JPS6376997A - Container for hydrogen occlusion alloy - Google Patents

Container for hydrogen occlusion alloy

Info

Publication number
JPS6376997A
JPS6376997A JP61220677A JP22067786A JPS6376997A JP S6376997 A JPS6376997 A JP S6376997A JP 61220677 A JP61220677 A JP 61220677A JP 22067786 A JP22067786 A JP 22067786A JP S6376997 A JPS6376997 A JP S6376997A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
container
heat exchange
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61220677A
Other languages
Japanese (ja)
Other versions
JPH0730878B2 (en
Inventor
Minoru Imafuku
今福 実
Satoshi Hanesaka
智 羽坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP61220677A priority Critical patent/JPH0730878B2/en
Publication of JPS6376997A publication Critical patent/JPS6376997A/en
Publication of JPH0730878B2 publication Critical patent/JPH0730878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To obtain improved heat exchange effectiveness and a compact construction by providing a heat exchanging member of an integral combination of a plurality of metal plates and metal corrugated sheets laminated and adhered alternately with one another including two systems of communicating portions, the heat exchanging member being filled with hydrogen occlusion alloy and having hydrogen gas inlet/outlet pipes. CONSTITUTION:Impure gas in hydrogen gas is exhausted from an A system to the outside through a hydrogen inlet/outlet pipe 7, and a communicating portion of the A system is closed at the atmospheric or a pressure slightly lower than the pressure during occlusion. Then, mixed gas containing hydrogen gas is supplied under pressure through a hydrogen inlet/outlet pipe 8 in a B system into a container body 2. The hydrogen gas in the mixed gas is selectively occluded in an alloy 4 in the B system, and heat caused by the occlusion is transmitted through metal plates 9... and metal fins 10... to the alloy 4 in the A system. In the communicating portion of the A system, the hydrogen gas occluded and stored in the alloy is ejected therefrom by the heat, resulting in provision of high purity hydrogen gas.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、水素吸蔵合金を利用して水素を精製あるい
は貯蔵するための水素吸蔵合金用容器に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a hydrogen storage alloy container for refining or storing hydrogen using a hydrogen storage alloy.

「従来の技術」 L aN i6、T 1Nin+、s 、F eT i
?、;どの水素吸蔵合金(以下、単に合金と称する。)
は、その水素吸蔵、放出特性を利用して、水素の貯蔵、
輸送、水素精製などの用途に使用されつつある。
"Prior art" L aN i6, T 1Nin+, s, FeT i
? , Which hydrogen storage alloy (hereinafter simply referred to as alloy)
utilizes its hydrogen storage and release properties to store and release hydrogen.
It is being used for applications such as transportation and hydrogen purification.

このような用途に合金を使用する場合には、耐正性で熱
交換機能を有する容器に合金を収容して使われる。
When an alloy is used for such purposes, it is housed in a container that is resistant to heat and has a heat exchange function.

従来、この種の容器とりでは、例えば水素ガスを導入、
導出する水素出入管が設けられた有底筒状の金属製の容
器本体内に合金が充填され、出入管の近傍に合金の出入
管への移動を防止するフィルターが設けられたものなど
が知られている。そして、この容器では、容器本体の外
側に設けられたジャケット内に熱媒体を流すことにより
、合金の水素吸蔵による発熱あるいは水素放出による吸
熱に対応して合金を冷却あるいは加熱することができる
ようになっている。
Conventionally, in this type of container, for example, hydrogen gas was introduced,
It is known that the alloy is filled in a bottomed cylindrical metal container body that is equipped with an inlet and outlet pipe for deriving hydrogen, and a filter is installed near the inlet and outlet pipe to prevent the alloy from moving into the inlet and outlet pipe. It is being In this container, by flowing a heat medium into the jacket provided on the outside of the container body, the alloy can be cooled or heated in response to the heat generated by hydrogen absorption in the alloy or the heat absorbed by hydrogen release. It has become.

ところで、一般に合金は、数回の水素吸蔵、放。By the way, alloys generally absorb and release hydrogen several times.

出を繰り返すと、粉化し、径が数μ次の微粉末となるこ
とが知られている。
It is known that if the extraction is repeated, it will turn into powder and become a fine powder with a diameter of several microns.

「発明が解決しようとする問題点」 ところが、このような容器にあっては、次のような問題
点があった。
``Problems to be solved by the invention'' However, such containers had the following problems.

〔1)容器内に合金が移動自在に充填されているため、
合金が粉末化した状態で水素の吸蔵、放出を繰り返し行
なうと、水素吸蔵は通常5〜10に97cm”の加圧下
で行なわれ、放出は常圧もしくは吸蔵時の圧力より若干
低い圧力下で行なわれることから、放出から吸蔵に切換
わる際に、この圧力差によって粉末状合金が容器本体内
で移動せしめられて、吸蔵、放出を繰り返すごとに合金
粉末が容器本体内の一箇所に偏在する。そして、水素吸
蔵時には、特に合金の体積が15〜20%増加し、膨張
するため、偏在した合金により容器の一部に応力が集中
し、容器の変形や破壊につながる恐れがあった。また、
合金が容器本体内に偏在すると、合金が団塊になり、そ
の表面積が減少し、水素吸蔵量や吸蔵速度などが低下す
る不都合もあった。
[1] Since the alloy is movably filled in the container,
When the alloy is repeatedly stored and released in a powdered state, hydrogen storage is usually performed under a pressure of 5 to 97 cm, and release is performed under normal pressure or a pressure slightly lower than the pressure at the time of storage. Therefore, when switching from release to occlusion, the powdered alloy is moved within the container body due to this pressure difference, and each time occlusion and release are repeated, the alloy powder is unevenly distributed in one location within the container body. During hydrogen storage, the volume of the alloy increases by 15 to 20% and expands, so stress is concentrated in a part of the container due to the unevenly distributed alloy, which may lead to deformation or destruction of the container.
When the alloy is unevenly distributed within the container body, the alloy becomes agglomerated, its surface area decreases, and there is also the disadvantage that the amount of hydrogen storage and the storage rate decrease.

