JPS6379960A - Metal silicide target having high melting point and its production - Google Patents

Metal silicide target having high melting point and its production

Info

Publication number
JPS6379960A
JPS6379960A JP22191286A JP22191286A JPS6379960A JP S6379960 A JPS6379960 A JP S6379960A JP 22191286 A JP22191286 A JP 22191286A JP 22191286 A JP22191286 A JP 22191286A JP S6379960 A JPS6379960 A JP S6379960A
Authority
JP
Japan
Prior art keywords
melting point
alloy
high melting
metal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22191286A
Other languages
Japanese (ja)
Inventor
Kazumi Shimotori
霜鳥 一三
Hideo Ishihara
石原 秀夫
Takashi Ishigami
隆 石上
Takenori Umeki
梅木 武則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22191286A priority Critical patent/JPS6379960A/en
Publication of JPS6379960A publication Critical patent/JPS6379960A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a high purity metal silicide target having a high m.p. by mixing a metal having a high m.p. with Si in a specified ratio, alloying the mixture by melting, regulating the amount of Si in the resulting alloy and melting the alloy at a proper temp. in a bottomed vessel made of the metal. CONSTITUTION:A high purity metal M having a high m.p. such as Ti, Zr, Ta, Mo or W is mixed with high purity Si in 1:(2-3) molar ratio. The mixture is alloyed by melting at a temp. between a eutectic point Ts positioned on the Si side in a phase diagram of the metal M and Si and the m.p. T of an alloy MSi2 in vacuum of <=about 5X10<-5>Torr. The resulting alloy ingot is crushed and excess Si is chemically leached out so that the compsn. of the alloy is represented by MSi2. Si is then added to the alloy powder to regulate the molar ratio of M:Si to 1:(2-3) again and the powder is put in a bottomed vessel made of the metal M. It is melted at a temp. between the m.p. T and the m.p. of an alloy MSin (n<2) in the phase diagram in vacuum and the melt is cooled.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高融点金属(M)とケイ素(Si)とのシリサ
イド合金(MSi2)から成るスパッタターゲットの製
造方法に関し、更に詳しくは、高純度で組成がMSi2
〜3であるターゲットの製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a sputter target made of a silicide alloy (MSi2) of a high melting point metal (M) and silicon (Si), and further relates to For details, please refer to the high purity and composition MSi2
The present invention relates to a method for manufacturing a target according to No. 3 to 3.

(従来の技術) 各種の半導体素子の表面には、その使用目的に応じて、
導電性金属材料を用いて複雑模様の配線網が形成されて
いる。この配線網を形成するためには、通常、まず、半
導体素子の表面に例えばスパッタ法を適用してa−St
、AJJなどの導電性金属の薄膜を形成し、その後この
薄膜に所定のエツチング処理を施して所望する配線回路
以外の部分を除去して配線網を残置せしめるのである。
(Prior art) The surfaces of various semiconductor devices have various types of coatings depending on their purpose of use.
A wiring network with a complex pattern is formed using a conductive metal material. In order to form this wiring network, first, a-St.
, AJJ, or the like is formed, and then this thin film is subjected to a predetermined etching process to remove portions other than the desired wiring circuit, leaving the wiring network.

ところで、最近は、素子の軽薄短小化が進められている
が、その−環として配線網を鳥害に形成する、つまり回
路幅を狭小にしたり回路の厚みを薄くシたりする努力が
なされている。
Incidentally, recently, there has been progress in making elements lighter, thinner, and shorter, and as a link to this, efforts are being made to form wiring networks that are more susceptible to damage, that is, to narrow the circuit width and reduce the thickness of the circuit. .

このように半導体素子における集積度が向上していくと
、用いた配線材料の配線抵抗による信号の遅延問題が生
起したり、または、その材料が低融点材料であった場合
には素子の作動時に配線網における抵抗発熱によって結
晶欠陥の移動が拡散により配線の破断現象が起こるとい
う問題が生じはじめる。
As the degree of integration in semiconductor devices increases in this way, problems with signal delay may occur due to the wiring resistance of the wiring materials used, or if the material is a low melting point material, problems may occur during device operation. A problem begins to arise in that the movement and diffusion of crystal defects due to resistance heat generation in the wiring network causes wiring breakage.

