JPS6378579A - Integrated solar cell and manufacture thereof - Google Patents

Integrated solar cell and manufacture thereof

Info

Publication number
JPS6378579A
JPS6378579A JP61222960A JP22296086A JPS6378579A JP S6378579 A JPS6378579 A JP S6378579A JP 61222960 A JP61222960 A JP 61222960A JP 22296086 A JP22296086 A JP 22296086A JP S6378579 A JPS6378579 A JP S6378579A
Authority
JP
Japan
Prior art keywords
electrode
thermosetting resin
electrodes
solar cell
integrated solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61222960A
Other languages
Japanese (ja)
Inventor
Kaneo Watanabe
渡邉 金雄
Yukio Nakajima
行雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61222960A priority Critical patent/JPS6378579A/en
Publication of JPS6378579A publication Critical patent/JPS6378579A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive to make wider an area to contribute to electricity generation by a method wherein a second electrode is fuse-cut on a striplike thermosetting resin formed on the first electrodes of its adjacent cell and with the second electrodes formed dividedly in every cell, the second electrodes are connected to the first electrodes in close to the side of the resin part and at positions closer to the end parts of the first electrodes. CONSTITUTION:A thermosetting resin part 4 formed on the upper parts of first electrodes 2a and 2b is cured by irradiating laser light, is formed on a strip form along the lengthwide direction of the first electrodes in a width of about 100 mum or thereabouts and functions as an insulating part. A penetrated hole 5 is formed in close to the side of this resin part 4 and in a photoelectric conversion region 3 on the side of the end part of the first electrode and the width of this penetrated hole 5 can be formed very narrowly by adjusting the focusing position of the laser light. An electrode material is filled in the penetrated hole 5 at the time of formation of an electrode film and a second electrode 6 is connected with the first electrode 2b of its adjacent cell. Thereby, a significant narrowing of the width between the insulating part and the connection part is attained, an area to contribute to electricity generation as a solar cell becomes wider and there is an effect to improve the generating power.

Description

【発明の詳細な説明】 産業上のセIJ’fl−別所 本発明は、絶縁基板上に、第1電極、第2電極及び両電
極に挟まれた非晶質半導体の光電変換領域で構成される
セルを複数有し、かつ隣接するセルが電気的に直列に接
続されてなる集積型太陽電池及びその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises a first electrode, a second electrode, and an amorphous semiconductor photoelectric conversion region sandwiched between the two electrodes on an insulating substrate. The present invention relates to an integrated solar cell having a plurality of cells, in which adjacent cells are electrically connected in series, and a method for manufacturing the same.

従来の技術 太陽電池価々には発電電圧は低いが、複数個直列に接続
すれば所望の電圧値を得ることができる。
Although the generated voltage of conventional solar cells is relatively low, a desired voltage value can be obtained by connecting a plurality of solar cells in series.

集積型太陽電池はこのような考えの下に、一枚の絶縁基
板上に複数のセルを直列に接続した状態で形成されてい
る。この場合、集積型太陽電池のタイプとして、セルの
並び方向と直交する側の絶縁基板端部で各セルの電極を
接続したものと、セルの境界部で接続したものとの2種
類がある(講談社発行、ブルーパックスB−621rア
モルファス」桑野幸徳著、P139参照)。本発明はそ
のうち後者のものに関する。
Based on this idea, an integrated solar cell is formed by connecting a plurality of cells in series on a single insulating substrate. In this case, there are two types of integrated solar cells: one in which the electrodes of each cell are connected at the edge of the insulating substrate perpendicular to the cell arrangement direction, and one in which the electrodes are connected at the cell boundary ( Published by Kodansha, "Blue Pax B-621r Amorphous" written by Yukinori Kuwano, see page 139). The present invention relates to the latter of these.

