JPS637355A - Annealing method for al-mg alloy - Google Patents

Annealing method for al-mg alloy

Info

Publication number
JPS637355A
JPS637355A JP15008186A JP15008186A JPS637355A JP S637355 A JPS637355 A JP S637355A JP 15008186 A JP15008186 A JP 15008186A JP 15008186 A JP15008186 A JP 15008186A JP S637355 A JPS637355 A JP S637355A
Authority
JP
Japan
Prior art keywords
annealing
alloy
heating
magnetic disk
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15008186A
Other languages
Japanese (ja)
Inventor
Hideyoshi Usui
碓井 栄喜
Kozo Hoshino
晃三 星野
Noboru Shinano
昇 信濃
Hideo Fujimoto
日出男 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15008186A priority Critical patent/JPS637355A/en
Publication of JPS637355A publication Critical patent/JPS637355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To prevent the generation of secondary recrystalized grains by annealing by annealing an Al-Mg alloy member contg. Cr at an extremely low ratio as a stock for a high-brightness alloy and magnetic disk under specific conditions. CONSTITUTION:The generation of the huge secondary recrystallized grains is prevented by heating the member to a 400-550 deg.C temp. range at >=50 deg.C/min heating up rate and holding the member at said temp. for >=10min, then cooling the same down to an ordinary temp. at the time of annealing the member after working the alloy to the member when the stock for the high-brightness alloy and magnetic disk is going to be produced by the Al-Mg alloy contg. Mg at 3.5%<=Mg<=5.5% by weight % as the essential condition and contg. <=0.1% Fe, <=0.2% Mn, <=0.06% Cr, and <=0.025% Ti. The deterioration in the appear ance and performance by the secondary crystallization in specular finishing is obviated in the case of the high-brightness material, and the generation of steps by the huge secondary recrystallized grains in precision finishing by ma chining is obviated in the case of the magnetic disk. The stock for the high- brightness material and magnetic disk having the excellent performance is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、Al−Mg合金の焼鈍方法に関し、より詳し
くは、焼鈍の際に二次再結晶の生じ難いA l −M 
g合金の焼鈍方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of annealing an Al-Mg alloy, and more specifically, an Al-Mg alloy that is less likely to cause secondary recrystallization during annealing.
This invention relates to a method of annealing g-alloy.

[従来技術] Cr含有量約0.1重量%以上0.3重量%以下、Mn
含有量0.4重量%以下程度のA見−5%Mg合金を3
50℃程度以上の温度で焼鈍する場合には、350℃程
度以上の温度で二次再結晶が発生することが知られてい
る。(軽金属、Van 、No6 、p233 r50
56合金の異常粗粒化現象」)。
[Prior art] Cr content: about 0.1% by weight or more and 0.3% by weight or less, Mn
3 A-5% Mg alloy with a content of 0.4% by weight or less
It is known that when annealing is performed at a temperature of about 50°C or higher, secondary recrystallization occurs at a temperature of about 350°C or higher. (light metals, Van, No6, p233 r50
"Abnormal coarse graining phenomenon of 56 alloy").

ところで、近年、高輝合金、磁気ディスク素材等の分野
において性能向上のため高純度地金の使用が一般的にな
り、またCr含有量0.1重量%未満のA fL −M
 g合金材の使用も一般化された。
Incidentally, in recent years, the use of high-purity metals has become common in the fields of high-brilliance alloys, magnetic disk materials, etc. to improve performance, and A fL -M with a Cr content of less than 0.1% by weight has become common.
The use of g-alloy materials also became common.

また、A l −M g合金の焼鈍方法としては、34
0〜400℃程度の温度に10〜b間程度の昇温速度に
加熱し、加熱後1〜10時間程度その温度に保持する方
法が知られている。
In addition, as an annealing method for Al-Mg alloy, 34
A method is known in which the material is heated to a temperature of about 0 to 400° C. at a temperature increase rate of about 10 to b, and then maintained at that temperature for about 1 to 10 hours after heating.

