n−層3の表面よりp基板1に到達するp型アイソレ
ーシッン拡散層4を設け、各々のバイポーラトランジス
タをPN接合により電気的に絶縁し、さらに、nチャネ
ルMOSFET部においては、イオン打込によりp−ウ
ェル層5を設ける (図b)、バイポーラ部においては
、p′″ベース拡散層6.n゛エミッタ拡散層7および
n0コレクタ電極層8を設ける一方、CMOS部におい
てはp−ウェル層5の領域中にn゛ソース/ドレイン拡
散層9、他の部分にp。 ソース/ドレイン拡散層10を設け (図c)、つづい
て表面酸化膜11の所定の位置の窓を明け、ベース層6
.エミッタ層7.コレクタ層8にそれぞれベース電極1
2.エミンタ電m 13. コレクタ電橿14を被着し
、CMOS部の各ソース/ドレイン間の表面に酸化膜1
1を介してゲート電極15を設けるとともに、ソース/
ドレイン9,10にソース/ドレ。 イン電極16.17を被着することにより、npnバイ
ポーラトランジスタ21.nチャネルMOSFET22
.  pチャネルMOSFET23よりなるバイポーラ
CM’O3・半導体装置が構成される。 しかしながら、この様な構造ではCMOS部で、第3図
にトランジスタ記号で示すように、p゛ソース/ドレイ
ン層1O−n−エピタキシャル層3−p−ウェル層5に
より寄生pnp )ランジスタ31が、またn−エピタ
キシャル層3−p−ウェル層5−n″″″ソース/ド1
42層9生npn)ランジスタ32が構成される。しか
もこの際、各々の寄生トランジスタのベースに相当する
n−エピタキシャル層3およびp−ウェル層5は、耐圧
、スレンシュホルト電圧v7、を維持するために低い不
純物濃度を有するため、寄生トランジスタのh4が大き
く、サイリスタ効果によるラッチアンプが生じてしまう
という欠点があった。またこのランチアンプ現象は、I
C内部のほとんど電流が流れないロジック部より電流を
必要とする出力段FETに起こりやすい、それは、寄生
トランジスタのベース層の電圧降下により寄生トランジ
スタがオンしやすくなるからである。
Bipolar transistor and 0MO on one semiconductor substrate
3 to coexist, conventionally, as shown in the process diagram of Fig. 2, an n-buried layer 2 is provided on a part of the p-type St substrate 1 (Fig. a).
Next, an n-layer 3 is epitaxially grown on the substrate 1, a p-type isolating diffusion layer 4 is provided that reaches the p-substrate 1 from the surface of the n-layer 3, and each bipolar transistor is electrically insulated by a PN junction. Furthermore, in the n-channel MOSFET section, a p-well layer 5 is provided by ion implantation (Figure b), and in the bipolar section, a p'' base diffusion layer 6, an n'' emitter diffusion layer 7 and an n0 collector electrode layer 8 are provided. On the other hand, in the CMOS part, an n source/drain diffusion layer 9 is provided in the region of the p-well layer 5, and a p source/drain diffusion layer 10 is provided in other parts (Figure c), followed by a surface oxide film. Open the window at the predetermined position of layer 11 and remove the base layer 6.
.. Emitter layer 7. Base electrode 1 on each collector layer 8
2. Emintaden m 13. A collector electrode 14 is deposited, and an oxide film 1 is formed on the surface between each source/drain of the CMOS section.
A gate electrode 15 is provided via 1, and a source/
Source/drain to drains 9 and 10. By depositing the in-electrodes 16.17, the npn bipolar transistor 21. n-channel MOSFET22
.. A bipolar CM'O3 semiconductor device consisting of a p-channel MOSFET 23 is constructed. However, in such a structure, as shown by the transistor symbol in FIG. n-epitaxial layer 3-p-well layer 5-n″″″ source/de 1
A 42-layer, 9-pn) transistor 32 is constructed. Moreover, at this time, since the n-epitaxial layer 3 and the p-well layer 5, which correspond to the base of each parasitic transistor, have a low impurity concentration in order to maintain the breakdown voltage, Threnshold voltage v7, the h4 of the parasitic transistor is large, and a latch amplifier occurs due to the thyristor effect. Also, this launch amplifier phenomenon is caused by I
This problem is more likely to occur in the output stage FET which requires current than in the logic section in which almost no current flows inside C, because the parasitic transistor is more likely to turn on due to the voltage drop in the base layer of the parasitic transistor.