従来、このようなタイプの集積型太陽電池は第3図に示
すように、絶縁基板31上に形成した第1電極としての
透明導電膜32上に、Agベース(・層33と5iOz
ペ一スト層34をスクリーン印刷により塗布し加熱焼成
して後(図(イ)参照)、a−3t層35及び第2電極
としての電極膜36を形成しく図(ロ)参照)、シかる
後、レーザ光lをAgペースト層33とSingペース
ト層34上に照射し、電極膜36の加工を行うことによ
り製造されている(図(ハ)参照)。レーザ光lがAg
ベースト層33上に照射されることにより、電極膜36
は第1電極32とAgペースト層33を介して電気的に
接続される。また、レーザ光lがSiO□ペースト層3
4上に照射されることにより、電極膜36は各セル毎に
分割される。そして、これらによって隣合うセルがその
境界部で電気的に直列に接続されることとなる。
Conventionally, as shown in FIG. 3, this type of integrated solar cell has an Ag-based (layer 33 and 5iOz
After applying the paste layer 34 by screen printing and heating and baking it (see figure (a)), the a-3t layer 35 and the electrode film 36 as the second electrode are formed (see figure (b)). Thereafter, the Ag paste layer 33 and the Sing paste layer 34 are irradiated with laser light 1 to process the electrode film 36 (see figure (c)). Laser light l is Ag
By irradiating the base layer 33, the electrode film 36
are electrically connected to the first electrode 32 via the Ag paste layer 33. Moreover, the laser beam l is applied to the SiO□ paste layer 3.
4, the electrode film 36 is divided into cells. Then, adjacent cells are electrically connected in series at the boundary between them.

〕泗」」t(財よ立(JンI町ユ恵 ところで、上記従来の集積型太陽電池の製造方法によれ
ば、Agペースト層33 、SiO□ペースト層34全
34リーン印刷法により形成しているために次のような
問題がある。
By the way, according to the conventional integrated solar cell manufacturing method described above, the Ag paste layer 33 and the SiO□ paste layer 34 are all formed by the lean printing method. This causes the following problems.

■スクリーン印刷の場合、広い面積にわたって形成した
り、曲面の上に形成することが難しく、そのため、一枚
の絶縁基板上に設けるセルの数をあまり多くすることが
できないし、屋根瓦形状をした集積型太陽電池は製作し
すらい。
■In the case of screen printing, it is difficult to form over a large area or on a curved surface, so it is not possible to increase the number of cells on a single insulating substrate, and it is difficult to print on a large area or on a curved surface. Integrated solar cells are just manufactured.

■スクリーン印刷の場合、印刷幅が300〜400μm
と広いために、太陽電池として発電に寄与する面積がそ
れだけ狭くなり、発電能力に一定の限界が生じる。
■For screen printing, the printing width is 300 to 400 μm
Because it is so large, the area that contributes to power generation as a solar cell becomes smaller, and there is a certain limit to the power generation capacity.

そこで、本発明は上記問題点を解消し得る有用な集積型
太陽電池の製造方法及びその方法によって製造された新
規構造の集積型太陽電池を提供することを目的としてい
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a useful method for manufacturing an integrated solar cell that can solve the above-mentioned problems, and an integrated solar cell with a novel structure manufactured by the method.

出題点を解ンするための手段 上記目的を達成するため本発明は、絶縁基板上に、第1
電極、第2電極及び両電極に挟まれた非晶質半導体の光
電変換領域で構成されるセルを複数有し、かつ隣接する
セルが電気的に直列に接続されてなる集積型太陽電池に
おいて、前記第2電極が、隣のセルの第1電極の一部に
形成した帯状の熱硬化性樹脂部の上で溶断されることに
より各セル毎に分割して形成されていると共に、その熱
硬化性樹脂部の側近であって隣のセルの第1電極の端部
寄り位置で該第1電極と接続されていることを特徴とし
ている。
Means for solving questions In order to achieve the above object, the present invention provides a first
In an integrated solar cell having a plurality of cells each including an electrode, a second electrode, and an amorphous semiconductor photoelectric conversion region sandwiched between both electrodes, and in which adjacent cells are electrically connected in series, The second electrode is formed separately for each cell by being cut by melting on a band-shaped thermosetting resin portion formed on a part of the first electrode of an adjacent cell, and the second electrode is formed separately for each cell. It is characterized in that it is connected to the first electrode of an adjacent cell at a position close to the end of the first electrode of the adjacent cell.