[発明が解決しようとする問題点] しかしながら、Crが0.1重量%未層のAl−Mg合
金でも二次再結晶現象が生じる。
[Problems to be Solved by the Invention] However, even in an Al-Mg alloy in which 0.1% by weight of Cr is not layered, a secondary recrystallization phenomenon occurs.

二次再結晶が発生すると強度低下の問題以外に1例えば
高輝材の場合、鏡面加工仕上時に結晶粒が肉眼観察され
、目的とする外観性能が得られない。
When secondary recrystallization occurs, in addition to the problem of reduced strength, for example, in the case of high brightness materials, crystal grains can be observed with the naked eye during mirror finishing, making it impossible to obtain the desired appearance performance.

また、磁気ディスク材の場合軟質材焼鈍後に精密切削仕
上(Rmax≦0.02ルm)を行なうが、この焼鈍時
に2次再結晶(巨大再結晶)が形成されると切除の後、
巨大結晶粒が肉眼観察される。この巨大結晶粒間では段
差が生じており、基盤として十分な性能が得られないと
いう問題がある。さらに極端な巨大結晶粒の場合には、
ビビリ等の現象が発生するという問題点をも有している
In addition, in the case of magnetic disk materials, precision cutting finishing (Rmax≦0.02 lm) is performed after annealing the soft material, but if secondary recrystallization (giant recrystallization) is formed during this annealing, after cutting,
Huge crystal grains are observed with the naked eye. There is a step difference between these giant crystal grains, and there is a problem that sufficient performance as a base cannot be obtained. In the case of even more extreme giant grains,
There is also the problem that phenomena such as chatter occur.

また、焼鈍時に二次再結晶を起さなくとも磁気ディスク
としての各工程中の加熱で巨大結晶粒が形成されやすい
Further, even if secondary recrystallization does not occur during annealing, giant crystal grains are likely to be formed by heating during each process of forming a magnetic disk.

[問題点を解決するための手段] 上記問題点は、3.5重量%≦Mg≦5.5重量%を必
須に含み、Fe≦0.1重量%、Mn≦0.2i量%、
Cr≦0.06重量%、Ti≦0.02重量%を含有す
るへ見−Mg合金の焼鈍方法において、焼鈍を400℃
〜550℃の温度に50℃/min以上の昇温速度で加
熱して行なう方法により、その時点及びそれ以降の工程
における370℃以上の加圧における2次頁に°晶の問
題を解決できる。
[Means for solving the problems] The above problems essentially include 3.5% by weight≦Mg≦5.5% by weight, Fe≦0.1% by weight, Mn≦0.2i% by weight,
In a method for annealing a Hemi-Mg alloy containing Cr≦0.06% by weight and Ti≦0.02% by weight, annealing is performed at 400°C.
By heating to a temperature of ~550°C at a temperature increase rate of 50°C/min or more, it is possible to solve the problem of crystallization on the secondary page during pressurization of 370°C or more at that point and in subsequent steps.

(成分限定理由) まず、成分限定理由を説明する。(Reason for limited ingredients) First, the reason for limiting the ingredients will be explained.

3.5重量%≦Mg≦5.5重量% Mgは、目的とする用途に対して十分な強度を与えるた
めに添加する。このため3.Si1%以上を添加するも
のである。また、5.5重量%を超えると強度が高くな
りすぎ、加工性がかえって悪くなること、また、溶解鋳
造時にMgOの酸化物を生じやすくなり、これがAM基
合金中に取り込まれ鏡面加工時の欠陥となりやすいこと
により5.5重量%以下とする。
3.5% by weight≦Mg≦5.5% by weight Mg is added to provide sufficient strength for the intended use. For this reason, 3. 1% or more of Si is added. In addition, if it exceeds 5.5% by weight, the strength will become too high and the workability will worsen, and MgO oxides will be likely to be generated during melting and casting, which will be incorporated into the AM-based alloy and during mirror finishing. Since it tends to cause defects, it is set at 5.5% by weight or less.

