JPS63179027A - Smelting method - Google Patents
Smelting methodInfo
- Publication number
- JPS63179027A JPS63179027A JP829087A JP829087A JPS63179027A JP S63179027 A JPS63179027 A JP S63179027A JP 829087 A JP829087 A JP 829087A JP 829087 A JP829087 A JP 829087A JP S63179027 A JPS63179027 A JP S63179027A
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- silicon
- melting
- bath
- pellets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000003723 Smelting Methods 0.000 title abstract 3
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 25
- 239000010703 silicon Substances 0.000 claims abstract description 25
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 21
- 239000010936 titanium Substances 0.000 claims abstract description 21
- 229910021341 titanium silicide Inorganic materials 0.000 claims abstract description 18
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 16
- 239000000956 alloy Substances 0.000 claims abstract description 16
- 239000008188 pellet Substances 0.000 claims abstract description 15
- 239000000654 additive Substances 0.000 claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 6
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 6
- 238000005275 alloying Methods 0.000 claims abstract description 5
- 238000002844 melting Methods 0.000 claims description 39
- 230000008018 melting Effects 0.000 claims description 35
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 9
- 239000000155 melt Substances 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 claims description 6
- 229910000765 intermetallic Inorganic materials 0.000 claims description 6
- 229910021344 molybdenum silicide Inorganic materials 0.000 claims description 6
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 claims description 6
- 229910021342 tungsten silicide Inorganic materials 0.000 claims description 6
- 230000000996 additive effect Effects 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 229910017061 Fe Co Inorganic materials 0.000 claims 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052786 argon Inorganic materials 0.000 abstract description 5
- 241001062472 Stokellia anisodon Species 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 229910021332 silicide Inorganic materials 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- -1 argon ions Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、発熱反応を伴う合金乃至金属間化合物の溶製
方法に関するものであシ、特には合金化或いは合成時に
大量の発熱を伴うような合金乃至金属間化合物を、大址
発熱に起因するスプラッシュその他の障害を同避しつつ
溶製する方法に関する。本発明によシ、目標達成の合金
乃至金属間化合物を高収率で安定して溶製することが出
来、しかも適正な発熱反応を行わしめることによシ有害
元素の精製効果をも奏しうる。本発明は、チタンシリサ
イド、モリブデンシリサイド、タングステンシリサイド
等に代表される高融点金属シリサイドの溶製、光熱磁気
素子用ターゲツト材として知られるFe−Co−重希土
類元素(Tb 、Gd sD7等の少くとも一種)合金
の溶製等の分野に有効に適用しりる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing alloys or intermetallic compounds that involve an exothermic reaction, and particularly relates to a method for producing alloys or intermetallic compounds that generate a large amount of heat during alloying or synthesis. This invention relates to a method for melting while avoiding splashes and other problems caused by heat generation. According to the present invention, alloys or intermetallic compounds that achieve the target can be stably produced in high yield, and furthermore, by carrying out an appropriate exothermic reaction, the effect of purifying harmful elements can also be achieved. . The present invention is directed to the melting of high-melting point metal silicides such as titanium silicide, molybdenum silicide, and tungsten silicide, and at least Fe-Co-heavy rare earth elements (Tb, Gd, sD7, etc.), which are known as target materials for photothermal magnetic elements. 1) Effectively applied to fields such as alloy melting.
とシわけ、本発明によシ溶製された高融点金属シリサイ
ド(Tiltx1Mo81+cSwst工)は半導体装
置の電極或いは配線、特にMOS−LSIデバイスのゲ
ート電極、ソース電極及びドレイン1!極形成の為のタ
ーゲットの製造目的に有用である。In particular, the high melting point metal silicide (Tiltx1Mo81+cSwst process) produced according to the present invention can be used for electrodes or wiring of semiconductor devices, especially gate electrodes, source electrodes, and drains of MOS-LSI devices. Useful for target production purposes for pole formation.