このため、従来では合金の偏在を防止するために容器内
に緩衝材を入れたり、容器の内圧による破壊を防止する
ために容器の壁面を肉厚にしたりするなどの種々の方策
が講じられているが、根本的な解決とはなっていなかっ
た。
For this reason, various measures have been taken in the past, such as inserting cushioning material into the container to prevent uneven distribution of the alloy, and making the walls of the container thicker to prevent destruction due to internal pressure. However, it was not a fundamental solution.

〔2〕容器本体の壁面を介して合金と熱媒体とが熱交換
を行なうようになっているが、熱交換に係る容器本体の
壁面の表面積が小さいため、熱交換効率が低く、合金に
よる水素吸蔵および放出に多大な時間と膨大なエネルギ
ーが必要であった。
[2] Heat is exchanged between the alloy and the heat medium through the wall of the container body, but because the surface area of the wall of the container body involved in heat exchange is small, the heat exchange efficiency is low, and hydrogen by the alloy is A large amount of time and energy were required for storage and release.

〔3〕合金が充填される容器本体と熱媒体が流れるジャ
ケットとに分割構成され、かつ伝熱面積が小さいため、
水素吸蔵、放出能力を向上させる目的で合金の充填量を
増やそうとすると、全体の容積や重量を大きくする必要
があり、そのため合金単位重量当たりの容器の体積や重
量も大きくなって、コンパクト化や軽量化が難しいなど
の問題もあった。
[3] It is divided into a container body filled with alloy and a jacket through which the heat medium flows, and the heat transfer area is small.
If you try to increase the amount of alloy filled with the purpose of improving hydrogen absorption and release capacity, you will need to increase the overall volume and weight, which will also increase the volume and weight of the container per unit weight of the alloy, making it difficult to make it more compact. There were also problems such as difficulty in reducing the weight.

「問題点を解決するための手段」 そこで、この発明の第1の発明の水素吸蔵合金用容器は
、熱交換部を、複数の金属プレートと小孔が形成された
複数の金属製波板とを交互に積層し接合一体化すること
により多段構造体とした上、偶数段目および奇数段目を
それぞれまとめて2系統の流通部を構成するとともに、
これら流通部をなす熱交換部に水素吸蔵合金を充填しか
つ熱交換部?−父、?l1行の十舎イブ中人等九迅lキ
÷、諜:牢シ1 トーことにより、上記の問題点を解消
するようにした。
"Means for Solving the Problems" Therefore, in the first aspect of the present invention, the container for a hydrogen storage alloy has a heat exchanger formed of a plurality of metal plates and a plurality of corrugated metal plates in which small holes are formed. are alternately stacked and joined together to form a multi-stage structure, and the even-numbered stages and odd-numbered stages are each grouped together to form a two-system distribution section.
Are the heat exchange parts that form these circulation parts filled with hydrogen storage alloy and the heat exchange parts? -Father? By doing so, the above problem was solved.

また、この発明の第2の発明の水素吸蔵合金用容器は、
熱交換部を、複数の金属プレートと小孔が形成された複
数の金属製波板とを交互に積層しかつ接合一体化するこ
とにより多段構造体とした上、偶数段目および奇数段目
をそれぞれまとめて2系統の流通部を構成するとともに
、これら流通部をなす熱交換部のいずれか一方に水素吸
蔵合金を充填しかつ多孔質の水素ガス出入管を設け、他
方の熱交換部を熱媒体用としたことにより、上記の問題
点を解消するようにした。
Further, the container for hydrogen storage alloy according to the second invention of the present invention is
The heat exchange part is made into a multi-stage structure by alternately stacking a plurality of metal plates and a plurality of corrugated metal plates in which small holes are formed and joining them together, and the even-numbered and odd-numbered stages are Together, they constitute two systems of circulation sections, and one of the heat exchange sections forming these circulation sections is filled with a hydrogen storage alloy and provided with a porous hydrogen gas inlet/output pipe, and the other heat exchange section is heated. By using it for media, the above problems were solved.

「実施例」 以下、図面を参照してこの発明の詳細な説明する。"Example" Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図〜第6図は、この発明の水素吸蔵合金用容器の一
例を示すもので、図中符号1は、水素吸蔵合金用容器で
ある。この水素吸蔵合金用容器1は、金属製耐圧容器で
あって、このものは、容器本体2と熱交換部3と合金4
から概略構成されているー 容器本体2は、第1図および第2図に示すように、角筒
状の耐圧容器である。この容器本体2の両開口端部には
、それぞれの開口端部を塞ぐフランジ5.6が接合され
、これらフランジ5.6の中央部には、それぞれ容器本
体Z内に水素を導入あるいは容器本体2から水素を導出
するための水素吸排管7.8が接続されている。
1 to 6 show an example of a container for a hydrogen storage alloy according to the present invention, and reference numeral 1 in the figures indicates the container for a hydrogen storage alloy. This hydrogen storage alloy container 1 is a metal pressure-resistant container, and includes a container body 2, a heat exchange part 3, and an alloy 4.
As shown in FIGS. 1 and 2, the container main body 2, which is roughly constructed from the following, is a rectangular cylindrical pressure-resistant container. Flanges 5.6 that close the respective open ends are joined to both open ends of this container body 2, and flanges 5.6 are provided at the center of each of these flanges 5.6 for introducing hydrogen into the container body Z or A hydrogen intake/exhaust pipe 7.8 for deriving hydrogen from 2 is connected.