Fe≦0.1重量%、Mn≦0 、2fi量%、Cr≦
0.063g量%、Ti≦0.02i量%かかる組成と
したのは、AfL−Fe系、Al−Mn系、Al−Ti
系などの全居間化合物の形成を抑え、十分なる鏡面加工
性を得るためである。
Fe≦0.1% by weight, Mn≦0, 2fi amount%, Cr≦
Compositions such as 0.063g% and Ti≦0.02i% are based on AfL-Fe, Al-Mn, and Al-Ti.
This is to suppress the formation of all-in-one compounds, such as silica, and to obtain sufficient mirror-finishing properties.

なお、鏡面として十分な性能を得るためにはSi含有量
も減少させることが望ましい、これは使用地金純度によ
り決定されるものであり1通常0.08重量%以下であ
る。その他のCu、Znの添加は、鏡面加工性に及ぼす
形容は少なく、通常0.3重量%以下のCuの添加、1
.5重量%以下のZn添加がなされている。
In addition, in order to obtain sufficient performance as a mirror surface, it is desirable to reduce the Si content, which is determined by the purity of the metal used and is usually 0.08% by weight or less. Other additions of Cu and Zn have little effect on mirror finish properties, and are usually added in an amount of 0.3% by weight or less.
.. Zn is added in an amount of 5% by weight or less.

(焼鈍条件限定理由) 次に焼鈍について説明する。(Reason for limited annealing conditions) Next, annealing will be explained.

本発明では、焼鈍を400℃〜550℃の温度に50℃
/ m i n以上の昇温速度で加熱して行なう、これ
は、かかる高温まで急速昇温させることにより、この昇
温段階で再結晶させ、以降の加熱における巨大結晶の生
成を生じない安定組織とするためである。
In the present invention, annealing is performed at a temperature of 400°C to 550°C at 50°C.
This is done by heating at a temperature increase rate of at least /min. This is done by rapidly raising the temperature to such a high temperature, recrystallizing at this heating stage, and creating a stable structure that does not cause the formation of giant crystals during subsequent heating. This is for the purpose of

50℃/ m i n未満の昇温速度では、昇温後の4
00℃〜550℃における加熱に巨大結晶が生じてしま
う。
At a heating rate of less than 50°C/min, the
Huge crystals are formed when heated at temperatures between 00°C and 550°C.

加熱温度が400℃未満では、以降の加熱若しくは焼鈍
(370℃以上)における巨大結晶粒の生成防止効果が
十分でない、また、加熱温度が550℃を超えるとバー
ニングが発生しゃすくなる。
If the heating temperature is less than 400°C, the effect of preventing the formation of giant crystal grains in subsequent heating or annealing (at 370°C or higher) is insufficient, and if the heating temperature exceeds 550°C, burning is likely to occur.

なお、昇温速度の上限は本発明では特に規定の必要はな
いが、ガス炉加熱・赤外線炉加熱等の場合は余りに昇温
速度が速くすると板表面が溶融するため、1500℃/
 m i n以下に止めることが望ましい、また、硝石
炉加熱の場合、2000〜b れる。なお、電磁誘導加熱方式の適用も可悦である。
Note that the upper limit of the temperature increase rate does not need to be specified in particular in the present invention, but in the case of gas furnace heating, infrared furnace heating, etc., if the temperature increase rate is too fast, the plate surface will melt, so the upper limit is 1500℃/
It is desirable to keep it below min, and in the case of saltpeter furnace heating, it is 2000-b. Note that it is also possible to apply an electromagnetic induction heating method.