発明の背景
合金乃至全114間化合物t−a造するに当)、その系
を構成する成分元素の成るものの融液に残る添加元素を
添加する溶製法は広〈実施されているが、添加時に大量
の発熱を伴う発熱反応系の場合には、その実施は仲々困
難である。これは基本的には、発熱反応に伴うスプラッ
シュが発生し、収率の悪化、組成及び温度の変動等を生
じるからである〇しかし、反面、そうした不都合を回避
しうるなら、溶製法は、焼結法等と異)大形の高密度製
品を簡便に且つ大量に製造しうるのでまた発熱反応によ
)真空ないし不活性ガス減圧下で揮発性不純物を除去す
る精製効果を期待しりるので、非常に有利な方法である
。こうした大量の発熱を伴う発熱反応を生ずる代表例が
高融点金属シリサイド、特にチタンシリサイド、モリブ
デンシリサイド及びタングステンシリサイドである◎
とこでは、チタンシリサイドを例にとって上述した状況
を詳しく説明する。BACKGROUND OF THE INVENTION In producing alloys or all inter-114 compounds (t-a), the melting process of adding additive elements that remain in the melt of the component elements constituting the system is widely practiced. In the case of an exothermic reaction system that generates a large amount of heat, it is difficult to implement. This is basically because splashes occur due to exothermic reactions, resulting in deterioration of yield, fluctuations in composition and temperature, etc. However, on the other hand, if such inconveniences can be avoided, the sintering method is Unlike the condensation method, etc.), large, high-density products can be manufactured easily and in large quantities, and it is expected to have a purification effect by removing volatile impurities under vacuum or inert gas reduced pressure (by exothermic reaction). This is a very advantageous method. Typical examples of such exothermic reactions that generate a large amount of heat are high-melting point metal silicides, particularly titanium silicide, molybdenum silicide, and tungsten silicide. The above-mentioned situation will now be explained in detail using titanium silicide as an example.
半導体装置の電極あるいは配線、特にMOS−LSIの
ゲート電極としてはポリシリコンが従来用いられてきた
が、MO$−LSIの高集積化に伴いポリシリコンゲー
ト電極の抵抗による信号型録遅延が問題化している。一
方、セルファライン法によるMO5素子形成を容易なら
しめる為ゲー)!極、ソース電極及びドレイン電極とし
て融点の高い材料の使用が所望されている。こうした状
況においてポリシリコンよシ抵抗率の低い高融点金属ゲ
ート電極、ソース電極及びドレイン電極の研究が進む一
方、シリコンゲートプロセスとの互換性を第1とした高
融点金属シリサイド電極の研究が活発に進行しつつある
。そりした高融点金属シリサイドの有望な実用例がチタ
ンシリサイドであル、更にはモリブデンシリサイド及び
タングステンシリサイドなのである。Polysilicon has traditionally been used for electrodes or wiring in semiconductor devices, especially as gate electrodes in MOS-LSIs, but as MO$-LSIs become more highly integrated, signal recording delays due to the resistance of polysilicon gate electrodes have become a problem. ing. On the other hand, in order to facilitate the formation of MO5 elements using the self-line method, it is possible to make MO5 elements easier to form. It is desirable to use materials with high melting points for the poles, source electrodes, and drain electrodes. Under these circumstances, research is progressing on high-melting point metal gate electrodes, source electrodes, and drain electrodes that have lower resistivity than polysilicon, while research on high-melting point metal silicide electrodes, which prioritize compatibility with silicon gate processes, is also active. It's progressing. Promising practical examples of warped refractory metal silicides are titanium silicide, as well as molybdenum silicide and tungsten silicide.
半導体装置の電極あるいは配線用のチタンシリサイド薄
膜の形成に有効な方法として、スパッタ法及び電子ビー
ム蒸着法がある。スパッタ法はターゲツト板にアルゴン
イオンを衝突させて金属を放出させ、放出金属全ターゲ
ツト板に対向した基板に堆積させる方法である。電子ビ
ーム蒸着法は、電子ビームによジインゴツト蒸発源t−
溶解し、蒸着上行う方法である。いずれにせよ、生成層
の純度その他の性状は、ターゲット板或いは蒸発源(以
下併せてターゲットと総称する)の純度、組成、スパッ
タリング特性等によシ左右される。Sputtering and electron beam evaporation are effective methods for forming titanium silicide thin films for electrodes or wiring in semiconductor devices. The sputtering method is a method in which a target plate is bombarded with argon ions to release metal, and all of the released metal is deposited on a substrate facing the target plate. In the electron beam evaporation method, a di-ingot evaporation source t-
This method involves melting and vapor deposition. In any case, the purity and other properties of the generated layer depend on the purity, composition, sputtering characteristics, etc. of the target plate or evaporation source (hereinafter collectively referred to as target).