このようなことから、配線材料としては、高融点である
と同時に低抵抗であり、またLSI。
For this reason, as a wiring material, it has a high melting point and low resistance, and is suitable for LSI.

VLSI、ULSIのプロセスを大幅に変更することが
不要である材料が強く要望されているが、そのような材
料としては、Mo 、W、T iなどの高融点金属(M
)と並んでこれらMのジシリサイドが注目を集めている
There is a strong demand for materials that do not require major changes in VLSI and ULSI processes, but such materials include high melting point metals (M
), these disilicides of M are attracting attention.

とくに、ジシリサイドの場合は、M: S iがモル比
で1:2〜3の組成の場合、半導体素子表面の薄膜は優
れた低抵抗値とプロセス整合性を示すことが知られてい
る。
In particular, in the case of disilicide, it is known that when the molar ratio of M:Si is 1:2 to 3, the thin film on the surface of the semiconductor element exhibits excellent low resistance and process compatibility.

一方、半導体素子の表面に配線網を形成する前段の工程
である導電性金属薄膜の形成工程には、スパッタ法が主
に適用されている。
On the other hand, the sputtering method is mainly applied to the step of forming a conductive metal thin film, which is a step before forming a wiring network on the surface of a semiconductor element.

この方法は、半導体素子の表面に形成すべき薄膜の構成
材料から成るターゲットに所定のイオン種を入射してタ
ーゲット構成材料を叩き出しこれを半導体素子表面に被
着せしめる方法である。
This method is a method in which a predetermined ion species is incident on a target made of a material forming a thin film to be formed on the surface of a semiconductor element, and the material forming the target is knocked out and deposited on the surface of the semiconductor element.

このスパッタ法の適用に際しては、上記したような金属
材料でスパッタ用のターゲットを製造することが必要で
ある。
When applying this sputtering method, it is necessary to manufacture a sputtering target from the above-described metal material.

すなわち、例えば上記したMSi2〜3の配線網を形成
するときには、ターゲットとしてMS X2〜3の材料
を用いるのである。
That is, for example, when forming the above-mentioned wiring network of MSi2-3, materials of MSi2-3 are used as targets.

この場合、MSi2〜3材は高純度であることが必要で
ある。
In this case, it is necessary that the MSi2-3 materials have high purity.

例えば、MSi2〜3材に不純物として酸素が含有され
ている場合には、形成された薄膜の電気抵抗が大きくな
り、またもろさも増加し、配線網の破断等の事故が多発
しはじめ、Fe、Ni。
For example, if the MSi2-3 material contains oxygen as an impurity, the electrical resistance of the formed thin film increases and its brittleness also increases, leading to frequent accidents such as breakage of wiring networks. Ni.

Crのような重金属はVLS Iなどと形成された薄膜
との界面接合部におけるリーク現象の原因を構成し、N
a、にのようなアルカリ金属はVLS I等の上の絶縁
膜中を容易に遊動して素子特性を劣化させるからである
。また、U、Thはそれらの放射するα線により素子の
誤動作をまねき、結局は素子の動作信頼性が著しく低下
するのである。
Heavy metals such as Cr constitute the cause of leakage phenomena at the interface junction between VLSI and the formed thin film, and N
This is because alkali metals such as a and 2 easily migrate in the insulating film on the VLSI etc. and deteriorate the device characteristics. Moreover, U and Th cause malfunction of the device due to the α rays emitted by them, and as a result, the operational reliability of the device is significantly reduced.