保持時間は特に必要とせず、単に400℃〜550℃の
温度に到達したのみでも焼鈍効果は十分であるが、以降
の加熱若しくは焼鈍の際の結晶粒の安定性のためには1
0分以内の保持を行なってもよい。
No particular holding time is required, and simply reaching a temperature of 400°C to 550°C is sufficient for the annealing effect, but for the stability of crystal grains during subsequent heating or annealing,
It may be held for less than 0 minutes.

降温速度は巨大結晶粒の防止降下の点からは規制の必要
はないが、余りに遅いとβ相の析出が顕著となり、余り
に速すぎると板が歪んでしまうため0.5℃〜1OOO
℃/m1n(r)範囲が好ましい。
There is no need to regulate the cooling rate from the viewpoint of preventing giant crystal grains from falling, but if it is too slow, the precipitation of the β phase will become noticeable, and if it is too fast, the plate will become distorted, so the temperature should be lowered from 0.5°C to 100°C.
C/m1n(r) range is preferred.

このようにして焼鈍したAJI−Mg合金軟質材はその
後の加熱により巨大結晶が生じることはない。
The AJI-Mg alloy soft material annealed in this manner will not form giant crystals during subsequent heating.

なお、本発明における急速加熱は用途によっては、板の
表面層のみの加熱であっても有効である0例えば、磁気
ディスク用素材の場合、素材表面から0.05〜0.2
mmの深さの部位まで切削・研削して使用するのが通常
であり、この部位のみ巨大結晶粒の発生しないような加
熱、すなわち、表面層のみ本発明に係る焼鈍条件を満足
している状態でも実用上問題はない。
Note that depending on the application, the rapid heating in the present invention is effective even when heating only the surface layer of the plate.For example, in the case of a material for a magnetic disk, 0.05 to 0.2
It is normal to cut and grind to a depth of mm before use, and only this region is heated in such a way that giant crystal grains are not generated, that is, only the surface layer satisfies the annealing conditions according to the present invention. However, there is no practical problem.

[発明の実施例] 表1に示す組成の合金(合金A、合金B)を540℃×
4時間均熱熱後、熱間圧延を行なった。なお、合金A、
合金Bとも本発明が対象とする組成を有する合金である
。熱間圧延は、板厚が6mm厚、温度が260℃の状態
で終了した。熱間圧延後ざらに冷間圧延を行ない、1.
5mm厚とした。これを外径95φmmのリング形状に
打抜き、ディスク用素材とした。
[Example of the invention] Alloys (alloy A, alloy B) having the compositions shown in Table 1 were heated at 540°C
After soaking for 4 hours, hot rolling was performed. In addition, alloy A,
Alloy B is also an alloy having a composition targeted by the present invention. The hot rolling was completed when the plate thickness was 6 mm and the temperature was 260°C. Roughly cold rolling is performed after hot rolling, 1.
The thickness was 5 mm. This was punched into a ring shape with an outer diameter of 95 φmm to obtain a disc material.

このようにした作成した素材につき表2に示す各種の加
熱温度・昇温条件で1段目焼鈍と2段目焼鈍を行なった
The thus prepared materials were subjected to first-stage annealing and second-stage annealing at various heating temperatures and temperature raising conditions shown in Table 2.

焼鈍と性能評価焼鈍(以下各々A焼鈍、B焼鈍と呼ぶ)
のそれぞれの焼鈍の終了後に結晶粒径を観察した。その
結果を表2にあわせて示す。
Annealing and performance evaluation annealing (hereinafter referred to as A annealing and B annealing, respectively)
The grain size was observed after each annealing. The results are also shown in Table 2.

なお、表2において素材No4,6,7゜10.11は
本発明の実施例であり、他は比較例である。
In Table 2, material Nos. 4, 6, 7°, 10.11 are examples of the present invention, and the others are comparative examples.

以下に表2に即して実施例の説明を行なう。Examples will be explained below based on Table 2.