チタンシリサイドターゲットの場合、高純度のチタン粉
とシリコン粉とを所定の配合比において混合し、成型し
、真空焼結し、その後所望のターゲット形態に加工する
燃結法及びるつほにて所定配合のシリコンとチタンを溶
製する溶製法が知られているが、焼結法の場合高密度の
製品が得られず、多量の空隙部に由来するターゲット秘
れ、汚染等の問題が生じる。そこで、溶製法によるチタ
ンシリサイドの製造に関心が向けられているO従来の溶
製法によるチタンシリサイドの製造は次の通シであった
:真空またはアルゴン減圧の雰囲気下で高周波誘導炉ま
たは抵抗加熱炉によシ通常のアルミするつは内でシリコ
ンを溶解する。所定量のチタン小片或いは粉末を容8d
に秤取し、該容器を炉内に装入し、溶解シリコン浴上方
からシリコン中にチタン片或いは粉末上投入し、シリコ
ン中にチタンを溶解させてチタンシリサイドを生成する
。In the case of a titanium silicide target, high-purity titanium powder and silicon powder are mixed in a predetermined ratio, molded, vacuum sintered, and then processed into the desired target shape using a sintering method and a predetermined method using Rutsuho. A melting method is known in which a blend of silicon and titanium is melted, but the sintering method does not produce a high-density product and causes problems such as target hiding and contamination due to a large amount of voids. Therefore, attention has been focused on the production of titanium silicide by the melting method.The traditional method of producing titanium silicide by the melting method was as follows: in a high frequency induction furnace or resistance heating furnace in a vacuum or argon reduced pressure atmosphere. The silicone is then dissolved in a regular aluminum tube. Contains a predetermined amount of titanium pieces or powder (8 d)
The container is placed in a furnace, and titanium pieces or powder are poured into the silicon from above the molten silicon bath to dissolve the titanium in the silicon and produce titanium silicide.
この方法には次の問題点がある:
t チタン小片の溶融シリコン中への投入時に、チタン
とシリコンとの急激な発熱反応が生じるため、浴面から
のスズラッシュが発生する。そうしたスプラッシュがる
つぼ外や縁辺に散逸するため収率が悪い。浴温管理が困
難である。This method has the following problems: t When titanium pieces are introduced into molten silicon, a rapid exothermic reaction between titanium and silicon occurs, resulting in tin lash from the bath surface. Yields are poor because such splashes are dissipated outside the crucible and around the edges. Bath temperature control is difficult.
2 上記スプラッシュの発生のためまた浴温の急上昇に
よる揮散損失のため、目標組成のチタンシリサイドが得
難い。2. It is difficult to obtain titanium silicide having the target composition due to the occurrence of the above-mentioned splash and volatilization loss due to the rapid increase in bath temperature.
& チタン小片管浴上方から投下することによル、湯面
が激しく揺動し、スプラッシュが一層起ルやすい。& By dropping water from above the small titanium tube bath, the water surface shakes violently and splashes are more likely to occur.
柔 粉末添加の場合、添加時に粉末の飛散或いは真空排
気に際しての連行による損失が生じ、また添加後浮上っ
てうまく溶解しない。In the case of adding soft powder, there is loss due to powder scattering during addition or entrainment during vacuum evacuation, and it also floats after addition and does not dissolve well.
以上はチタンシリサイドについて特定的に言及したが、
同様の状況が、溶融シリコン中へタングステンやモリブ
デンを添加することによるタングステンシリサイド及び
モリブデンシリサイドの溶製においても起ることは明ら
かである。更には、最初に述べたFe−Co−重希土類
元素系をFe−C。The above specifically mentioned titanium silicide, but
It is clear that a similar situation occurs in the melting of tungsten silicide and molybdenum silicide by adding tungsten or molybdenum to molten silicon. Furthermore, the first mentioned Fe-Co-heavy rare earth element system is replaced by Fe-C.