又、本発明の集積型太陽電池の製造方法は、第2電掻の
パターニングが、隣接するセルの第1電極の一部に帯状
に形成した熱硬化性樹脂部の上の電極膜をレーザ光にて
溶断することにより行われることを特徴としている。
In addition, in the method for manufacturing an integrated solar cell of the present invention, the patterning of the second electric scraper is performed by exposing the electrode film on the thermosetting resin portion formed in a band shape to a part of the first electrode of the adjacent cell to a laser beam. It is characterized in that it is carried out by fusing at.

この場合、第2電極と隣のセルの第1電極の接続は、熱
硬化性樹脂部側近の非晶質半導体に透孔を穿設し、第2
電極の形成に際して前記透孔内に電極材料を充填するこ
とにより行うことができる。
In this case, the connection between the second electrode and the first electrode of the adjacent cell is made by drilling a through hole in the amorphous semiconductor near the thermosetting resin part and connecting the second electrode with the first electrode of the adjacent cell.
This can be done by filling the through holes with an electrode material when forming the electrodes.

作    用 熱硬化性樹脂部は機能的には第3図に示した従来の集積
型太陽電池におけるStO□ペースト層と同゛じく絶縁
部として働(。しかし、熱硬化性樹脂部を作る方法は、
SiO□ペースト層と異なり、熱硬化性樹脂を第1電極
上適当広さにわたって塗布した後、一部分のみ帯状にレ
ーザ光を照射して硬化させ、残りの未硬化部分を溶媒で
除去すればよい。
Function Functionally, the thermosetting resin part functions as an insulating part in the same way as the StO□ paste layer in the conventional integrated solar cell shown in Figure 3.However, the method of making the thermosetting resin part is teeth,
Unlike the SiO□ paste layer, after applying the thermosetting resin over an appropriate area on the first electrode, only a portion of the thermosetting resin may be cured by irradiating it with laser light in a band shape, and the remaining uncured portion may be removed with a solvent.

このような方法で熱硬化性樹脂部を作成すれば、レーザ
光として非常に細い径の光線を使用することにより、熱
硬化性樹脂部の幅を非常に狭く、例えば100μm以下
の幅で形成できる。従って、その分、太陽電池として発
電に寄与する面積を広(とることができる。
If the thermosetting resin part is created using this method, the width of the thermosetting resin part can be made very narrow, for example, 100 μm or less, by using a laser beam with a very narrow diameter. . Therefore, the area that contributes to power generation as a solar cell can be correspondingly increased.

又、熱硬化性樹脂部を作成する方法はスクリーン印刷法
と異なり、熱硬化性樹脂にレーザ光を照射すればよいの
で、大面積でも曲面上でも支障なく作成できる。
Further, the method for creating the thermosetting resin section is different from the screen printing method, since it is sufficient to irradiate the thermosetting resin with a laser beam, so it can be created without any problem even on a large area or on a curved surface.

去−族一斑 第1図は本発明の一実施例として集積型太陽電池の構造
を示す断面図であり、1は例えば厚み1〜5 mm、縦
横寸法40X12Cff[の広面積の透明ガラスからな
る絶縁基板、2a、2b・・・は第2電極として例えば
厚さ約2000〜5000人で、1氏面に垂直な方向に
長い帯状をした透明導電膜である。この導電膜は、酸化
スズ(SnOz) 、酸化インジウムスズ(ITO)に
代表される透光性導電酸化物(TCO)の単層或いはそ
れらの積層体を絶縁基板lの上面全面に被着形成した後
、所定のセル間隔おきにレーザ光を照射してその部分a
、  bの導電膜を除去することにより形成される。3
は前記第2電極2a、  2b・・・上及び各電極間の
絶縁基板上に一様に形成された光電変換領域である。
Figure 1 is a cross-sectional view showing the structure of an integrated solar cell as an embodiment of the present invention, in which 1 is an insulator made of a large area of transparent glass with a thickness of 1 to 5 mm and a vertical and horizontal dimension of 40 x 12 Cff. The substrates 2a, 2b, . . . are transparent conductive films serving as second electrodes, each having a thickness of about 2,000 to 5,000 mm and having a long strip shape in a direction perpendicular to the 1-degree plane. This conductive film is made by depositing a single layer or a laminate of transparent conductive oxides (TCO) such as tin oxide (SnOz) and indium tin oxide (ITO) on the entire upper surface of an insulating substrate l. After that, laser light is irradiated at predetermined cell intervals to
, b by removing the conductive film. 3
is a photoelectric conversion region uniformly formed on the insulating substrate above the second electrodes 2a, 2b, and between the respective electrodes.