ところで、MSi2〜3のターゲットには、現在次のよ
うな態様がある。すなわち、第1は、T i 、 T 
a 、 W 、 M oなどの高純度粉末と高純度Si
粉末とを所定量比(モル比1:2〜3)で混合し、この
混合粉を常法により焼結し、得られた焼結体を使用する
場合である。$2は、高融点金属(M)と高純度Siと
のそれぞれ又はそれぞれの金属塊を別々にモザイク状に
配置してターゲットにするという態様である。
By the way, the targets of MSi2 and MSi3 currently have the following aspects. That is, the first is T i , T
High purity powder such as a, W, Mo and high purity Si
This is a case where the mixed powder is mixed in a predetermined ratio (molar ratio 1:2 to 3), the mixed powder is sintered by a conventional method, and the obtained sintered body is used. $2 is an embodiment in which each or each metal lump of high melting point metal (M) and high purity Si is arranged separately in a mosaic shape and used as a target.

(発明が解決しようとする問題点) しかしながら前者のターゲットの場合、いわゆる粉末冶
金法で製造されているため、各粉末の比表面積が大きく
なることによって例えば製造中に酸素を約200 pp
m以上吸着して純度低下を招く。その結果、半導体素子
の表面にスパッタ法で形成された薄膜の抵抗値が高くま
たもろくなる。
(Problem to be Solved by the Invention) However, in the case of the former target, since it is manufactured by a so-called powder metallurgy method, the specific surface area of each powder increases, so that, for example, about 200 pp of oxygen is added during manufacturing.
If more than m is adsorbed, the purity will decrease. As a result, a thin film formed by sputtering on the surface of a semiconductor element has a high resistance value and becomes brittle.

また、後者の場合は、モザイク片の加工を必要とするた
め全体のコストが上昇し、しかも形成される薄膜の抵抗
値も若干高いという問題がある。
Further, in the latter case, there is a problem that the overall cost increases because the mosaic pieces need to be processed, and the resistance value of the formed thin film is also slightly high.

このようなことから、MとSiとを溶融法で合金化する
ことも試みられているが、しかし、この方法で製造され
たMSi2〜3はルツボとの反応がはげしく汚染も生じ
かつ一般に脆弱であり、溶融状態から凝固する過程で随
所にクラックが発生して、スパッタ装置に配設すること
は事実上不可能である。
For this reason, attempts have been made to alloy M and Si by a melting method, but MSi2-3 produced by this method reacts violently with the crucible, causes contamination, and is generally brittle. However, during the process of solidifying from a molten state, cracks occur at various places, making it virtually impossible to install it in a sputtering device.

[発明の構成] (問題点を解決するための手段・作用)本発明者らはM
Si2〜3が薄膜材料として優れた特性を有するにもか
かわらず、上記した様々な難点を具備するため実用に供
することが困難であるという問題を解決すべく鋭意研究
を重ねた結果、溶融法によるMSi2〜3ターゲットの
製造方法として本発明方法を開発するに到った。
[Structure of the invention] (Means and effects for solving the problem) The present inventors M
Although Si2-3 has excellent properties as a thin film material, it is difficult to put it into practical use due to the various drawbacks mentioned above.As a result of extensive research, we have found that Si2-3 is difficult to put into practical use by the melting method The method of the present invention was developed as a method for manufacturing MSi2-3 targets.