融液に重希土類を添加することにより溶製する場合にも
同様の状況が生ずる@
発明の目的
上記状況に鑑み、本発明は、発熱反応と関与する合金乃
至金属間化合物を収率良くしかも安定した操作の下で溶
製する溶製法の確立を目的とする〇発明の構成
従来技術において上記のような問題点が生じた根本的原
因は、添加物の大きさへの配慮を全面的に欠いたことに
よる。本発明者等は、スズラッシュ、飛散等管生じない
ような寸法形態の確立の可能性について試験を重ねた結
果、1〜5襲直径の粒或いはペレットの形で添加物を融
液中に付加することにより、こうした問題が解消されう
ることt−確認するに至った。A similar situation occurs when melting is performed by adding heavy rare earths to the melt. Purpose of the Invention In view of the above situation, the present invention aims to produce alloys and intermetallic compounds involved in exothermic reactions in a high yield and in a stable manner. The fundamental cause of the above-mentioned problems in the prior art is a complete lack of consideration to the size of additives. Due to what happened. As a result of repeated tests on the possibility of establishing a dimensional form that does not cause tin lash or scattering, the present inventors added additives to the melt in the form of particles or pellets with a diameter of 1 to 5 strokes. We have come to confirm that these problems can be resolved by doing so.
これは、従来添加物の大きさへの配慮が全く為されてい
ない状況において、一種の盲点と云うべき有意義な知見
である。This is a significant finding that can be called a kind of blind spot in a situation where conventionally no consideration has been given to the size of additives.
斯くして、本発明は、合金化乃至合成時に発熱反応を伴
う合金乃至金属間化合物系を、族系を構成する成分元素
の少くとも1棟の融液浴に残る成分元素を添加すること
によって溶製する方法において、添加元素を1〜5鴎直
径の粒或いはペレットの形で融液中に添加することによ
り該添加成分元素を徐々に溶かすこと金特徴とする発熱
反応と関与する合金乃至金属間化合物系の溶製方法を提
供する。Thus, the present invention provides an alloy or intermetallic compound system that involves an exothermic reaction during alloying or synthesis by adding component elements that remain in the melt bath of at least one of the component elements constituting the group system. In the melting method, the additive element is gradually melted by adding it to the melt in the form of particles or pellets with a diameter of 1 to 5 mm. Provided is a method for producing an intermediate compound system.
チタンシリサイドの溶at−例にとって先ず説明する。First, an example of melting titanium silicide will be explained.
この場合は、溶解炉においてチタン粒或いはペレットが
シリコン融液浴中に添加溶解される。溶解炉としては、
底部にシリコン融液を収納するヒータ付きるつばをそし
てその上部にチタン粒或いはペレット添加手段を装備し
、そして真空またはアルゴン(不活性ガス)減圧下での
溶解ができる型式のものであれば良く、例えば高周波誘
導炉、抵抗加熱炉等が使用しうる。炉には排気口、観察
口が装備される。真空は10−4〜10−5Torrそ
してアルゴン減圧は100〜500 Torr水準とす
るのが一般的である。In this case, titanium grains or pellets are added and melted into a silicon melt bath in a melting furnace. As a melting furnace,
A crucible with a heater for storing the silicon melt at the bottom, a means for adding titanium grains or pellets at the top, and capable of melting under vacuum or reduced pressure of argon (inert gas) may be used. For example, a high frequency induction furnace, a resistance heating furnace, etc. can be used. The furnace is equipped with an exhaust port and an observation port. Generally, the vacuum is at a level of 10-4 to 10-5 Torr and the argon reduced pressure is at a level of 100 to 500 Torr.