領域はa−St等の非晶質半導体からなり、光CVD法
、プラズマCVD法を用いた公知の手法によって厚み4
000〜7000人程度のpin接合構造に形成されて
いる。
The region is made of an amorphous semiconductor such as a-St, and is formed to a thickness of 4 by a known method using a photo-CVD method or a plasma CVD method.
It is formed into a pin junction structure of about 000 to 7000.

4は前記第1電極2a、2bが上の一部に形成された熱
硬化性樹脂部であり、レーザ光の照射によって硬化させ
てあり、幅約1100Ii程度で第1電極の長さ方向(
紙面に垂直な方向)に沿って帯状に形成しである。この
樹脂部4は絶縁部として機能する。尚、熱硬化性樹脂と
してはフェノール樹脂、メラニン樹脂、ポリエステル樹
脂、ポリイミド樹脂等が使用できる。中でもポリイミド
樹脂は熱的に安定で使用に適している。
4 is a thermosetting resin part on which the first electrodes 2a and 2b are formed, which is hardened by laser light irradiation, and has a width of about 1100Ii in the longitudinal direction of the first electrode (
It is formed into a band shape along the direction (perpendicular to the plane of the paper). This resin part 4 functions as an insulating part. Incidentally, as the thermosetting resin, phenol resin, melanin resin, polyester resin, polyimide resin, etc. can be used. Among them, polyimide resin is thermally stable and suitable for use.

該樹脂部4の側近であって第1電極の端部側の光電変換
領域3には透孔5が形成されている。この透孔5は隣合
うセルの第1電極と第2電極を接続するために利用され
、レーザ光を照射しその部分の非晶質半導体を除去する
ことにより形成される。透孔5の幅はレーザ光の光線の
直径によって決まり、レーザ光線のフォーカス位置の調
整を行うことにより非常に狭く形成することができる。
A through hole 5 is formed in the photoelectric conversion region 3 near the resin portion 4 and on the end side of the first electrode. This through hole 5 is used to connect the first electrode and the second electrode of adjacent cells, and is formed by irradiating laser light and removing the amorphous semiconductor in that portion. The width of the through hole 5 is determined by the diameter of the laser beam, and can be made very narrow by adjusting the focus position of the laser beam.

6は第2電極で、例えばアルミニウム又はアルミニウム
にチタン若しくはチタン銀合金を積層した二層構造、更
にばかがる二層構造を二重に積み重ねた厚さ4000人
〜2μmの電極膜を光電変換領域3の全面に形成した後
、熱硬化性樹脂部4が存在する部分を溶断することによ
って形成されている。この電極膜の形成時に透孔5内に
電極材料が充填され、第2電極6を隣のセルの第1電極
2bと接続する。
6 is a second electrode, for example, a two-layer structure in which titanium or titanium-silver alloy is laminated on aluminum or aluminum, and an electrode film with a thickness of 4,000 to 2 μm, which is a double layered structure in which titanium or titanium-silver alloy is laminated on aluminum, is used as a photoelectric conversion region. After forming the thermosetting resin portion 3 on the entire surface thereof, the portion where the thermosetting resin portion 4 is present is cut by melting. During the formation of this electrode film, the through hole 5 is filled with an electrode material, and the second electrode 6 is connected to the first electrode 2b of the adjacent cell.