すなわち、本発明の高融点金属シリサイドターゲットの
製造方法は、高融点金属(M)とケイ素(Si)との合
金(MSi2〜3)を主成分とするスパッタターゲット
を製造する方法において、 (A)高融点金属(M)とケイ素(Si)とをモル比で
1:2〜3に混合する工程; (B)得られた混合物を、真空下において、高融点金属
(M)とケイ素(Si)との状態図におけるケイ素側に
位置する共晶点温度(TS )から合金(MSi2)の
融点(T)までの温度域で溶解して合金化する工程; (C)得られた合金を破砕したのち、過剰のStを化学
的に溶出せしめて該合金組成を MSi2のみとしたのち、更にこれに過剰のケイ素(S
i)を添加し高融点金属(M)とケイ素(Si)とのモ
ル比を再度1:2〜3に調整する工程; CD)モル比が調整された破砕合金を、高融点金属(M
)から成る有底容器に収容し、真空下において、合金(
MSi2)の融点(T)から高融点金属(M)とケイ素
(S i)との状態図における合金(MSin=但しn
く2)の融点までの温度域で溶解したのち冷却する工程
; とを具備することを特徴とする。
That is, the method for manufacturing a high-melting point metal silicide target of the present invention is a method for manufacturing a sputter target whose main component is an alloy (MSi2-3) of a high-melting point metal (M) and silicon (Si), which includes (A) A step of mixing high melting point metal (M) and silicon (Si) at a molar ratio of 1:2 to 3; (B) The obtained mixture is mixed under vacuum with high melting point metal (M) and silicon (Si). A process of melting and alloying in the temperature range from the eutectic point temperature (TS) located on the silicon side in the phase diagram to the melting point (T) of the alloy (MSi2); (C) Crushing the obtained alloy Afterwards, excess St was chemically eluted to reduce the alloy composition to only MSi2, and then excess silicon (S) was added to this.
i) Adding the high melting point metal (M) and adjusting the molar ratio of silicon (Si) to 1:2 to 3 again; CD) Adding the crushed alloy with the adjusted molar ratio to the high melting point metal (M)
) and placed in a bottomed container consisting of alloy ( ) under vacuum.
From the melting point (T) of MSi2) to the alloy (MSin = where n
A step of melting in a temperature range up to the melting point of 2) and then cooling it.

まず、Aの工程は、MとSiとからジシリサイドを得る
ために、組成が略MSi2〜3に相当するSt過剰な合
金となるような混合比率で両者を混合する工程である。
First, step A is a step in which M and Si are mixed at a mixing ratio such that an alloy with an excess of St, whose composition corresponds to approximately MSi2 to 3, is obtained in order to obtain disilicide from M and Si.

ここでMとしては、Ti 、Ta、Mo 、Wc7)い
ずれか1種である。
Here, M is any one of Ti, Ta, Mo, and Wc7).

これらMとStとはいずれも図に例示するような態様の
状態図を示す。すなわち、組成:MSi2をはさんで2
つの共晶点が存在する。本発明においては、これら共晶
点のうちSt側共晶点をTS、M側共晶点をTMと呼ぶ
。この状態図においてMSi、(n<2)はMリッチ組
成のシリサイドを表わしている。
Both M and St represent state diagrams as illustrated in the figure. That is, composition: 2 with MSi2 in between
There are two eutectic points. In the present invention, among these eutectic points, the St-side eutectic point is called TS, and the M-side eutectic point is called TM. In this phase diagram, MSi (n<2) represents M-rich composition silicide.

ちなみにMのそれぞれの融点、各シリサイドの共晶点温
度を表に示す。
Incidentally, the melting point of each M and the eutectic point temperature of each silicide are shown in the table.

このAの工程において、M、S iはいずれも高純度の
例えば顆粒原料が用いられる。例えば、MのうちTiの
場合、常用の溶融塩電解法やアイオダイド法で精製した
ものが用いられる。いずれにしてもMは前記したような
不純分すなわち酵素。
In this step A, high purity granular raw materials, for example, are used for both M and Si. For example, in the case of Ti among M, those purified by the commonly used molten salt electrolysis method or iodide method are used. In any case, M is an impurity as mentioned above, that is, an enzyme.

Fe、Ni、Crc7)ような重合属、Na 、にのよ
うなアルカリ金属、U、Thなどは可及的に少ないこと
が好ましい。
It is preferable that polymeric metals such as Fe, Ni, Crc7), alkali metals such as Na, Ni, U, Th, etc. be as small as possible.

MとSiはそれぞれ顆粒の形態で混合されてもよいし、
小塊状で混合されてもよい。
M and Si may each be mixed in the form of granules,
It may be mixed in small chunks.

しかしいずれの場合にあっても、MとSiとの混合比率
は、目的物がMSi2の組成であることからして、モル
比でM : S i = 1 : 2以上とし、St過
剰とし、Siのみを化学的に溶出しジシリサイドとなる
ように調合する。
However, in any case, since the target product has a composition of MSi2, the mixing ratio of M and Si is set to a molar ratio of M:S i = 1:2 or more, with an excess of St, and an Si Chemically dissolves only the silicide and prepares it to form disilicide.