溶解炉において、るつは内でシリコンが先ずヒータによ
シ溶解される。シリコン原料としては、9 N (99
,9999999%)以上の純度を有ししかもスパッタ
源として有害な放射性元素やアルカリ金属の含有量の少
ないものが容易に市販入手しうるので、そうした高純度
のものが使用される。るつほとしては、発熱によシるつ
ほが損傷し、穴のあくトラブルをさけるためになるたけ
高密度のものの使用が好ましい。また、るつほからの不
純物の溶出による製品汚染を避けるために高純度のもの
の使用が好ましい。高純度アルミするつは、高純度シリ
カるつぼ、高純度カルシするつは等が使用しうる。例え
ば、密度比100%の高純度(95!95%)アルミす
るつぼは、理論密度まで高純度のアルミナを圧縮して製
造されたるつほであシ、現在例えば鋳込成型法によるス
リップ・キャスト・ルツボとして市販されている。In a melting furnace, silicon is first melted in a melting furnace using a heater. As a silicon raw material, 9 N (99
, 9999999%) or higher and low in content of radioactive elements or alkali metals that are harmful to sputtering sources, and are easily commercially available, such high-purity materials are used. It is preferable to use a material with as high a density as possible to avoid the problem of holes being formed due to damage to the material due to heat generation. In addition, it is preferable to use a highly purified product in order to avoid contamination of the product due to impurities leached from the rutsuho. A high-purity aluminum crucible, a high-purity silica crucible, a high-purity calcined crucible, etc. can be used. For example, high-purity (95!95%) aluminum crucibles with a density ratio of 100% are produced by compressing high-purity alumina to the theoretical density.・It is commercially available as a crucible.
シリコンを溶解した後、シリコン浴中にチタン粒或いは
ペレットが添加される。チタン粒或いはペレットハ、そ
の直径が1〜5tIsにコントロールされる。直径が1
■よシ小さいと、添加に際して飛散が生じたシまた真空
排気による損失が生じやすい。他方、5s+ai超える
と落下衝撃が太きくなつて添加時に湯面の大きな揺動或
いはスプラッシュが生じやすくなる。After dissolving the silicon, titanium grains or pellets are added to the silicon bath. The diameter of the titanium grains or pellets is controlled to be 1-5tIs. diameter is 1
(2) If it is too small, scattering may occur during addition or loss may occur due to vacuum evacuation. On the other hand, if it exceeds 5 s+ai, the drop impact becomes large and large fluctuations or splashes of the molten metal surface are likely to occur during addition.
添加方法としては、基本的には、チタン粒或いはペレッ
トを保持する容器からるつぼ内へと放下されるが、スズ
ラッシュ管最小限に抑制する為に次のような方策を使用
することも有益である:t 発熱反応の激しい初期の反
応量を少くしそして反応熱が次第に鎮まるにつれ反応量
を増大するよう、
(イ)添加物を分級して小さいものから少しづつ加え、
後半に大きなものを加える。Basically, titanium grains or pellets are added by dropping them into the crucible from a container holding them, but it is also useful to use the following measures to minimize tin lash tubes. Yes: t In order to reduce the initial reaction amount when the exothermic reaction is intense, and then increase the reaction amount as the reaction heat gradually subsides, (a) classify the additives and add them little by little starting from the smallest.
Add something big in the second half.
(ロ)添加用容器の底部をろうと状にテーパづけ、少量
づつ加える。(b) Taper the bottom of the addition container into a funnel shape and add small amounts at a time.
(ハ)添加用容器の底部に調盪弁を取付は流下量を適宜
コントロールする。(c) Attach a stirring valve to the bottom of the addition container to appropriately control the flow rate.
2 添加物を上記問題が生じない最適の大きさの寸法に
揃え、適宜の速度で添加する。2. Adjust the additives to the optimum size that does not cause the above problems, and add them at an appropriate rate.
こうして添加されるチタン粒或いはペレットもまた高純
度のものを使用することは云うまでもない。It goes without saying that the titanium grains or pellets added in this way should also be of high purity.
シリコン浴の温度が必要以上に高くなると揮発ロスが多
くなるので、状態図に示される液相線よシ若干高い温度
に保持することが望ましい。Ti−8I系はT18h化
合物(融点1540℃)の両側で下降する共晶液相MA
ヲ有しておF)、Tl5h前後の目標とする組成に対応
する液相a温度よシ少し高めとするのが好都合である。If the temperature of the silicon bath becomes higher than necessary, volatilization loss increases, so it is desirable to maintain the temperature slightly higher than the liquidus line shown in the phase diagram. The Ti-8I system has a eutectic liquid phase MA that descends on both sides of the T18h compound (melting point 1540°C).
It is convenient to set the liquid phase a temperature a little higher than that corresponding to the target composition of about T15h.