次に、上記構成の集積型太陽電池の製造方法を第2図に
基づいて説明する。先ず、図(イ)に示すように透明ガ
ラス等の絶縁基板1上に透明導電膜を公知の手法で被着
した後、レーザ光によりパターニングによって帯状をし
た複数の第1電極2a、2b・・・を形成し、その上に
ポリイミド樹脂等の熱硬化性樹脂11を彷布する。塗布
範囲は制限なく、従って、塗布方法としてスクリーン印
1itJ法等を用いる必要はない。塗布する厚みは、第
2電極6のパターニングに際して照射されるレーザ光が
第1電極2a、2b・・・に到達しないのに十分な厚み
としである。
Next, a method for manufacturing the integrated solar cell having the above structure will be explained based on FIG. 2. First, as shown in Figure (a), a transparent conductive film is deposited on an insulating substrate 1 made of transparent glass or the like by a known method, and then a plurality of band-shaped first electrodes 2a, 2b, etc. are formed by patterning with a laser beam. * is formed, and a thermosetting resin 11 such as polyimide resin is spread thereon. There is no limit to the coating range, so there is no need to use the screen marking 1itJ method or the like as a coating method. The coating thickness is set to be sufficient to prevent the laser light irradiated during patterning of the second electrode 6 from reaching the first electrodes 2a, 2b, . . . .

熱硬化性樹脂11を塗布後、図(ロ)に示すように第1
電極の端部近くの熱硬化性樹脂部分4にレーザ光11を
照射して硬化させる。レーザ光lとしては熱硬化性樹脂
を熱硬化させるのに必要なエネルギーをもったものであ
ればよ(、出力、波長等任意にえらべる。但し、レーザ
光の光線径は、熱硬化性樹脂部40幅を決定するのでな
るべく細いのが望ましく、100μm以下のものが選ば
れる。
After applying the thermosetting resin 11, the first
The thermosetting resin portion 4 near the end of the electrode is irradiated with laser light 11 to be cured. The laser beam l may be of any type as long as it has the energy necessary to thermoset the thermosetting resin (the output, wavelength, etc. can be selected arbitrarily. However, the beam diameter of the laser beam depends on the thermosetting resin part). Since the width is determined, it is desirable that it be as thin as possible, and one of 100 μm or less is selected.

熱硬化樹脂の熱硬化を完了すれば、有機溶媒を用いて未
硬化の熱硬化樹脂を除去しく図(ハ)参照)、続いて、
a −5i等の非晶質半導体からなる光電変換領域3を
プラズマCVD法等によって4000〜7000人の厚
みで形成する(図(ニ)参照)。この後、前記熱硬化性
樹脂部4の側近の非晶質半導体にレーザ光22を照射し
て透孔5を形成する(図(ホ)参照)。このときのレー
ザ光!2は非晶質半導体を溶融するに足るエネルギー密
度をもった、なるべく綱い光径のものが使用される。
After completing the thermosetting of the thermosetting resin, remove the uncured thermosetting resin using an organic solvent (see Figure (c)).
A photoelectric conversion region 3 made of an amorphous semiconductor such as a-5i is formed to a thickness of 4,000 to 7,000 wafers by plasma CVD or the like (see figure (d)). Thereafter, the amorphous semiconductor near the thermosetting resin portion 4 is irradiated with laser light 22 to form a through hole 5 (see Figure (E)). Laser light at this time! 2 is used, which has an energy density sufficient to melt an amorphous semiconductor and has a light diameter as narrow as possible.

透孔5を形成した後、非晶質半導体の上面全面にアルミ
ニウム等の導電膜6を4000人〜2μmの厚みで形成
する(図(へ)参照)。このとき、透孔5には電極材料
が侵入するので、4電膜6と第1電極2a、  2b・
・・とが電気的に接続される。
After forming the through hole 5, a conductive film 6 made of aluminum or the like is formed to a thickness of 4,000 to 2 μm over the entire upper surface of the amorphous semiconductor (see figure (f)). At this time, since the electrode material enters the through hole 5, the four-electrode film 6 and the first electrodes 2a, 2b,
... are electrically connected.

導電膜6を形成後、図(ト)に示すように、熱硬化性樹
脂部4の存在する部分にレーザ光13を照射する。この
ときレーザ光13のエネルギー密度が充分高ければ、熱
硬化性樹脂部4の上に存在する導電膜6及び非晶質半導
体3を溶融し、図示の如く、導電11! 6を熱硬化性
樹脂部4の上で各セルCI、C2毎に分断できる。尚、
熱硬化性樹脂部4は十分な厚みがあるので、前記レーザ
光が第1電+!i2a、2b上に到達し、該電極を溶融
するには至らない。
After forming the conductive film 6, as shown in FIG. At this time, if the energy density of the laser beam 13 is high enough, the conductive film 6 and the amorphous semiconductor 3 existing on the thermosetting resin part 4 will be melted, and the conductive film 6 and the amorphous semiconductor 3 will be melted as shown in the figure. 6 can be divided into cells CI and C2 on the thermosetting resin part 4. still,
Since the thermosetting resin portion 4 has a sufficient thickness, the laser beam can reach the first voltage +! It reaches above i2a, 2b and does not reach the point of melting the electrodes.