Bの工程は、A工程で調合した混合物を後述の温度で溶
解せしめて合金化する工程である。
Step B is a step in which the mixture prepared in Step A is melted and alloyed at a temperature described below.

溶解は真空中で行なわれ、そのときの真空度は5 X 
10−5Torr以下であることが好ましい。また、溶
融時の温度は状態図又は表に記入したTSからTまでの
温度域で行なうことが望ましい。例えば、MがTiの場
合、適用する温度は1330〜1540°Cの範囲内の
温度である。この温度がTS未溝の場合には、完全溶融
による組成均一化が出来ず、Tより高い場合は、Siの
蒸発減少や底材の汚染がはなはだしくなる。
Melting is carried out in a vacuum, with a degree of vacuum of 5
It is preferable that the pressure is 10 −5 Torr or less. Further, it is desirable that the temperature during melting be within the temperature range from TS to T as indicated in the phase diagram or table. For example, when M is Ti, the applied temperature is within the range of 1330-1540°C. If this temperature does not have a TS groove, the composition cannot be made uniform by complete melting, and if it is higher than T, the evaporation of Si and the contamination of the bottom material will be severe.

このB工程は、通常、エレクトロンビーム(EB)溶解
炉を用いて行なうことが好ましい。
This step B is usually preferably carried out using an electron beam (EB) melting furnace.

Cの工程は、B工程で得られその組成が略MSi2〜3
になっている合金のインゴットを所定の大きさに粉砕し
、過剰のSjのみを化学的に溶出し所定組成のジシリサ
イドのみとする。
Step C is obtained in Step B and its composition is approximately MSi2-3.
An ingot of an alloy having the following properties is crushed to a predetermined size, and only the excess Sj is chemically eluted to form only disilicide of a predetermined composition.

このためにはHF−HNO3による処理が望ましい。得
られた粉末は明確なジシリサイドなので、Stの不足に
応じてSiを添加して全体を正しくモル比1:2〜3に
再調整する工程である・破砕の際には、合金の汚染を防
止するために、例えば選定したMと同じ材料の工具を使
用するか又は炭素鋼工具で粉砕しそのときの粉末のFe
汚染は王水で除去する。
For this purpose, treatment with HF-HNO3 is desirable. Since the obtained powder is a clear disilicide, the process is to add Si according to the shortage of St and readjust the overall molar ratio to the correct 1:2 to 3. During crushing, prevent contamination of the alloy. For example, use a tool made of the same material as the selected M, or grind it with a carbon steel tool to remove the Fe powder from the powder.
Contamination is removed with aqua regia.

Dの工程は、C工程で得られた破砕合金をMで構成され
た有底容器に収納・装入したのち、この装入合金を溶解
し、凝固せしめ、この容器と一体になったMSi2〜3
ターゲットにする工程である。
In step D, the crushed alloy obtained in step C is stored and charged into a bottomed container made of M, and then this charged alloy is melted and solidified to form MSi2~ integrated with this container. 3
This is the process of targeting.

容器を構成する材料は、前記したTnより高い融点をも
つ材料であることが必要である。具体的には、目的とす
るMSi2のMまたはそれ以上の高い融点を有するMで
構成する。例えば、装入合金がT i S i 2〜3
である場合、容器はTi製よりむしろW製である方が望
ましい。また容器の寸法形状は、ターゲットを組込むス
パッタ装置との関係で適宜法めればよい。
The material constituting the container needs to have a melting point higher than the aforementioned Tn. Specifically, it is composed of M having a melting point higher than or equal to M of the target MSi2. For example, if the charging alloy is T i S i 2-3
In this case, it is preferable that the container be made of W rather than Ti. Further, the dimensions and shape of the container may be determined as appropriate depending on the sputtering apparatus in which the target is installed.