(Not) この条件の焼鈍では、A焼鈍として、歪矯正のための加
圧焼鈍を行ない、板両面を約0.1mmずづつ切削後、
歪矯正のための370℃×6時間の加圧焼鈍(B焼鈍)
を行なったものである。このB焼鈍において約3000
ルmの巨大結晶粒が形成された。この結果、精密切削仕
上を行なっても内服で結晶粒が観察される状態となり、
またこれに対応して結晶粒間の段差により表面精度が低
下し、磁気ディスクとして十分な性能が得られなかった
(Not) In annealing under this condition, pressure annealing is performed as A annealing to correct distortion, and after cutting both sides of the plate approximately 0.1 mm each,
Pressure annealing at 370°C for 6 hours to correct distortion (B annealing)
This is what was done. Approximately 3000 in this B annealing
Huge crystal grains of 1.0 m were formed. As a result, even if precision cutting is performed, crystal grains can be observed in the internal medicine.
Correspondingly, the surface precision deteriorated due to the step difference between the crystal grains, and sufficient performance as a magnetic disk could not be obtained.

(N o 2) No2では、A焼鈍として350’OX4時間の歪矯正
のための加圧焼鈍を行なった。この時点での結晶粒径は
35gmと小さかったが、粗切削後、さらに370℃×
3時間の加圧焼鈍(B焼鈍)を行なったところ、約50
00 JLmの巨大結晶粒が形成された。
(N o 2) For No. 2, pressure annealing for strain correction at 350'OX for 4 hours was performed as A annealing. The grain size at this point was as small as 35 gm, but after rough cutting, it was further
When pressure annealing (B annealing) was performed for 3 hours, approximately 50
Huge crystal grains of 00 JLm were formed.

(N o 3) No3では、A焼鈍で370℃×6時間の加圧焼鈍を行
なったところ、その時点で約2000JLmの巨大結晶
粒が形成された。
(N o 3) In No. 3, when pressure annealing was performed at 370° C. for 6 hours in A annealing, giant crystal grains of about 2000 JLm were formed at that point.

(N o 4) No4では、Aの加熱を赤外線加熱炉で、400℃X1
0m1n、昇温速度300℃/ m in、冷却速度1
00℃/ m L nで焼鈍した。さらに、歪矯正のた
め385X6時間の加圧焼鈍(B焼鈍)を行なったとこ
ろ、45pmの巨大結晶粒が形成され、磁気ディスク用
素材として不適正な状態となった。
(No. 4) In No. 4, A was heated at 400°C x 1 using an infrared heating furnace.
0mln, heating rate 300℃/min, cooling rate 1
Annealed at 00 °C/mL n. Furthermore, when pressure annealing (B annealing) was performed for 385×6 hours to correct the strain, giant crystal grains of 45 pm were formed, making the material unsuitable for use as a material for magnetic disks.

(N o 5) No5は電磁誘導加熱方式でAの加圧焼鈍を400℃X
10m1n、昇温速度15℃/ m i nの条件で行
なったもので、No2と同様な結果であり、磁気ディス
ク用素材として不適正であった。(No6.7) No6.7は、本発明に係る焼鈍条件で、A焼鈍を赤外
線加熱炉で行なったものであり、その後B焼鈍を行って
も巨大結晶粒が生じないことが明らかである。
(No.5) No.5 is pressure annealing of A at 400℃X using electromagnetic induction heating method.
It was carried out under the conditions of 10 m1n and a temperature increase rate of 15° C./min, and the results were similar to No. 2, making it unsuitable as a material for magnetic disks. (No. 6.7) In No. 6.7, A annealing was performed in an infrared heating furnace under the annealing conditions according to the present invention, and it is clear that no giant crystal grains are generated even if B annealing is performed thereafter.