この容器本体2の内部には、第2図〜第4図に示すよう
に、多段式の熱交換部3が設けられている。この熱交換
部3は、二枚の金属プレート9.9の間に金属フィン(
金属製波板)10が挟着されたユニットが多段に積層さ
れてなるものである。
Inside the container body 2, as shown in FIGS. 2 to 4, a multi-stage heat exchange section 3 is provided. This heat exchange section 3 has metal fins (
It is formed by stacking units in which corrugated metal plates (10) are sandwiched in multiple stages.

金属プレート9は、矩形の薄板であって、このものの板
厚は、この金属プレート9を形成する金属の種類などに
応じて決められるが、アルミニウム製の場合、約1〜5
JIM程度の範囲とされる。
The metal plate 9 is a rectangular thin plate, and the thickness of the metal plate 9 is determined depending on the type of metal forming the metal plate 9, but in the case of aluminum, it is approximately 1 to 5 mm thick.
It is said to be in the range of JIM.

金属フィンlOは、第5図に示すように、波板11・・
・と、水素出入管12・・・と、仕切板13と、閉塞板
14とからなるものである。
As shown in FIG.
. . , a hydrogen inlet/outlet pipe 12 . . . , a partition plate 13 , and a closing plate 14 .

波板11は、矩形の薄板に互いに平行な波11が複数個
形成されてなるものであって、この波の高さおよび波の
ピッチは、それぞれ5〜20+nm程度の範囲であるこ
とが好ましい。この波板11には、波[11の表裏を連
通ずる複数の小孔15・・・が形成されており、この小
孔15の内径は、0゜5〜3貢貢程度の範囲とされ、そ
の密度は波板11の約1〜5 CI”当たり1個の割合
とされる。
The corrugated plate 11 is formed by forming a plurality of mutually parallel corrugations 11 on a rectangular thin plate, and the height and pitch of the corrugations are preferably in the range of about 5 to 20+ nm, respectively. A plurality of small holes 15 are formed in this corrugated plate 11, and the inside diameter of the small holes 15 is in the range of about 0°5 to 3°. The density is approximately 1 piece per 1 to 5 CI'' of the corrugated sheet 11.

この波板11は、波方向に直交する方向に複数個、所定
間隔を置いて並べられており、これら波板11と金属プ
レート9との間の隙間には、第5図に示すように波方向
に沿って水素出入管12・・・がそれぞれ配設されてい
る。この水素出入管12は、第6図に示すように、その
周壁に一様に水素ガスを通過させるが合金を通過させな
い数μ肩の微細孔が形成された多孔質パイプであって、
このものの両端面には、数μmの微細孔が形成された円
板状の多孔質フィルター16が溶接等によって接合され
ている。また、この水素出入管12を形成する材料とし
ては、加工性、耐熱性および耐圧性などを勘案して焼結
金属、セラミック、合成樹脂などが好適に用いられや。
A plurality of corrugated plates 11 are arranged at predetermined intervals in a direction perpendicular to the wave direction, and the gaps between these corrugated plates 11 and the metal plate 9 are filled with corrugations as shown in FIG. Hydrogen inlet and outlet pipes 12 are arranged along the direction. As shown in FIG. 6, this hydrogen inlet/outlet pipe 12 is a porous pipe in which fine pores of several micrometers are formed in its peripheral wall to allow hydrogen gas to pass through uniformly but not to allow alloy to pass through.
A disc-shaped porous filter 16 in which micropores of several μm are formed is joined to both end surfaces of this filter by welding or the like. Further, as a material for forming the hydrogen inlet/outlet pipe 12, sintered metal, ceramic, synthetic resin, etc. are preferably used in consideration of workability, heat resistance, pressure resistance, etc.

そして、交互に並べられた波板11・・・および水素出
入管12・・・の両側部には、水素出入管12の長手方
向に直交する方向にそれぞれ矩形の仕切板13と閉塞板
14とが固定されている。これら仕切板13と閉塞板1
4とは、それぞれ金属フィン10を挟む金属プレート9
.9間の両開口端を塞ぐものであって、このうち仕切板
13には、水素出入管12の多孔質フィルター16が接
合された側の端部が嵌着する円形の貫通孔17・・・が
形成されている。
On both sides of the corrugated plates 11 and the hydrogen inlet and outlet pipes 12 that are arranged alternately, there are rectangular partition plates 13 and blocking plates 14, respectively, in a direction perpendicular to the longitudinal direction of the hydrogen inlet and outlet pipes 12. is fixed. These partition plates 13 and occlusion plates 1
4 are metal plates 9 that sandwich metal fins 10, respectively.
.. The partition plate 13 has a circular through hole 17 into which the end of the hydrogen inlet/output pipe 12 on the side to which the porous filter 16 is joined is fitted. is formed.

このような構成の金属プレート9と金属フィンlOとか
らは、金属フィン10が二枚の金属プレート9.9間に
挟着されることによりユニットが構成される。そして、
このユニットは、その閉塞板14が第1図に示す容器本
体2のフランジ5側およびフランジ6側に順次交互に配
されるように多段に積層され、それぞれ接する箇所でブ
レージング溶接等によって接合一体化されている。
The metal plate 9 and the metal fin 1O having such a configuration form a unit by sandwiching the metal fin 10 between the two metal plates 9.9. and,
This unit is stacked in multiple stages so that the closing plates 14 are sequentially and alternately arranged on the flange 5 side and the flange 6 side of the container body 2 shown in Fig. 1, and are joined together by brazing welding etc. at the points where they contact each other. has been done.