上記の如くして製造した集積型太陽電池によれば、絶縁
部として機能する熱硬化性樹脂部・1は幅が100μm
程度と狭いので、それだけ太陽電池として発電に寄与す
る面積が広くなる。また、熱硬化性樹脂部4はレーザ加
工によって形成されるので、全工程をレーザで加工する
ことができ、集積型太陽電池の広面積化、曲面化に対応
できる。
According to the integrated solar cell manufactured as described above, the thermosetting resin part 1 functioning as an insulating part has a width of 100 μm.
Since the area is relatively small, the area that contributes to power generation as a solar cell increases accordingly. Further, since the thermosetting resin portion 4 is formed by laser processing, all steps can be performed by laser processing, and it is possible to cope with larger area and curved surface of the integrated solar cell.

上記実施例の集積型太陽電池は、絶1(基板1に透明ガ
ラス、第1電極2.2b・・・に透明導電膜を用いるこ
とにより、絶縁基板側から光が入射する構造であるが、
本発明はこれに限定されるものではなく、第2電極6を
透明電極とすることによって第2電極側から光が入射す
る構造のものにも適用できることはいうまでもない。
The integrated solar cell of the above embodiment has a structure in which light enters from the insulating substrate side by using transparent glass for the substrate 1 and a transparent conductive film for the first electrodes 2, 2b, etc.
It goes without saying that the present invention is not limited to this, and can also be applied to a structure in which light enters from the second electrode side by making the second electrode 6 a transparent electrode.

光凱重須工 以上の如く、本発明によれば、絶縁部として熱硬化性樹
脂を用いているので、レーザ光にて硬化させることによ
り、従来のSiO□ペースト層をスクリーン印刷して形
成するものに比べて絶縁部の大幅な幅狭化が達成するし
、また、隣合うセルの第1電極と第2電極の接続を、熱
硬化性樹脂部分近の非晶質半導体にレーザ光にて穿設し
た透孔を通じて行っているので、従来のAgペースト層
をスクリーン印刷して形成するものに比べて接続部の大
幅な幅狭化が達成する。そして、これら両者の幅狭化に
より、太陽電池としての発電に寄与する面積が広くなり
、発電能力が向上するといった効果がある。
As described above, according to the present invention, a thermosetting resin is used as the insulating part, so the conventional SiO□ paste layer is formed by screen printing by curing it with laser light. The width of the insulating part can be significantly narrowed compared to the conventional one, and the connection between the first and second electrodes of adjacent cells can be made using laser light on the amorphous semiconductor near the thermosetting resin part. Since this is done through a drilled through hole, the width of the connection can be significantly narrowed compared to the conventional method of forming the connection by screen printing a layer of Ag paste. By narrowing both of these widths, the area that contributes to power generation as a solar cell becomes larger, which has the effect of improving power generation capacity.

その上、絶縁部及び接続部はスクリーン印刷法を用いな
くてもレーザ加工によって形成できるので、基板面積が
例えば40X120C111というように大きくても、
また、基板が曲面形状をしていてもその上に太陽電池複
数個を集積した状態で形成できるといった効果もある。
Moreover, the insulating parts and the connecting parts can be formed by laser processing without using screen printing, so even if the substrate area is large, for example 40 x 120 C111,
Another advantage is that even if the substrate has a curved shape, a plurality of solar cells can be integrated thereon.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例として、集積型太陽電池の構
造を示す図、第2図は第1図の集積型太陽電池の製造方
法を示す図、第3図は従来の太陽電池の製造方法を説明
する図である。 1・・・絶縁基板、2a、2b・・・第1電極、3・・
・光電変換領域、4・・・熱硬化性樹脂部、5・・・透
孔、6・・・第2電極。 特許出願人 : 三洋電機株式会社 代理人    弁理士  中込 司朗 第3図 32    当132
FIG. 1 is a diagram showing the structure of an integrated solar cell as an embodiment of the present invention, FIG. 2 is a diagram showing a method for manufacturing the integrated solar cell of FIG. 1, and FIG. 3 is a diagram showing a conventional solar cell. It is a figure explaining a manufacturing method. 1... Insulating substrate, 2a, 2b... First electrode, 3...
- Photoelectric conversion region, 4... thermosetting resin part, 5... through hole, 6... second electrode. Patent Applicant: Sanyo Electric Co., Ltd. Agent Patent Attorney Shiro Nakagome Figure 3 32 Part 132