【発明の目的】[Purpose of the invention]

本発明は、上述の欠点を除き、CMOS部の寄生バイポ
ーラトランジスタによるランチアンプ現象を、製造の際
の工程数を増加させることなく防止したバイポーラ・C
MOS半導体装置を提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks and provides a bipolar C
The purpose is to provide a MOS semiconductor device.

【発明の要点】[Key points of the invention]

本発明は、一つの半導体基板上の一導電形の層内にその
層を貫通する他導電形のアイソレーション層を介して、
バイポーラトランジスタ部とCMOS部とが存在する半
導体装置のCMOS部のpチャネルMOSFETとnチ
ャネルMOSFETの間にアイソレーション層と同導電
形で同様に前記の一導電形の層を貫通する他導電形のア
イソレーション層を設けて両チャネルMO8FETを分
離することによって上記の目的を達成するものである。
In the present invention, an isolation layer of a different conductivity type is formed in a layer of one conductivity type on one semiconductor substrate and penetrates through that layer.
Between the p-channel MOSFET and n-channel MOSFET of the CMOS part of the semiconductor device in which the bipolar transistor part and the CMOS part exist, a layer of the other conductivity type that is of the same conductivity type as the isolation layer and that similarly penetrates the layer of the one conductivity type is formed. The above objective is achieved by providing an isolation layer to separate both channel MO8FETs.

【発明の実施例】[Embodiments of the invention]