Ti81Xは一般に15≦X≦27の範囲から目標組成
を選定される。The target composition of Ti81X is generally selected from the range of 15≦X≦27.
溶解中の浴温度の調整は、シリコンとチタンの反応熱(
即ちチタン寸法形状及び下′降速度)と炉のヒータの入
力電力との調整によシもたらされる。Adjustment of the bath temperature during melting is based on the heat of reaction between silicon and titanium (
(i.e., by adjusting the titanium size, shape and fall rate) and the input power of the furnace heater.
本発明においては反応熱の急激な発生がないので浴温の
管理は非常に容易である。In the present invention, since there is no sudden generation of reaction heat, the bath temperature can be controlled very easily.
こうして、チタンは徐々にシリコン浴中に溶解されてい
き、チタンシリサイドを生成する。In this way, titanium is gradually dissolved into the silicon bath, producing titanium silicide.
モリブデンシリサイド或いはタングステンシリサイドの
溶製の場合も上記と同様にして実施が可能である。モリ
ブデン或いはタングステンの粒、或いはその粉末ペレッ
トいずれをも用いることが出来る。現在では、高純度の
モリブデン或いはタングステンを製造する技術が確立さ
れている。高純度のシリコン融液中に高純度のモリブデ
ン或いはタングステンを添加すると、発熱反応が一層顕
著に生ずるが、本発明の利用によ)、こうした場合でも
発熱反応を充分に管理することが出来る。In the case of melting molybdenum silicide or tungsten silicide, it can be carried out in the same manner as described above. Either molybdenum or tungsten grains or powder pellets thereof can be used. At present, techniques for producing high-purity molybdenum or tungsten have been established. When high-purity molybdenum or tungsten is added to a high-purity silicon melt, exothermic reactions occur even more significantly, but even in such cases, the exothermic reactions can be sufficiently controlled by using the present invention.
また、モリブデンやタングステンのような高融点金属で
も容易に溶解することが可能となる。Further, it becomes possible to easily melt even high melting point metals such as molybdenum and tungsten.
F@−Co−重希土類元素(Tb5Gd % Dy等の
少くとも1種)合金の溶製の場合には、Fs−Co融液
中に重希土類元素の粒或いはペレットが添加される。In the case of melting an F@-Co-heavy rare earth element (at least one kind such as Tb5Gd%Dy) alloy, grains or pellets of the heavy rare earth element are added to the Fs-Co melt.
こうした特定例に限らず、本発明は、発熱反応と関与す
る合金系や金属化合物系の溶製に際して特に初期の爆発
的な反応進行上規制したい状況に等しく応用しうる。The present invention is not limited to these specific examples, but is equally applicable to situations where it is desired to control the initial explosive reaction progress during the melting of alloys and metal compounds that are involved in exothermic reactions.
発明の効果
t 非常に安定した発熱反応の下で合金化乃至合成を行
える結果として、Na 1に等のアルカリ金属といった
揮発性不純物元素が低減する。ゲート電極、ソース電極
及びドレイン電極においてアルカリ金属の存在は動作信
頼性を損ねるので、本発明の下でこうした電極形成の為
のターゲットを製造することにより高品質電極が作製し
うる。Effects of the Invention t As a result of being able to perform alloying or synthesis under a very stable exothermic reaction, volatile impurity elements such as alkali metals such as Na 1 are reduced. Since the presence of alkali metals in gate, source, and drain electrodes impairs operational reliability, high quality electrodes can be produced by manufacturing targets for forming such electrodes under the present invention.
2 シリサイド合成の場合、81+O→810(g)↑
の反応によシ酸素の低減が図れる。酸素の存在は、スパ
ッタ或いは蒸着に際して有害である。2 In case of silicide synthesis, 81+O→810(g)↑
Oxygen can be reduced by this reaction. The presence of oxygen is harmful during sputtering or evaporation.
& スプラッシュが抑制できるので、収率(歩留シ)が
向上する。& Splash can be suppressed, improving yield.
柔 溶解操作の管理が行いやすく、るつほの損傷が回避
されるので、安全性及び経済性が向上する。The soft melting operation is easy to manage and damage to the melting tube is avoided, improving safety and economic efficiency.