(N o 8) No8は、Aの加熱を340℃×2時間で加圧焼鈍した
後、粗切削・精密切削仕上を行ない、磁気ディスク用基
盤とした。さらに12pm厚のアルマイトを行ない、研
府にて10pmとした後、370℃×2時間の加熱(B
焼鈍)を行なったところ、約3000 pmの巨大結晶
粒が形成され、この際の結晶回転のためか、基盤の表面
粗大が大きくなり、磁気ディスクとして十分な性能が得
られなかった。
(No. 8) For No. 8, after heating and pressure annealing of A at 340° C. for 2 hours, rough cutting and precision cutting were performed, and the resultant material was used as a base for a magnetic disk. Furthermore, after alumite was anodized to a thickness of 12 pm and made to 10 pm at Kenfu, it was heated at 370°C for 2 hours (B
When annealing), giant crystal grains of approximately 3000 pm were formed, and perhaps due to the crystal rotation at this time, the surface roughness of the base became large, and sufficient performance as a magnetic disk could not be obtained.

(N o 9) No9はNo2と同様である。(N o 9) No. 9 is similar to No. 2.

(N o l 0) NolOでは赤外線加熱炉でA焼鈍を行ない。(N o  0) In NolO, A annealing is performed in an infrared heating furnace.

さらに385℃×6時間の加圧焼v&CB焼鈍)を行な
った0本発明に係る焼鈍条件では2段目の加熱において
も巨大結晶粒が形成されないことが明らかである。
Further, under the annealing conditions according to the present invention, in which pressure annealing (v & CB annealing) was performed at 385° C. for 6 hours, it is clear that no giant crystal grains are formed even in the second stage of heating.

(Noll) Nollでは硝石炉加熱をA焼鈍として行ない、放冷、
表面パフ研磨(クリーニング)後。
(Noll) In Noll, heating in a saltpeter furnace is performed as A annealing, and then left to cool.
After surface puff polishing (cleaning).

400℃×6時間2段目の加圧焼鈍(B焼鈍)を行ない
、歪矯正を行なった。さらに、粗切削、仕上切削を行な
いディスク基盤としたのち、アルマイトを行ない、さら
に加熱を行なった。この加熱においても巨大結晶粒は形
成されず、磁気ディスクとしてNo8で生じた問題は発
生しなかった。
Second stage pressure annealing (B annealing) was performed at 400° C. for 6 hours to correct distortion. Furthermore, after performing rough cutting and finishing cutting to obtain a disk base, it was anodized and further heated. Even during this heating, no giant crystal grains were formed, and the problem that occurred in magnetic disk No. 8 did not occur.

[発明の効果] 本発明は以上のように構成したので、焼鈍後に及び焼鈍
後の他の加熱に後おいても二次再結晶した結晶は存在せ
ず、従って、 ■強度の低下がない ■高輝材の場合、鏡面加工仕上時に優れた外説性簡を有
している ■磁気ディスク材の場合、軟質材焼鈍後にja密切削仕
上(Rmax≦0.02ルm)を行なっても、切削の後
、巨大結晶粒が肉@観察されず、基盤として十分な性能
が得られる。
[Effects of the Invention] Since the present invention is configured as described above, there are no secondary recrystallized crystals even after annealing or other heating after annealing, and therefore: ■No decrease in strength■ In the case of high brightness materials, it has excellent external properties when finished with a mirror finish.■In the case of magnetic disk materials, even if a close cutting finish (Rmax≦0.02 lm) is performed after annealing the soft material, the cutting After that, no giant crystal grains were observed, and sufficient performance as a base was obtained.

■ビビリ等の現象が発生しない■ Phenomena such as chatter do not occur.

Claims (1)