溶解は真空中で行なわれ、そのときの真空度は5 X 
10−5Torr以下であることが好ましい。また、温
度はTからT4までの温度であることが望ましい。この
温度がT未満の場合にはMSi2が溶解しなく、逆にT
nより高い場合には、容器との反応が著しく進行するの
で不都合である。
Melting is carried out in a vacuum, with a degree of vacuum of 5
It is preferable that the pressure is 10 −5 Torr or less. Further, it is desirable that the temperature is between T and T4. If this temperature is less than T, MSi2 will not dissolve;
If it is higher than n, the reaction with the container will proceed significantly, which is disadvantageous.

なお、二の過程で、溶解したM!3i2〜3と接触する
M製容器の内壁部は若干MSi2〜3の合金に転化して
、そこに合金層を形成するが、しかし、上記の温度域で
はこの合金層はそれ以上成長せず、容器が全体として侵
蝕されるという事態は生じない。また、とくにWの場合
は、WSi2自体が低抵抗のため反応による特性劣化は
非常に小さい。
In addition, in the second process, M! The inner wall of the M container that comes into contact with 3i2-3 is slightly converted into an alloy of MSi2-3, forming an alloy layer there, but this alloy layer does not grow any further in the above temperature range. A situation where the container as a whole is eroded does not occur. Further, especially in the case of W, since WSi2 itself has a low resistance, the deterioration of characteristics due to reaction is very small.

この状態で全体を冷却すれば、溶融シリサイドは容器内
で凝固し、容器と一体化したターゲットが得られる。
If the whole is cooled in this state, the molten silicide will solidify inside the container, and a target integrated with the container will be obtained.

(発明の実施例) 溶融塩電解法で製造した針状の高純度Ti粉(酸素含有
量100〜160ppm、Fe  10ppm以下、C
r  18ppm以下、Ni約lppm、Na約325
ppm、に約175PPI!l以下)1.64kgと、
半導体用Si単結晶の粉砕顆粒2.36kgとを混合し
、これをEB溶解炉に装入して5×10−5mbarの
真空下で溶解した。得られたインゴットをTi製ハンマ
ーで破砕し、約100メツシユとした後、HF−HNO
3で過剰Siを溶出し、TiSi2のみの粉末を得た。
(Example of the invention) Acicular high-purity Ti powder manufactured by molten salt electrolysis method (oxygen content 100 to 160 ppm, Fe 10 ppm or less, C
r 18ppm or less, Ni about 1ppm, Na about 325
Approximately 175 PPI in ppm! l or less) 1.64 kg,
The mixture was mixed with 2.36 kg of crushed granules of Si single crystal for semiconductors, charged into an EB melting furnace, and melted under a vacuum of 5 x 10-5 mbar. The obtained ingot was crushed with a Ti hammer to form approximately 100 meshes, and then HF-HNO
Excess Si was eluted in Step 3 to obtain a powder containing only TiSi2.

つぎに合金組成がTiSi2.5となるように目標を定
め、このTiSi2 2.73kgとSi   0.7
7kgを混合じた。つぎに、厚み3mmのW板から製作
した外径270mm高さ30mmの円形容器とその外側
に水冷銅モールドをおき、前記装入合金を3.5kg収
容してEB溶解炉にセラl= した。炉内を真空度5×
10″5Torrに保持して加熱し、破砕合金を溶解せ
しめたのちに炉を冷却して溶融合金を凝固せしめ、全体
を250φX15tに機械加工し、目的とするターゲッ
トが得られた。
Next, we set a target for the alloy composition to be TiSi2.5, and added 2.73 kg of this TiSi2 and Si 0.7
7 kg were mixed. Next, a circular container with an outer diameter of 270 mm and a height of 30 mm made from a W plate with a thickness of 3 mm was placed on the outside thereof, and a water-cooled copper mold was placed therein, and 3.5 kg of the charged alloy was contained therein, and the container was placed in an EB melting furnace. Vacuum inside the furnace 5x
After heating at 10''5 Torr and melting the crushed alloy, the furnace was cooled to solidify the molten alloy, and the whole was machined to 250φ x 15t to obtain the intended target.