本発明によるバイポーラ・CMOS半導体装買の一実施
例の製造工程を第1図(al〜+d)に示す、第2図と
共通の部分には同一の符号が付されている。 第1図+alは、p型S1基板l上の一部にn゛埋込1
2を設ける工程で第2図fa)に示した工程と同様であ
るが、第1図t)は基板1上にn=エピタキシャル層3
を成長させ、p″拡散層4によりバイポーラ部を分離す
る際に、同時にCMOS部のnチャネルMO8FETと
pチャネ/l/MOSFETに形成される領域の間にも
基板1に達するp゛拡散FJ41を形成し、次にnチャ
ネルMOSFET部にイオン打込によりp−ウェル層5
を設ける工程を示す。 次の第1図(C)は、第2図TCIにおけると同様にバ
イポーラ部にpベース層6.n0工ミンタ層7゜n゛コ
レクタ電fi[8を設け、CMOS部のp−ウェル層5
内にn0ソ一ス/ドレインm敗層9、エピタキシャル層
3中にp″″ソース/ドレイン拡散層10を形成する工
程を示す。 さらに第1図(dlは、第2図(dlと同様にnpnト
ランジスタ21のpベース層6.n0エミツタN7゜n
゛コレクタ電極1i8にそれぞれベース電極12゜エミ
ッタ電極13.コレクタ電極14を設け、0M08部の
各ソース・ドレイン間の酸化膜11・上にゲート電極1
5を設けると共に、ソース/ドレイン9゜10にそれぞ
れソース/ドレイン電極16.17を設ける工程で、こ
れによりバイポーラ・CMOS半導体装置が構成される
0以上がら明らかなように、このような製造工程は、第
2図に示した従来のバイポーラ・CMOS半導体装置の
製造工程と同一の工程数で実施できる。 本発明によるアイソレーション層41は、半導体集積回
路の外部出力用端子に直接接続される0M08部のみに
設けることも有効である。 【発明の効果] 本発明によれば、バイポーラ・CMOS半導体装置にお
いて、半導体層を貫通するアイソレーション層をバイポ
ーラ部とCMOS部の中間ばかりでなく、CMOS部の
nチャネルFETとpチャネルFETの間にも設けるこ
とにより、工程数を増すことなく完全に両チャネルM 
OS F E T 8N域にまたがる寄生npn)ラン
ジスタと寄生pnpトランジスタの形成が型止されるの
で、サイリスク効果によるラッチアップ防止が可能とな
る。特に、電流を必要とする出力段FETに用いると効
果は大きく、一方、製造工程を付加する必要はなく、チ
ップサイズへの影響も少ない。
The manufacturing process of an embodiment of a bipolar CMOS semiconductor device according to the present invention is shown in FIG. 1 (al to +d), in which the same parts as in FIG. 2 are given the same reference numerals. Figure 1 + al is n゛ buried 1 in a part on the p-type S1 substrate l.
The step of providing n=epitaxial layer 3 on the substrate 1 is similar to the step shown in FIG. 2 fa), but in FIG.
When the bipolar part is separated by the p'' diffusion layer 4, a p'' diffusion FJ 41 reaching the substrate 1 is also formed between the regions formed for the n-channel MO8FET and the p-channel/l/MOSFET in the CMOS section. Then, a p-well layer 5 is formed by ion implantation into the n-channel MOSFET section.
This shows the process of providing. Next, in FIG. 1(C), a p base layer 6. n0 processing layer 7゜n゛ collector voltage fi[8 is provided, p-well layer 5 of CMOS section
The process of forming an n0 source/drain layer 9 in the epitaxial layer 3 and a p'' source/drain diffusion layer 10 in the epitaxial layer 3 is shown. Further, FIG. 1 (dl) is the same as FIG. 2 (dl), the p base layer 6.
゛Collector electrode 1i8, base electrode 12゜emitter electrode 13. A collector electrode 14 is provided, and a gate electrode 1 is provided on the oxide film 11 between each source and drain in the 0M08 section.
5 and also provide source/drain electrodes 16 and 17 at source/drain 9 and 10, respectively.As is clear from the above, a bipolar CMOS semiconductor device is constructed by this process. , can be carried out using the same number of manufacturing steps as the conventional bipolar CMOS semiconductor device shown in FIG. It is also effective to provide the isolation layer 41 according to the present invention only in the 0M08 portion that is directly connected to the external output terminal of the semiconductor integrated circuit. Effects of the Invention According to the present invention, in a bipolar CMOS semiconductor device, the isolation layer penetrating the semiconductor layer can be formed not only between the bipolar part and the CMOS part, but also between the n-channel FET and the p-channel FET in the CMOS part. By providing a
Since the formation of a parasitic npn (npn) transistor and a parasitic pnp transistor spanning the OS FET 8N region is suppressed, latch-up due to the silisk effect can be prevented. Particularly, the effect is great when used in an output stage FET that requires current, while there is no need to add a manufacturing process, and the effect on the chip size is small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の製造工程を順次示す断面図
、第2図は従来装置の製造工程を順次示す断面図、第3
図は第2図の装置の一部拡大断面図である。 lap型S1基板、3:nエピタキシャル層、4゜41
:p”アイソレーシッン層、5:ウェル層、21:バイ
ポーラトランジスタ、22;nチャネルMO3第1図 第3図
FIG. 1 is a cross-sectional view sequentially showing the manufacturing process of an embodiment of the present invention, FIG. 2 is a cross-sectional view sequentially showing the manufacturing process of a conventional device, and FIG.
The figure is a partially enlarged sectional view of the apparatus of FIG. 2. Lap type S1 substrate, 3:n epitaxial layer, 4°41
:p” isolation layer, 5: well layer, 21: bipolar transistor, 22: n-channel MO3 Fig. 1 Fig. 3