【特許請求の範囲】[Claims] 1 3.5重量%≦Mg≦5.5重量%を必須に含み、
Fe≦0.1重量%、Mn≦0.2重量%、Cr≦0.
06重量%、Ti≦0.02重量%を含有するAl−M
g合金の焼鈍方法において焼鈍を400℃〜550℃の
温度に50℃/min以上の昇温速度で加熱して行なう
ことを特徴とするAl−Mg合金の焼鈍方法。
1 Essentially contains 3.5% by weight≦Mg≦5.5% by weight,
Fe≦0.1% by weight, Mn≦0.2% by weight, Cr≦0.
06% by weight, Al-M containing Ti≦0.02% by weight
A method for annealing an Al-Mg alloy, characterized in that annealing is carried out at a temperature of 400° C. to 550° C. at a temperature increase rate of 50° C./min or more.
JP15008186A 1986-06-25 1986-06-25 Annealing method for al-mg alloy Pending JPS637355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15008186A JPS637355A (en) 1986-06-25 1986-06-25 Annealing method for al-mg alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15008186A JPS637355A (en) 1986-06-25 1986-06-25 Annealing method for al-mg alloy

Publications (1)

Publication Number Publication Date
JPS637355A true JPS637355A (en) 1988-01-13

Family

ID=15489098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15008186A Pending JPS637355A (en) 1986-06-25 1986-06-25 Annealing method for al-mg alloy

Country Status (1)

Country Link
JP (1) JPS637355A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101201A (en) * 2005-09-30 2007-04-19 Yazaki Corp Air-fuel ratio sensor and air-fuel ratio detector
JP2013151737A (en) * 2011-12-26 2013-08-08 Kobe Steel Ltd Aluminum alloy substrate for magnetic disk and method for producing the same
JP5815153B1 (en) * 2015-07-02 2015-11-17 株式会社神戸製鋼所 Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105509A (en) * 1976-03-03 1977-09-05 Mitsubishi Aluminium Production of aluminium alloy sheet for deep drawing
JPS6191352A (en) * 1984-10-11 1986-05-09 Kobe Steel Ltd Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105509A (en) * 1976-03-03 1977-09-05 Mitsubishi Aluminium Production of aluminium alloy sheet for deep drawing
JPS6191352A (en) * 1984-10-11 1986-05-09 Kobe Steel Ltd Method for annealing al alloy plate for substrate of magnetic disk hardly causing micro-waving

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101201A (en) * 2005-09-30 2007-04-19 Yazaki Corp Air-fuel ratio sensor and air-fuel ratio detector
JP2013151737A (en) * 2011-12-26 2013-08-08 Kobe Steel Ltd Aluminum alloy substrate for magnetic disk and method for producing the same
JP5815153B1 (en) * 2015-07-02 2015-11-17 株式会社神戸製鋼所 Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk

Similar Documents

Publication Publication Date Title
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
US4318753A (en) Thermal treatment and resultant microstructures for directional recrystallized superalloys
JPS58224142A (en) Aluminum alloy plate with superior formability and its manufacture
JPH0641623B2 (en) Controlled expansion alloy
JPH0261025A (en) Al-si alloy plate material having excellent formability and its manufacture
JPH057460B2 (en)
JPS637355A (en) Annealing method for al-mg alloy
JPH0756067B2 (en) Method for manufacturing aluminum foil
TW202033775A (en) Method for manufacturing aluminum-manganese alloy
JPH03219037A (en) Ni base shape memory alloy and its manufacture
KR20190035401A (en) Method of manufacturing high melting point metal board which has big size crystal grain by abnormal grain growth
JPS63111172A (en) Production of target material
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPS6154854B2 (en)
JPS6362853A (en) Manufacture of material for magnetic disk substrate
JPH04246148A (en) Rolled aluminum alloy sheet excellent in formability and its manufacture
JPH0585630B2 (en)
JPS6139391B2 (en)
JP2008297581A (en) Manganese-based twin-crystal-type damping alloy
JPH02254143A (en) Production of hard aluminum alloy sheet for forming
JPS627829A (en) Aluminum alloy for magnetic disk substrate
JPS6237357A (en) Manufacture of co base alloy plate material superior in wear resistance
JPH0690792B2 (en) Method for manufacturing Al substratum for magnetic disk
JPS63444A (en) Manufacture of aluminum hard sheet reduced in ear rate and excellent in strength and ductility
JPH0665691A (en) High ni alloy sheet strip excellent in corrosion resistance and its production