Claims (6)

【特許請求の範囲】[Claims] (1)絶縁基板上に、第1電極、第2電極及び両電極に
挟まれた非晶質半導体の光電変換領域で構成されるセル
を複数有し、かつ隣接するセルが電気的に直列に接続さ
れてなる集積型太陽電池において、前記第2電極が、隣
のセルの第1電極の一部に形成した帯状の熱硬化性樹脂
部の上で溶断されることにより各セル毎に分割して形成
されていると共に、その熱硬化性樹脂部の側近であって
隣のセルの第1電極の端部寄り位置で該第1電極と接続
されていることを特徴とする集積型太陽電池。
(1) A plurality of cells are formed on an insulating substrate, each consisting of a first electrode, a second electrode, and an amorphous semiconductor photoelectric conversion region sandwiched between both electrodes, and adjacent cells are electrically connected in series. In the connected integrated solar cell, the second electrode is divided into each cell by being cut on a band-shaped thermosetting resin portion formed on a part of the first electrode of an adjacent cell. What is claimed is: 1. An integrated solar cell characterized in that the integrated solar cell is formed of a thermosetting resin portion and is connected to the first electrode of an adjacent cell at a position close to the end of the first electrode of the adjacent cell.
(2)絶縁基板上に、第1電極、第2電極及び両電極に
挟まれた非晶質半導体の光電変換領域で構成されるセル
を複数有し、かつ隣接するセルが電気的に直列に接続さ
れてなる集積型太陽電池の製造方法であって、前記第2
電極のパターニングが、隣接するセルの第1電極の一部
に帯状に形成した熱硬化性樹脂部の上の電極膜をレーザ
光にて溶断することにより行われることを特徴とする集
積型太陽電池の製造方法。
(2) A plurality of cells are formed on an insulating substrate, each consisting of a first electrode, a second electrode, and an amorphous semiconductor photoelectric conversion region sandwiched between both electrodes, and adjacent cells are electrically connected in series. A method for manufacturing an integrated solar cell in which the second
An integrated solar cell characterized in that electrode patterning is performed by cutting an electrode film on a thermosetting resin part formed in a band shape on a part of a first electrode of an adjacent cell using a laser beam. manufacturing method.
(3)絶縁基板上に、第1電極、第2電極及び両電極に
挟まれた非晶質半導体の光電変換領域で構成されるセル
を複数有し、かつ隣接するセルが電気的に直列に接続さ
れてなる集積型太陽電池の製造方法であって、第1電極
の一部に帯状に熱硬化性樹脂部を形成すると共に、該熱
硬化性樹脂部側近の非晶質半導体に透孔を穿設し、第2
電極の形成に際して前記透孔に電極材料を充填し隣合う
セルの第1電極と第2電極とを直列に接続し、しかる後
、熱硬化性樹脂部の上の電極部分をレーザ光にて溶断し
、各セル毎に第2電極を分割形成することを特徴とする
集積型太陽電池の製造方法。
(3) A plurality of cells are formed on an insulating substrate, each consisting of a first electrode, a second electrode, and an amorphous semiconductor photoelectric conversion region sandwiched between both electrodes, and adjacent cells are electrically connected in series. A method for manufacturing a connected integrated solar cell, the method comprising: forming a strip-shaped thermosetting resin part on a part of a first electrode; and forming a through hole in an amorphous semiconductor adjacent to the thermosetting resin part. drilled and second
When forming an electrode, the through hole is filled with an electrode material, the first electrode and the second electrode of adjacent cells are connected in series, and then the electrode part above the thermosetting resin part is fused with a laser beam. A method for manufacturing an integrated solar cell, characterized in that the second electrode is formed separately for each cell.
(4)前記熱硬化性樹脂部は、第1電極全面に塗布した
熱硬化性樹脂の一部にレーザ光を照射し帯状に硬化させ
た後、非照射部を有機溶媒により除去することにより形
成されることを特徴とする特許請求の範囲第(2)項に
記載の集積型太陽電池の製造方法。
(4) The thermosetting resin portion is formed by irradiating a portion of the thermosetting resin coated on the entire surface of the first electrode with laser light to harden it into a band shape, and then removing the non-irradiated portion with an organic solvent. A method for manufacturing an integrated solar cell according to claim (2), characterized in that:
(5)前記熱硬化性樹脂部は、第1電極全面に塗布した
熱硬化性樹脂の一部にレーザ光を照射し帯状に硬化させ
た後、非照射部を有機溶媒により除去することにより形
成されることを特徴とする特許請求の範囲第(3)項に
記載の集積型太陽電池の製造方法。
(5) The thermosetting resin portion is formed by irradiating a portion of the thermosetting resin coated on the entire surface of the first electrode with laser light to harden it into a band shape, and then removing the non-irradiated portion with an organic solvent. A method for manufacturing an integrated solar cell according to claim (3).
(6)熱硬化性樹脂部側近の非晶質半導体に穿設される
透孔はレーザ光の照射によって形成されることを特徴と
する特許請求の範囲第(3)項に記載の集積型太陽電池
の製造方法。
(6) The integrated solar device according to claim (3), wherein the through hole formed in the amorphous semiconductor adjacent to the thermosetting resin portion is formed by irradiation with laser light. How to manufacture batteries.
JP61222960A 1986-09-20 1986-09-20 Integrated solar cell and manufacture thereof Pending JPS6378579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222960A JPS6378579A (en) 1986-09-20 1986-09-20 Integrated solar cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222960A JPS6378579A (en) 1986-09-20 1986-09-20 Integrated solar cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6378579A true JPS6378579A (en) 1988-04-08