ニットは、いわゆるプレートフィン型の熱交換部3を構
成している。そして、この熱交換部3を形成する材料と
しては、熱交換性を考慮して伝熱係数が大きく、かつ多
段構造を考慮して機械強度の高いものが選ばれ、具体的
にはアルミニウムやステンレスなどが好適に用いられる
。なお、互いに隣合うユニットは、この例において金属
プレート9を互いに共用している。
The knit constitutes a so-called plate-fin type heat exchange section 3. The material for forming the heat exchange section 3 is selected from materials that have a large heat transfer coefficient in consideration of heat exchange performance and high mechanical strength in consideration of the multi-stage structure. Specifically, materials such as aluminum and stainless steel are selected. etc. are preferably used. In this example, adjacent units share the metal plate 9.

このような熱交換部3には、各ユニットの金属プレート
9・・・と金属フィン10・・・との間に合金4が充填
されている。この合金4には、冷却または加圧すると、
水素を吸蔵して発熱反応を伴って金属水素化物となり、
逆にこの金属水素化物を加熱または減圧下に置くと、吸
熱反応を伴って水素を放出する特性を有するもののうち
、特に水素吸蔵能力および経済性などを加味したしのが
選ばれ、具体的には、L aN is 、T iM n
+、a、FeTiなどが用いられる。また、合金4の充
填量は、金属プレート9と金属フィンIOとの間隔やこ
れら金属プレート9および金属フィン10の大きさによ
り適宜法められる。
In such a heat exchange section 3, alloy 4 is filled between the metal plates 9 and the metal fins 10 of each unit. When cooled or pressurized, this alloy 4 has the following properties:
It absorbs hydrogen and becomes a metal hydride through an exothermic reaction.
On the other hand, when this metal hydride is heated or placed under reduced pressure, it releases hydrogen through an endothermic reaction, and those with particular consideration to hydrogen storage capacity and economic efficiency are selected. , L aN is , T iM n
+, a, FeTi, etc. are used. Further, the filling amount of the alloy 4 is determined as appropriate depending on the distance between the metal plate 9 and the metal fin IO and the sizes of the metal plate 9 and the metal fin 10.

そして、このような熱交換部3には、第1図〜第4図に
示すように、容器本体2のフランジ5側に奇数段目のユ
ニットの仕切板【3・・・が配されたA系統と、フラン
ジ6側に偶数段目のユニットの仕切[13・・・が配さ
れたB系統の2系統からなる流通部が形成されている。
As shown in FIGS. 1 to 4, in such a heat exchange section 3, partition plates [3...] of odd-numbered units are arranged on the flange 5 side of the container body 2. A flow section is formed that consists of two systems: a system and a B system in which partitions [13...] of even-numbered units are arranged on the flange 6 side.

そして、この熱交換部3のA系統側の端部とフランジ5
との間には、第4図に示すように水素ガスの流路となる
空隙が形成され、図示しないB系統側の熱交換部3の端
部とフランジ6との間にも上記と同様の空隙が形成され
ている。
The end of this heat exchanger 3 on the A system side and the flange 5
As shown in FIG. 4, a gap is formed between the flange 6 and the end of the heat exchange section 3 on the B system side (not shown), and a gap similar to the above is formed between the flange 6 and the end of the heat exchange section 3 on the side of the B system (not shown). A void is formed.

次に、上記の構成からなる水素吸蔵合金用容器Iを用い
た水素ガスの精製方法の一例を説明する。
Next, an example of a method for purifying hydrogen gas using the hydrogen storage alloy container I having the above structure will be described.

まず、第1図において、2系統の流通部のうち、A系統
の水素吸排管7から容器本体2内に水素ガスを含む混合
ガスを加圧供給する。この混合ガスは、フランジ5側の
多孔質フィルター16・・・を介して水素出入管12・
・・にそれぞれ供給され、水素出入管12・・・の周壁
の微細孔から各ユニットの金属プレート9.9間の間隙
に導入され、さらに波板11の小孔15・・・を通じて
上記間隙内に万石なく満たされる。ここで、上記の混合
ガスは、水素出入管12・・・の微細孔から水素出入管
12・・の半径方向外方に緩やかに噴出せしめられる。
First, in FIG. 1, a mixed gas containing hydrogen gas is supplied under pressure into the container body 2 from the hydrogen intake/discharge pipe 7 of the A system among the two flow sections. This mixed gas passes through the hydrogen inlet/output pipe 12 and the porous filter 16 on the flange 5 side.
..., introduced into the gap between the metal plates 9.9 of each unit through the fine holes in the peripheral wall of the hydrogen inlet/output pipe 12..., and further into the gap through the small holes 15 of the corrugated plate 11. I am completely satisfied. Here, the above-mentioned mixed gas is gently ejected outward in the radial direction of the hydrogen inlet/outlet pipes 12 from the fine holes of the hydrogen inlet/outlet pipes 12 .

したがって、この混合ガスの導入により、合金4が移動
せしめられることがなく、合金4は偏在しない。
Therefore, by introducing this mixed gas, the alloy 4 is not moved and the alloy 4 is not unevenly distributed.

次いで、混合ガス中の水素ガスは、各ユニットの金属プ
レート9・・と金属フィンIO・・との間に充填された
合金4に選択的に吸蔵される。このとき、A系統側の合
金4は、水素吸蔵に伴う発熱反応により昇温するが、常
温になるまで放冷される。
Next, hydrogen gas in the mixed gas is selectively occluded in the alloy 4 filled between the metal plates 9... and the metal fins IO... of each unit. At this time, the temperature of the alloy 4 on the A system side rises due to the exothermic reaction accompanying hydrogen absorption, but it is left to cool down to room temperature.