& 揮散やスプラッシュに基くロスが無いので、目標組
成のものtS造できる。& Since there is no loss due to volatilization or splash, products with the target composition can be produced.
4 鋳造によシ、大形のまた任意の形状の製品を密度比
はぼ100%で製造できる。4. By casting, it is possible to manufacture large-sized products of any desired shape with a density ratio of nearly 100%.
l 高純度の金属同志の合金化乃至合成が可能である。l It is possible to alloy or synthesize high-purity metals.
a 高融点合金の製造が可能である。a. It is possible to manufacture high melting point alloys.
2 粉末添加時に飛散が生じない。2 No scattering occurs when adding powder.
1α 浴温のコントロールが容易である。1α It is easy to control the bath temperature.
実施例
高周波誘導炉において5 X 10−’ Torr
の真空雰凹気の下でチタンシリサイドを溶製した。るつ
ほとしては、タテホ化学社製スリップ・キャストの密度
比100%の超高純度アルミするつはt使用した。るつ
ぼの大きさは内径101×深さ201であった。先ず、
るつほにて9Nシリコン塊を2、oooIi溶解した。Example: 5 x 10-' Torr in a high-frequency induction furnace
Titanium silicide was melted under a vacuum atmosphere. As the glue, ultra-high purity aluminum slip cast with a density ratio of 100% manufactured by Tateho Chemical Co., Ltd. was used. The size of the crucible was 101 mm inner diameter x 201 mm deep. First of all,
A 9N silicon lump was melted in a rutsuho for 2,000 hours.
その後、高純度のチタン粒(大きさ2〜4謔ダ)170
5pを少量づつ添加し、溶解せしめた。シリコン浴の温
度は、当初1.450℃に設定され、入力電力の調節に
よル±100℃以内に維持した。温度調節は容易に為し
て、安定した溶解作業を行うことが出来た。溶解後るつ
ぼの縁辺全目視検査したが付着物はほとんど見られなか
った。生成チタンシリサイドの組成は分析の結果TI別
、。であシ、目標値通ルであった。更に、チタン粒は5
00 ppm O酸素を含むものであったが、生成物9
酸素含有量は1100ppに減少していた。After that, 170 pieces of high-purity titanium grains (2 to 4 pieces in size)
5p was added little by little and dissolved. The temperature of the silicon bath was initially set at 1.450°C and was maintained within ±100°C by adjusting the input power. The temperature could be easily adjusted and stable melting operations could be performed. After melting, the entire edge of the crucible was visually inspected, but almost no deposits were observed. The composition of the produced titanium silicide is determined by TI according to the analysis results. Well, we passed the target value. Furthermore, titanium grains are 5
00 ppm O oxygen, but the product 9
The oxygen content had decreased to 1100 pp.
Claims (1)
化合物系を、該系を構成する成分元素の少くとも1種の
融液浴に残る成分元素を添加することによって溶製する
方法において、添加成分元素を1〜5mm直径の粒或い
はペレットの形で融液中に添加することにより該添加成
分元素を徐々に溶かすことを特徴とする発熱反応と関与
する合金乃至金属間化合物系の溶製方法。 2)シリコン浴中にチタン粒或いはペレットを添加し、
シリコン中にチタンを徐々に溶かしてチタンシリサイド
を合成する特許請求の範囲第1項記載の溶製方法。 3)シリコン浴中にモリブデン乃至タングステンの粒或
いはペレットを添加し、シリコン中にモリブデン乃至タ
ングステンを徐々に溶かしてモリブデンシリサイド乃至
タングステンシリサイドを合成する特許請求の範囲第1
項記載の溶製方法。 4)Fe−Co融液浴中にTb、Gd、Dy等の重希土
類元素の少くとも1種の粒或いはペレットを添加し、F
e−Co中に重希土類元素を徐々に溶かしてFe−Co
−重希土類元素合金を調製する特許請求の範囲第1項記
載の溶製方法。[Scope of Claims] 1) An alloy or intermetallic compound system that undergoes an exothermic reaction during alloying or synthesis by adding at least one component element that remains in the melt bath of the component elements constituting the system. An alloy or metal that participates in an exothermic reaction characterized by gradually melting the additive element in the melting method by adding the additive element in the form of particles or pellets with a diameter of 1 to 5 mm to the melt. Intermediate compound melting method. 2) Add titanium grains or pellets to the silicon bath,
2. The melting method according to claim 1, wherein titanium silicide is synthesized by gradually dissolving titanium in silicon. 3) Molybdenum silicide or tungsten silicide is synthesized by adding particles or pellets of molybdenum or tungsten to a silicon bath and gradually dissolving the molybdenum or tungsten in the silicon.