Family

ID=16790578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222960A Pending JPS6378579A (en) 1986-09-20 1986-09-20 Integrated solar cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6378579A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091419A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Solar cell module and method of manufacturing the same
JP2017152509A (en) * 2016-02-24 2017-08-31 積水化学工業株式会社 Solar cell module and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091419A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Solar cell module and method of manufacturing the same
JP2017152509A (en) * 2016-02-24 2017-08-31 積水化学工業株式会社 Solar cell module and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3129728B2 (en) Thin film semiconductor device
US4697041A (en) Integrated solar cells
US4724011A (en) Solar cell interconnection by discrete conductive regions
CN100502057C (en) Photovoltaic cell, photovoltaic cell module, method of fabricating photovoltaic cell and method of repairing photovoltaic cell
JPH0472392B2 (en)
US5217921A (en) Method of photovoltaic device manufacture
US11869993B2 (en) Method of manufacturing a thin film photovoltaic product
JPS6378579A (en) Integrated solar cell and manufacture thereof
JPS61214483A (en) Manufacture of integrated type solar cell
JP2004095661A (en) Photoelectric converting device and its manufacturing method
JP2000196117A (en) Manufacture of photoelectric conversion device
JPH0476227B2 (en)
JPH0918045A (en) Solar battery and manufacture thereof
US5041391A (en) Method of manufacturing a photovoltaic device
JP3521268B2 (en) Method for manufacturing photovoltaic device
JP3573869B2 (en) Method for manufacturing photovoltaic device
JPH0936397A (en) Integrated solar cell and its manufacture
JPH0243776A (en) Manufacture of thin film solar cell
JPH03196679A (en) Manufacture of thin film solar battery
JPH0582816A (en) Photovoltaic device and its manufacture
JP2771650B2 (en) Method for manufacturing photovoltaic device
JPS61241981A (en) Manufacture of thin film solar battery
JPS5935491A (en) Photo semiconductor device
JPS63261762A (en) Manufacture of photovoltaic device
JPS63102274A (en) Photovoltaic device