このターゲットは、TiSi2の部分とW容器とが密着
しており、T i S i 2へのクラック発生は全く
認められなかった。またTi5iz中の酸素含有量は7
6〜132ppm以下であり、従来のものに比べて約半
分少なかった。
In this target, the TiSi2 portion and the W container were in close contact, and no cracks were observed in the TiSi2. Also, the oxygen content in Ti5iz is 7
It was 6 to 132 ppm or less, which was about half less than the conventional one.

このターゲットを実機に組込み、Siウェハー表面にV
SLI用の薄膜を形成し、その抵抗値を測定したところ
、本来の1Ω/口の低抵抗値が実測された。
This target was incorporated into an actual machine, and V was applied to the surface of the Si wafer.
When a thin film for SLI was formed and its resistance value was measured, the original low resistance value of 1Ω/mouth was actually measured.

E発明の効果〕 以上の説明で明らかなように、本発明方法は、従来はタ
ーゲットとして部品化することが困難であった高融点金
属とケイ素とのジシリサイドを容易にターゲットにする
ことができるので、その工業的価値は犬である。
E. Effects of the Invention] As is clear from the above explanation, the method of the present invention can easily target disilicide of high melting point metal and silicon, which was difficult to target into parts. , its industrial value is a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、高融点金属(M)とケイ素(Si)との状態図で
ある。
The figure is a phase diagram of a high melting point metal (M) and silicon (Si).

Claims (5)

【特許請求の範囲】[Claims] (1)高融点金属(M)でなる有底容器と、該容器の内
部に設けた高融点金属(M)とケイ素(Si)との合金
(MSi_2〜_3)とを具備してなる高融点金属シリ
サイドターゲット。
(1) A high melting point container comprising a bottomed container made of a high melting point metal (M) and an alloy (MSi_2 to _3) of the high melting point metal (M) and silicon (Si) provided inside the container. Metal silicide target.
(2)高融点金属(M)がチタン(Ti)、ジルコニウ
ム(Zr)、タンタル(Ta)、モリブデン(Mo)、
タングステン(W)のいずれかである特許請求の範囲第
1項記載の高融点金属シリサイドターゲット。
(2) High melting point metal (M) is titanium (Ti), zirconium (Zr), tantalum (Ta), molybdenum (Mo),
The refractory metal silicide target according to claim 1, which is any one of tungsten (W).
(3)高融点金属(M)とケイ素(Si)との合金(M
Si_2〜_3)を主成分とするスパッタターゲットを
製造する方法において、 (A)高融点金属(M)とケイ素(Si)とをモル比で
1:2〜3に混合する工程; (B)得られた混合物を、真空下において、高融点金属
(M)とケイ素(Si)との状 態図におけるケイ素側に位置する共晶点温度(T_S)
から合金(MSi_2)の融点(T)までの温度域で溶
解して合金化する工程; (C)得られた合金を破砕したのち、過剰のSiを化学
的に溶出せしめて該合金組成をMSi_2のみとしたの
ち、更にこれに過剰のケイ素(Si)を添加し高融点金
属(M)とケイ素(Si)とのモル比を再度1:2〜3
に調整する工程; (D)モル比が調整された破砕合金を、高融点金属(M
)から成る有底容器に収容し、 真空下において、合金(MSi_2)の融点(T)から
高融点金属(M)とケイ素(Si)との状態図における
合金(MSi_n:但しn<2)の融点までの温度域で
溶解したのち冷却する工程; とを具備することを特徴とする高融点金属シリサイドタ
ーゲットの製造方法。
(3) Alloy of high melting point metal (M) and silicon (Si) (M
In a method for producing a sputtering target containing Si_2 to_3) as a main component, (A) a step of mixing a high melting point metal (M) and silicon (Si) in a molar ratio of 1:2 to 3; (B) the obtained The resulting mixture is heated under vacuum to the eutectic point temperature (T_S) located on the silicon side in the phase diagram of high melting point metal (M) and silicon (Si).
(C) After crushing the obtained alloy, excess Si is chemically eluted to change the alloy composition to MSi_2. After that, an excess of silicon (Si) is added to this, and the molar ratio of high melting point metal (M) and silicon (Si) is again 1:2 to 3.
(D) The crushed alloy whose molar ratio has been adjusted is mixed with a high melting point metal (M
), and under vacuum, the melting point (T) of the alloy (MSi_2) changes from the melting point (T) of the alloy (MSi_n: where n<2) in the phase diagram of the high melting point metal (M) and silicon (Si). A method for producing a high melting point metal silicide target, comprising: melting in a temperature range up to the melting point and then cooling;
(4)高融点金属(M)が、チタン(Ti)、タンタル
(Ta)、モリブデン(Mo)、タングステン(W)の
いずれかである特許請求の範囲第3項記載の製造方法。
(4) The manufacturing method according to claim 3, wherein the high melting point metal (M) is any one of titanium (Ti), tantalum (Ta), molybdenum (Mo), and tungsten (W).
(5)有底容器が、合金(MSi_n:但しn<2)の
融点より高い融点を有する該高融点金属(M)のいずれ
か1種から成る特許請求の範囲第3項記載の製造方法。
(5) The manufacturing method according to claim 3, wherein the bottomed container is made of any one of the high melting point metals (M) having a melting point higher than the melting point of the alloy (MSi_n, where n<2).
JP22191286A 1986-09-22 1986-09-22 Metal silicide target having high melting point and its production Pending JPS6379960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22191286A JPS6379960A (en) 1986-09-22 1986-09-22 Metal silicide target having high melting point and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22191286A JPS6379960A (en) 1986-09-22 1986-09-22 Metal silicide target having high melting point and its production