次いで、A系統側から水素吸排管7を通じて外部に水素
ガス中の不純ガスを排気し、このA系統側の流通部を常
圧あるいは吸蔵時の圧力より若干低い圧力のときに閉じ
る。
Next, impure gas in the hydrogen gas is exhausted to the outside from the A system side through the hydrogen suction/exhaust pipe 7, and the flow section on the A system side is closed when the pressure is normal pressure or slightly lower than the pressure at the time of storage.

次に、B系統の水素吸排管8から容器本体2内に水素ガ
スを含む混合ガスを加圧供給する。このとき、混合ガス
中の水素ガスは、B系統側の合金4に選択的に吸蔵され
、この吸蔵に伴う熱が金属プレート9・・・および金属
フィンlO・・・を介してA系統側の合金4に伝熱され
る。A系統側の流通部では、上記の熱により合金4から
吸蔵保持していた水素ガスが放出され、純度の高い水素
ガスが得られる。
Next, a mixed gas containing hydrogen gas is supplied under pressure into the container body 2 from the hydrogen suction and exhaust pipe 8 of the B system. At this time, the hydrogen gas in the mixed gas is selectively occluded in the alloy 4 on the B system side, and the heat accompanying this occlusion is transferred to the A system side through the metal plate 9... and the metal fin lO... Heat is transferred to Alloy 4. In the flow section on the A system side, the hydrogen gas occluded and held from the alloy 4 is released by the heat described above, and highly pure hydrogen gas is obtained.

このようにしてA系統側および13系統側の両流通部で
、水素ガスの吸排時期を同時に行なえば、水素ガスの吸
蔵を行なうB系統側で発せられろ熱をA系統側で利用で
き、A系統側で水素ガスの放出を行なうことができ、よ
って水素ガスの吸蔵、放出を連続的に行なうことができ
る。また、A系統側の水素吸排管7とB系統側の水素吸
排管8とを接続し、A系統側で吸蔵した水素ガスをB系
統側に放出してB系統側の合金4に吸蔵させる操作を繰
り返すことにより、漸次、水素ガスの高純度化を図るこ
とらできる。
In this way, if hydrogen gas is absorbed and discharged at the same time in both the flow sections on the A system side and the 13th system side, the heat generated on the B system side, which stores hydrogen gas, can be used on the A system side. Hydrogen gas can be released on the system side, so hydrogen gas can be stored and released continuously. In addition, the hydrogen suction and exhaust pipe 7 on the A system side and the hydrogen suction and exhaust pipe 8 on the B system side are connected, and the hydrogen gas stored on the A system side is released to the B system side and stored in the alloy 4 on the B system side. By repeating this process, it is possible to gradually improve the purity of hydrogen gas.

次に、上記の水素吸蔵合金用容器lを用いた水素ガスの
貯蔵方法の一例を説明する。この場合の容器lを、例え
ば、金属フィン10・・・の波II・・・ハ)!−’、
4?−、kJ−/l−r八n’rkノm1M、’、h:
へ賃#IZ、%h7*積をB系統側の流通部伝熱面積に
比べて大きく構成する。容器Iを上記のような構成とし
た上で、A系統側の流通部内に合金4を充填し、B系統
側の流通部に熱媒を満たす。次いで、A系統側の流通部
内に水素ガスを加圧供給して、合金4に水素ガスを吸蔵
さ仕る。この水素ガスの吸蔵に伴う熱をB系統側の熱媒
で冷却する。次に、使用時に、B系統側の熱媒でA系統
側の合金4を加熱して合金4から水素ガスを放出させる
Next, an example of a method for storing hydrogen gas using the above-mentioned hydrogen storage alloy container 1 will be explained. In this case, the container l is, for example, the wave II of the metal fin 10...c)! -',
4? -,kJ-/l-r8n'rknom1M,',h:
The heat transfer area #IZ, %h7*product is configured to be larger than the heat transfer area of the flow section on the B system side. After the container I is configured as described above, alloy 4 is filled in the flow section on the A system side, and heat medium is filled in the flow section on the B system side. Next, hydrogen gas is supplied under pressure into the flow section on the A system side to cause the alloy 4 to absorb hydrogen gas. The heat associated with the storage of hydrogen gas is cooled by the heat medium on the B system side. Next, during use, the alloy 4 on the A system side is heated by the heating medium on the B system side to release hydrogen gas from the alloy 4.

この例の水素吸蔵合金用容器lにあっては、次のような
実施例効果が得られるものとなる。
In the hydrogen storage alloy container 1 of this example, the following effects can be obtained.

〔1〕熱交換部3に多孔質の水素出入管12 ・が配設
された構成であるので、合金・1が充填された熱交換部
3に緩やかに水素ガスを導入することか可能である。し
たがって、水素ガスが緩やかにに導入されるので、合金
4がその水素ガスにより移動せしめられることがなく、
よって合金4の偏在が生じないこともなく、この合金4
の偏在および合金4の体積膨張による容器破壊が防止さ
れる。
[1] Since the heat exchange section 3 is configured with a porous hydrogen inlet/output pipe 12, it is possible to slowly introduce hydrogen gas into the heat exchange section 3 filled with alloy 1. . Therefore, since the hydrogen gas is introduced slowly, the alloy 4 is not moved by the hydrogen gas.
Therefore, uneven distribution of alloy 4 does not occur, and this alloy 4
This prevents container destruction due to uneven distribution of the alloy 4 and volumetric expansion of the alloy 4.

〔2〕熱ツ換部3が、金属プレート9・・・と金属フィ
ン10・・・とからなるユニットが積層された多段構造
であるので、熱交換を行なう伝熱面積が大きくとれ、か
つ各段ごとに熱交換が行なわれることから、高い熱交換
効率が得られる。したがって、合金4による水素の吸蔵
および放出が速やかに行なわれる。
[2] Since the heat exchange section 3 has a multi-stage structure in which units consisting of metal plates 9 and metal fins 10 are stacked, a large heat transfer area for heat exchange can be obtained, and each Since heat exchange is performed in each stage, high heat exchange efficiency can be obtained. Therefore, hydrogen is absorbed and released quickly by the alloy 4.