Claims (1)

【特許請求の範囲】 1)一つの半導体基板上の一導電形の層内に該層を貫通
する他導電形のアイソレーション層を介してバイポーラ
トランジスタ部とCMOS部とが存在するものにおいて
、CMOS部のpチャネルMOSFETとCチャネルM
OSFETの間に前記一導電形の層を貫通する他導電形
のアイソレーション層が設けられたことを特徴とするバ
イポーラ・CMOS半導体装置。 2)特許請求の範囲第1項記載の装置において、アイソ
レーション層が外部出力用端子に直接接続されるCMO
S部のpチャネルMOSFETとnチャネルMOSFE
Tの間に設けられたことを特徴とするバイポーラ・CM
OS半導体装置。
[Claims] 1) In a device in which a bipolar transistor section and a CMOS section are present in a layer of one conductivity type on one semiconductor substrate through an isolation layer of another conductivity type penetrating the layer, the CMOS p-channel MOSFET and C-channel M
A bipolar CMOS semiconductor device, characterized in that an isolation layer of another conductivity type is provided between the OSFETs, penetrating the layer of one conductivity type. 2) The device according to claim 1, in which the isolation layer is directly connected to the external output terminal.
p-channel MOSFET and n-channel MOSFET in S section
Bipolar CM characterized by being provided between T.
OS semiconductor device.
JP61225613A 1986-09-24 1986-09-24 Bipolar cmos semiconductor device Pending JPS6380559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61225613A JPS6380559A (en) 1986-09-24 1986-09-24 Bipolar cmos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225613A JPS6380559A (en) 1986-09-24 1986-09-24 Bipolar cmos semiconductor device

Publications (1)

Publication Number Publication Date
JPS6380559A true JPS6380559A (en) 1988-04-11

Family

ID=16832062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225613A Pending JPS6380559A (en) 1986-09-24 1986-09-24 Bipolar cmos semiconductor device

Country Status (1)

Country Link
JP (1) JPS6380559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101258A (en) * 1989-02-09 1992-03-31 Sony Corporation Semiconductor integrated circuit device of master slice approach

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101258A (en) * 1989-02-09 1992-03-31 Sony Corporation Semiconductor integrated circuit device of master slice approach

Similar Documents

Publication Publication Date Title
US4825275A (en) Integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
JPH01264253A (en) Manufacture of semiconductor device
US5060044A (en) Integrated bipolar-CMOS circuit isolation for providing different backgate and substrate bias
US4662057A (en) Method of manufacturing a semiconductor integrated circuit device
JPH0618255B2 (en) Semiconductor device
US6171894B1 (en) Method of manufacturing BICMOS integrated circuits on a conventional CMOS substrate
JPH04291952A (en) Semiconductor device
JPS6380559A (en) Bipolar cmos semiconductor device
JPH0369180B2 (en)
JPS61245563A (en) Bipolar cmos semiconductor device
JPS5949702B2 (en) Semiconductor integrated circuit device
JPS62219555A (en) Bipolar mos semiconductor device
JPS6020571A (en) Semiconductor device
JPS59144168A (en) Bipolar mos semiconductor device and manufacture thereof
JPS61281544A (en) Manufacture of semiconductor integrated circuit
JP3040211B2 (en) Manufacturing method of semiconductor integrated circuit
JP2953061B2 (en) High breakdown voltage MOS transistor and method of manufacturing the same
JPS62293767A (en) Semiconductor integrated circuit
KR970009032B1 (en) Power semiconductor and its manufacturing method
JPS6362263A (en) Semiconductor device and manufacture thereof
JP2678081B2 (en) Semiconductor integrated circuit device
JPS60211867A (en) Semiconductor device and manufacture thereof
JPH07101717B2 (en) Method for manufacturing semiconductor device
JPS62104068A (en) Semiconductor integrated circuit device
JPH01112763A (en) Semiconductor device