Melting method described in section. 4) Add grains or pellets of at least one heavy rare earth element such as Tb, Gd, Dy, etc. to the Fe-Co melt bath, and
Fe-Co is produced by gradually dissolving heavy rare earth elements in e-Co.
- A melting method according to claim 1 for preparing a heavy rare earth element alloy.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP829087A JPS63179027A (en) | 1987-01-19 | 1987-01-19 | Smelting method |
PCT/JP1987/000155 WO1988005472A1 (en) | 1987-01-19 | 1987-03-12 | Melt-manufacturing process |
DE19873790530 DE3790530T1 (en) | 1987-01-19 | 1987-03-12 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP829087A JPS63179027A (en) | 1987-01-19 | 1987-01-19 | Smelting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63179027A true JPS63179027A (en) | 1988-07-23 |
Family
ID=11689041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP829087A Pending JPS63179027A (en) | 1987-01-19 | 1987-01-19 | Smelting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63179027A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0604703A1 (en) * | 1992-12-30 | 1994-07-06 | Hitchiner Manufacturing Co., Inc. | Method and Apparatus for Making Intermetallic Castings |
CN106987725A (en) * | 2017-03-27 | 2017-07-28 | 北京科技大学 | A kind of titanium-containing blast furnace slag ferrosilicon process titanium extracting technology method |
-
1987
- 1987-01-19 JP JP829087A patent/JPS63179027A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0604703A1 (en) * | 1992-12-30 | 1994-07-06 | Hitchiner Manufacturing Co., Inc. | Method and Apparatus for Making Intermetallic Castings |
CN106987725A (en) * | 2017-03-27 | 2017-07-28 | 北京科技大学 | A kind of titanium-containing blast furnace slag ferrosilicon process titanium extracting technology method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5519800B2 (en) | Cu-Ga alloy sputtering target and method for producing the same | |
JP4388263B2 (en) | Iron silicide sputtering target and manufacturing method thereof | |
US10161032B2 (en) | High-purity titanium ingots, manufacturing method therefor, and titanium sputtering target | |
JP4415303B2 (en) | Sputtering target for thin film formation | |
JP5960282B2 (en) | Cu-Ga alloy sputtering target and method for producing the same | |
JP5144576B2 (en) | Titanium target for sputtering | |
JP5750393B2 (en) | Cu-Ga alloy sputtering target and method for producing the same | |
JPS63179027A (en) | Smelting method | |
US1775159A (en) | Metal and process of manufacture | |
US20230203622A1 (en) | Aluminum-Scandium Composite, Aluminum-Scandium Composite Sputtering Target And Methods Of Making | |
JPH0159971B2 (en) | ||
JP3735060B2 (en) | Method for producing low-oxygen titanium material | |
JPH05452B2 (en) | ||
RU2819192C1 (en) | Method of producing high-purity nickel for sputtered targets | |
JP2000054009A (en) | Production of alloy powder and production of thermoelement using it | |
JPH0995743A (en) | Production of smelted metallic material, smelted metallic material and electron beam melting equipment | |
JPH04232260A (en) | W-ti alloy target and its manufacture | |
JPS63179029A (en) | Smelting method | |
WO2024124617A1 (en) | Cofeb target material and preparation method therefor | |
JPS63179028A (en) | Smelting method | |
JP4286367B2 (en) | Sputtering target, wiring film and electronic component | |
JPH01131073A (en) | Target made of high-melting metal silicide and production thereof | |
RU2454483C2 (en) | Manufacturing method of cast target from tantalum-based alloy for magnetron sputtering | |
JPS63179026A (en) | Smelting method | |
JPS6379960A (en) | Metal silicide target having high melting point and its production |