上記の実施例では、水素出入管12・・・を第6図に示
すように、水素出入管12・・・の周壁全体に微細孔が
形成されたものとしたが、第7図および第8図に示すよ
うに、周壁の一部に微細孔が形成された構成であっても
よい。すなわち、第7図に示す出入管18は、周壁全体
のうち両端部および中央部の三つの部分に微細孔が形成
されたものである。この出入管18を用いれば、水素ガ
スを同時にかつ複数箇所から噴出させることができる。
In the above embodiment, as shown in FIG. 6, the hydrogen inlet/outlet pipes 12... were assumed to have fine holes formed in the entire peripheral wall thereof, but as shown in FIGS. As shown in the figure, a configuration may be adopted in which micropores are formed in a part of the peripheral wall. That is, the inlet/outlet pipe 18 shown in FIG. 7 has fine holes formed in three parts of the entire peripheral wall: both ends and the center part. By using this inlet/outlet pipe 18, hydrogen gas can be ejected from multiple locations simultaneously.

また、第8図に示す出入管19は、この管19の長平方
向に沿う周壁の帯状部分に微細孔が形成されたものであ
る。この場合、管19の長平方向に沿って特定方向に向
けて水素ガスを噴出させることができるとともに、水素
ガスを熱交換部3内の合金4に直接当てることがないの
で、合金4の移動防止が可能となる。
Further, the inlet/outlet tube 19 shown in FIG. 8 has fine holes formed in a band-shaped portion of the circumferential wall along the longitudinal direction of the tube 19. In this case, the hydrogen gas can be ejected in a specific direction along the longitudinal direction of the tube 19, and since the hydrogen gas is not directly applied to the alloy 4 in the heat exchange section 3, the movement of the alloy 4 is prevented. becomes possible.

また、上記の実施例では、熱交換部3を互いに平行なA
系統およびB系統の2系統の流通部から構成したが、こ
れら2系統の流通部を互いに直交させた構成であっても
よい。
Further, in the above embodiment, the heat exchange portions 3 are arranged parallel to each other.
Although the present invention has been described as having two distribution sections, the system and the B system, the configuration may be such that these two distribution sections are orthogonal to each other.

以下、実験例を示してこの発明の作用効果を明確にする
Hereinafter, the effects of this invention will be clarified by showing experimental examples.

(実験例1 ) 第1図〜第6図に示したアルミニウム製の水素吸蔵合金
用容器(イ)を製作し、この容器(イ)内の熱交換部に
合金としてl、aNisを充填した。この容器(イ)の
熱交換部に各段ごとに2本ずつ水素出入管を配設した。
(Experimental Example 1) An aluminum container (a) for a hydrogen storage alloy shown in FIGS. 1 to 6 was manufactured, and the heat exchange section in the container (a) was filled with l, aNis as an alloy. Two hydrogen inlet and outlet pipes were installed in each stage of the heat exchange section of this container (a).

容器(イ)(実施例);幅150 mmX高さ150m
m×奥行き150 mm、ピッチ8 mm、波高さ6.
5mmの金属フィンを20段使用した。合金充填量は、
7に9であった。
Container (A) (Example); width 150 mm x height 150 m
m x depth 150 mm, pitch 8 mm, wave height 6.
Twenty stages of 5 mm metal fins were used. The alloy filling amount is
It was 7 to 9.

水素出入管は、内径3mmの焼結金属製パイプで、その
周壁には、約2μπ程度の微細孔が多数形成されたもの
であった。
The hydrogen inlet/outlet tube was a sintered metal pipe with an inner diameter of 3 mm, and a large number of micropores of approximately 2 μπ in diameter were formed in its peripheral wall.

まfこ、従来の多管式の水素吸蔵合金用容器(ロ)を製
作し、同様に合金として L aN isを充填した。
A conventional multi-tubular hydrogen storage alloy container (b) was manufactured and similarly filled with LaN is as an alloy.

容器(ロ)(比較例);合金充填管に太い金属パイプ(
内径400 n++nX全長2000 mm)を使用し
、この金属パイプ内に細い熱媒流通管の金属パイプ(内
径20mmX全長1500 mm)を20本配管した。
Container (b) (comparative example); Thick metal pipe (
Inside this metal pipe, 20 thin metal pipes (inner diameter 20 mm x total length 1500 mm) were installed as thin heat medium flow tubes.

合金充填量は500 kgであった。The alloy filling amount was 500 kg.

これらの水素吸蔵合金用容器に対して、それぞれ伝熱面
積、合金の単位重量当たりの容器重量、合金の単位重量
当たりの容器容積について測定した。この測定結果を第
1表に示した。
For these hydrogen storage alloy containers, the heat transfer area, container weight per unit weight of alloy, and container volume per unit weight of alloy were measured. The measurement results are shown in Table 1.

第1表 第1表から明らかなように、容器(イ)は、従来の容器
(ロ)に比べて大きな伝熱面積を有し、かつ軽量コンパ
クト化が可能であることがわかる。
As is clear from Table 1, the container (a) has a larger heat transfer area than the conventional container (b), and can be made lighter and more compact.

(実験例2 ) 実験例1で製作した容器(イ)と、この容器(イ)から
水素出入管を外した容器(ニ)とを用いて、下記の測定
項目について調へ、その結果を第2表に示した。
(Experiment Example 2) Using the container (a) manufactured in Experiment Example 1 and the container (d) from which the hydrogen inlet/output tube was removed from this container (a), the following measurement items were measured, and the results were reported in the It is shown in Table 2.