Publications (1)

Publication Number Publication Date
JPS6379960A true JPS6379960A (en) 1988-04-09

Family

ID=16774102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22191286A Pending JPS6379960A (en) 1986-09-22 1986-09-22 Metal silicide target having high melting point and its production

Country Status (1)

Country Link
JP (1) JPS6379960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270829A (en) * 2001-03-12 2002-09-20 Nikko Materials Co Ltd Silicide target for forming gate oxide film, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270829A (en) * 2001-03-12 2002-09-20 Nikko Materials Co Ltd Silicide target for forming gate oxide film, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8430978B2 (en) Sputtering target and method for production thereof
US5618397A (en) Silicide targets for sputtering
JP4388263B2 (en) Iron silicide sputtering target and manufacturing method thereof
KR950703668A (en) HIGH MELTING POINT METALLIC SILICIDE TARGET AND METHOD FOR PRODUCING THE SAME, HIGH MELTING POINT METALLIC SILICIDE FILM AND SEMICOMDUCTOR DEVICE
JP3792007B2 (en) Manufacturing method of sputtering target
JP3974945B2 (en) Titanium sputtering target
JP2001523767A5 (en)
JPH05214521A (en) Titanium sputtering target
JPS6379960A (en) Metal silicide target having high melting point and its production
JP2590091B2 (en) Refractory metal silicide target and its manufacturing method
JP2941828B2 (en) Refractory metal silicide target and method for producing the same
JPH0247261A (en) Silicide target and production thereof
JPH0159971B2 (en)
RU2356964C1 (en) Manufacturing method of sputtering targets from cast disilicide of refractory metal and facility for its implementation
JPH04232260A (en) W-ti alloy target and its manufacture
JPH0360914B2 (en)
JPH05214520A (en) Sputtering target for titanium
JPS61145828A (en) Sputtering target and manufacture of the same
WO2002088408A1 (en) Nickel-titanium sputter target alloy
JP2000064032A (en) Titanium silicide target and its production
JPS63179027A (en) Smelting method
JPH0313192B2 (en)
JP2590091C (en)
JPS61145829A (en) Mosaic sputtering target and manufacture of the same
JPH01131073A (en) Target made of high-melting metal silicide and production thereof