<1>水素を吸蔵するのに要した時間(吸蔵時間);水
素を容器内に加圧供給する際の水素温度を40°Cとし
、水素圧を10 kg/ cm’とした。
<1> Time required to store hydrogen (storage time): When supplying hydrogen under pressure into the container, the hydrogen temperature was 40° C., and the hydrogen pressure was 10 kg/cm'.

(2)水素を放出するのに要した時間(放出時間):水
素放出時の容器内の温度を60°Cとし、放出圧力を大
気圧とした。
(2) Time required to release hydrogen (release time): The temperature inside the container during hydrogen release was 60°C, and the release pressure was atmospheric pressure.

(3)水素の吸蔵、放出を300回繰り返した後の合金
団塊発生の有無。
(3) Whether or not alloy nodules are generated after hydrogen absorption and release are repeated 300 times.

第2表 第2表から明らかなように、容器(イ)は、比較の容器
(ニ)に比へて水素の吸蔵および放出に要する時間が短
く、また容器内で合金が移動しにくいことから団塊が発
生しないことがわかる。
Table 2 As is clear from Table 2, container (a) requires less time to absorb and release hydrogen than the comparative container (d), and the alloy is less likely to move within the container. It can be seen that no baby booms occur.

「発明の効果」 以上説明したように、この発明の水素吸蔵合金用容器は
、熱交換部に多孔質の水素出入管が配設された構成であ
るので、この水素出入管より熱交換部内に水素が緩やか
に導入され、したがって水素や吸排時の圧力差により熱
交換部内に充填された合金が移動せしめられることがな
いことから、熱交換部内で合金が偏在することがなく、
よって合金の偏在および合金の水素吸蔵時の体積膨張に
よる容器破壊が防止される。
"Effects of the Invention" As explained above, the hydrogen storage alloy container of the present invention has a structure in which a porous hydrogen inlet/output pipe is disposed in the heat exchange section. Hydrogen is introduced slowly, and the alloy filled in the heat exchanger is not moved due to hydrogen or the pressure difference during intake and exhaust, so the alloy is not unevenly distributed in the heat exchanger.
This prevents the container from being destroyed due to uneven distribution of the alloy and volumetric expansion when the alloy absorbs hydrogen.

また、この容器は、熱交換部が金属プレートと。Additionally, the heat exchange part of this container is a metal plate.

金属製波板とを交互に積層しかつ接合一体化した多段構
造体であるので、熱伝達が各段ごとに行なわれ、熱交換
を行なう伝熱面積が大きいことから、高い熱交換効率が
得られる。したがって、この多段構造体の熱交換部に充
填された合金に対する熱交換を迅速に行なうことができ
るので、この合金による水素ガスの吸蔵および放出を速
やかに行なうことが可能となる。
Since it is a multi-stage structure made by laminating metal corrugated plates alternately and joining them together, heat transfer occurs at each stage, and the heat transfer area for heat exchange is large, resulting in high heat exchange efficiency. It will be done. Therefore, heat exchange can be performed quickly with respect to the alloy filled in the heat exchange portion of this multi-stage structure, so that hydrogen gas can be stored and released quickly by this alloy.

さらにまた、この容器は、交互に積層された2系統の流
通部を有する熱交換器であるので、系統ごとに合金によ
る水素ガスの吸排時期を同時に行なうと、両系統間で熱
を利用し合うことができ、よって合金に対する加熱およ
び冷却熱が不要となるとともに、水素ガスの吸蔵および
放出を連続して行なうことが可能となる。
Furthermore, since this container is a heat exchanger with two systems of circulation parts stacked alternately, if the hydrogen gas intake and exhaust timing by the alloy is performed simultaneously for each system, heat will be mutually utilized between both systems. This eliminates the need for heating and cooling the alloy, and allows continuous storage and release of hydrogen gas.

さらに、この容器にあっては、熱交換部が多段構造体で
あることから、高い熱交換能力を維持したままで熱交換
部のサイズを小さくすることができ、さらに合金単位重
量当たりの容器の重量ら小さくすることができるので、
容器全体のコンパクト化や軽量化が可能である。
Furthermore, since the heat exchange section of this container has a multi-stage structure, the size of the heat exchange section can be reduced while maintaining high heat exchange capacity. Since the weight can be reduced,
The entire container can be made more compact and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は、この発明の水素吸蔵合金用容器の一
例を示すものであって、第1図は容器全体の構成を示す
概略斜視図、第2図は熱交換部の構成を示す概略斜視図
、第3図は熱交換部の要部を拡大視した概略斜視図、第
4図は容器の要部を拡大視した概略断面図、第5図は金
属製波板の構成を示す概略斜視図、第6図は水素出入管
の構成を示す概略斜視図である。 第7図〜第8図は、この発明の水素吸蔵合金用容器に用
いられる水素出入管の他の例を示す概略斜視図である。 1・・・水素吸蔵合金用容器、3・・・熱交換器(熱交
換部)、4・・・合金(水素吸蔵合金)、9・・・金属
プレート、IO・・・金属フィン(金属製波板)、15
・・・小孔、12.18.19・・・水素出入管。
1 to 6 show an example of a container for a hydrogen storage alloy according to the present invention, in which FIG. 1 is a schematic perspective view showing the structure of the entire container, and FIG. 2 shows the structure of the heat exchange section. FIG. 3 is an enlarged schematic perspective view of the main parts of the heat exchanger, FIG. 4 is an enlarged schematic sectional view of the main parts of the container, and FIG. 5 shows the structure of the corrugated metal plate. FIG. 6 is a schematic perspective view showing the structure of a hydrogen inlet/output pipe. FIGS. 7 and 8 are schematic perspective views showing other examples of hydrogen inlet and outlet pipes used in the hydrogen storage alloy container of the present invention. DESCRIPTION OF SYMBOLS 1... Container for hydrogen storage alloy, 3... Heat exchanger (heat exchange part), 4... Alloy (hydrogen storage alloy), 9... Metal plate, IO... Metal fin (metal) corrugated plate), 15
...Small hole, 12.18.19...Hydrogen inlet and outlet pipe.

Claims (2)

【特許請求の範囲】[Claims] (1)耐圧容器の内部に、水素ガスを吸蔵および放出す
る水素吸蔵合金と、この水素吸蔵合金と熱交換を行なう
熱交換部が配されてなる水素吸蔵合金用容器において、
上記熱交換部を、複数の金属プレートと小孔が形成され
た複数の金属製波板とを交互に積層しかつ接合一体化す
ることにより多段構造体とした上、偶数段目および奇数
段目をそれぞれまとめて2系統の流通部を構成するとと
もに、これら流通部をなす熱交換部に水素吸蔵合金を充
填しかつ熱交換部に多孔質の水素ガス出入管を設けた構
造としたことを特徴とする水素吸蔵合金用容器。
(1) In a hydrogen storage alloy container in which a hydrogen storage alloy that stores and releases hydrogen gas and a heat exchange section that exchanges heat with the hydrogen storage alloy are arranged inside the pressure container,
The heat exchange section is made into a multi-stage structure by alternately stacking a plurality of metal plates and a plurality of corrugated metal plates in which small holes are formed, and then joining and integrating them. are combined to form two circulation sections, and the heat exchange sections forming these circulation sections are filled with a hydrogen storage alloy, and the heat exchange sections are provided with porous hydrogen gas inlet and outlet pipes. Container for hydrogen storage alloy.
(2)耐圧容器の内部に、水素ガスを吸蔵および放出す
る水素吸蔵合金と、この水素吸蔵合金と熱交換を行なう
熱交換部が配されてなる水素吸蔵合金用容器において、
上記熱交換部を、複数の金属プレートと小孔が形成され
た複数の金属製波板とを交互に積層しかつ接合一体化す
ることにより多段構造体とした上、偶数段目および奇数
段目をそれぞれまとめて2系統の流通部を構成するとと
もに、これら流通部をなす熱交換部のいずれか一方に水
素吸蔵合金を充填しかつ多孔質の水素ガス出入管を設け
、他方の熱交換部を熱媒体用としたことを特徴とする水
素吸蔵合金用容器。
(2) A container for a hydrogen storage alloy in which a hydrogen storage alloy that stores and releases hydrogen gas and a heat exchange section that exchanges heat with the hydrogen storage alloy are disposed inside the pressure container,
The heat exchange section is made into a multi-stage structure by alternately stacking a plurality of metal plates and a plurality of corrugated metal plates in which small holes are formed, and then joining and integrating them. are combined to form two circulation sections, and one of the heat exchange sections forming these circulation sections is filled with a hydrogen storage alloy and provided with a porous hydrogen gas inlet/output pipe, and the other heat exchange section is A container for hydrogen storage alloy, characterized in that it is used as a heat medium.
JP61220677A 1986-09-18 1986-09-18 Container for hydrogen storage alloy Expired - Fee Related JPH0730878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61220677A JPH0730878B2 (en) 1986-09-18 1986-09-18 Container for hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61220677A JPH0730878B2 (en) 1986-09-18 1986-09-18 Container for hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS6376997A true JPS6376997A (en) 1988-04-07
JPH0730878B2 JPH0730878B2 (en) 1995-04-10

Family

ID=16754733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61220677A Expired - Fee Related JPH0730878B2 (en) 1986-09-18 1986-09-18 Container for hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH0730878B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987895A (en) * 1996-02-23 1999-11-23 Sanyo Electric Co., Ltd. Hydrogen storage containers
US6709497B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure
US6708546B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure with restrictive neck

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987895A (en) * 1996-02-23 1999-11-23 Sanyo Electric Co., Ltd. Hydrogen storage containers
US6709497B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure
US6708546B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure with restrictive neck

Also Published As

Publication number Publication date
JPH0730878B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
US4457136A (en) Metal hydride reactor
CA2476217C (en) Methods of making devices by stacking sheets and processes of conducting unit operations using such devices
US3528783A (en) Multilayer catalytic reactor
US7111672B2 (en) Heat exchanger
US4401155A (en) Heat exchanger with extruded flow channels
KR20120104182A (en) Tank for storing and withdrawing hydrogen and/or heat
JPH02500589A (en) Equipment for dehydrogenation of liquid hydrides
JPS6233269A (en) Heat exchanger utilizing hydrogen storage alloy
JPS6376997A (en) Container for hydrogen occlusion alloy
JPH0527563B2 (en)
EP0061191A1 (en) Metal hydride reactor
JPH09242995A (en) Square heat transfer vessel filled with hydrogen storage alloy for storing hydrogen
JP2000111193A (en) Hydrogen occlusion alloy heat exchanger
JPS60101398A (en) Hydrogen occluding container
JPH07332596A (en) Hydrogen storage alloy storage unit
JPS61244995A (en) Metal hydride container
CN220727904U (en) Solid-state hydrogen storage device
JP2002295798A (en) Hydrogen transport vessel
JPH0729412Y2 (en) Plate fin type heat exchanger
JPS62292601A (en) Reactor for hydrogen occluding alloy
JPH0228796B2 (en)
JPH0121279Y2 (en)
JPS60101489A (en) Heat exchanger utilizing metallic hydride
JPH0253362B2 (en)
JPS6231238B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees