JPS63111172A - Production of target material - Google Patents

Production of target material

Info

Publication number
JPS63111172A
JPS63111172A JP25727786A JP25727786A JPS63111172A JP S63111172 A JPS63111172 A JP S63111172A JP 25727786 A JP25727786 A JP 25727786A JP 25727786 A JP25727786 A JP 25727786A JP S63111172 A JPS63111172 A JP S63111172A
Authority
JP
Japan
Prior art keywords
target material
metal
grain size
hot
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25727786A
Other languages
Japanese (ja)
Inventor
Takeo Mizuguchi
水口 丈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP25727786A priority Critical patent/JPS63111172A/en
Publication of JPS63111172A publication Critical patent/JPS63111172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stabilize glow discharge by subjecting a metal for a target material for sputtering to hot and/or cold plastic working and annealing it so as to control the grain size of the resulting target material and to homogenize the target material. CONSTITUTION:A metal or alloy is subjected to hot and/or cold plastic working and annealing. The worked metal or alloy is used as a target material used to produce a thin metallic film by sputtering. Since the target material has a controlled grain size and is in a homogenized state, it is made free from holes and glow discharge is stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、フォトマスク用、磁気記録金属媒体用、磁気
ヘッド用、ミラー用等に、使用されている金属または合
金薄膜用ターゲット材(以下金属ターゲット材と記す)
の改良に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to target materials for metal or alloy thin films (hereinafter referred to as (described as metal target material)
This is related to the improvement of.

〔従来の技f$テ〕[Traditional technique f$te]

従来のスパッタリング用金屈ターゲット材は、主に、真
空溶解鋳造法か、粉末焼結法でえられる成形塊(銅塊)
を、所定寸法に切断、切削または研磨等の殿城加工仕上
したものが用いられていた。
Conventional Kinku target materials for sputtering are mainly formed ingots (copper ingots) obtained by vacuum melting and casting or powder sintering.
It was used that was finished by cutting, milling, or polishing to a predetermined size.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、真空溶解鋳造法によるものでは結晶粒径の制御
が、困難であったり、また、鋳造欠陥や焼結よる残余空
孔のために、密度も低いものであった。このため従来の
金属ターゲット材では、スパッタ時に、グコー放電の安
定持続が困難となり、その結果として、ターゲット効率
の低下をもたらし、有効利用される部分が少ないという
問題を生じている。
However, with the vacuum melting casting method, it is difficult to control the crystal grain size, and the density is low due to casting defects and residual pores due to sintering. For this reason, with conventional metal target materials, it is difficult to sustain a stable gouco discharge during sputtering, resulting in a decrease in target efficiency and a problem in that only a small amount of effective utilization occurs.

そこで、本発明は、スパッタリングを安定化しかつ無駄
を少なく有効に使用できる金属ターゲット材の製造方法
を提供しようとするものである。
Therefore, the present invention aims to provide a method for manufacturing a metal target material that can stabilize sputtering and be used effectively with less waste.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、金属ターゲット材を製造する工程に、熱間も
しくは冷間塑性加工並びに焼鈍を加えることで、結晶粒
径を制御し、空孔がなく均質な金属ターゲット材を供給
することにより、前記問題点を解決するものである。
The present invention adds hot or cold plastic working and annealing to the process of manufacturing a metal target material, thereby controlling the crystal grain size and supplying a homogeneous metal target material without voids. It is a solution to a problem.

すなわち、実施例で述べるように、各種合金系に応じて
、4Qmmないし70龍厚みのシートバーを、8ないし
10朋まで熱間圧延(ただし、Ni系の場合は、後半の
冷間圧延率50%)したのち、800°Cないし115
0℃に、10分間ないし30分間保持し、徐冷(50℃
/HR)あるいは、空冷すること等によって、存在する
空孔を除去し、また結晶粒径を小さくするとともに、均
一に制御するものである。
That is, as described in the examples, a sheet bar with a thickness of 4Q mm to 70 mm is hot rolled to a thickness of 8 to 10 mm depending on the various alloy systems (however, in the case of Ni-based alloys, the latter half cold rolling rate is 50 mm). %) and then 800°C to 115°C.
Hold at 0°C for 10 to 30 minutes and slowly cool (50°C).
/HR) Alternatively, existing pores are removed by air cooling, and the crystal grain size is reduced and uniformly controlled.

〔作用〕[Effect]

本発明によれば、ターゲット材が、スパッタされて、表
面から少しずつ減ってゆく過程で、結晶粒の差異が、ス
パッタ面に現われて、成膜の安定を欠くことや、空孔が
スパーク放電を起こさせることが無く、グロー放電の安
定持続が可能である。
According to the present invention, when the target material is sputtered and gradually decreases from the surface, differences in crystal grains appear on the sputtering surface, resulting in unstable film formation and voids causing spark discharge. The glow discharge can be maintained stably without causing any problems.

その結果として、ターゲット材の有効利用率が、高くな
る。
As a result, the effective utilization rate of the target material increases.

〔実施例〕 実施例1.Ni−Feターゲット 組成が82.4%Ni  17.6%Fe (wt%)
、真空誘導炉で溶解・精錬・鋳造した鋼塊を、1150
℃に加熱して、18鶴厚さに熱間圧延し、その後、9鶴
まで冷間圧延した後、種々の条件で焼鈍し、結晶粒度を
調べた。この結果を表に示す。
[Example] Example 1. Ni-Fe target composition is 82.4%Ni 17.6%Fe (wt%)
, steel ingots melted, refined and cast in a vacuum induction furnace, 1150
℃, hot rolled to a thickness of 18 mm, then cold rolled to a thickness of 9 mm, annealed under various conditions, and the grain size was examined. The results are shown in the table.

このうち代表的なミクロ組織写真(X100倍)を第1
図に示す。AおよびBはそれぞれ表のTPNnlおよび
4によるものであり、木表から焼鈍により結晶粒径の制
御が可能であることが判る。
The first representative microstructure photograph (x100) is
As shown in the figure. A and B are based on TPNnl and 4 in the table, respectively, and it can be seen from the wood surface that the grain size can be controlled by annealing.

実施例’1.  Co−Ni−Crターゲット組成が、
62.5%Co−30%Ni−7,5%Cr(八T%)
、真空誘導炉で溶解・精錬・鋳造した鋼塊を、1100
℃で、3711厚さのシートバーに鋳造し、得られたシ
ートバーを1130°Cに加熱後、10mmに圧延し、
1100°C×15分間の保持後空冷した。
Example '1. Co-Ni-Cr target composition is
62.5%Co-30%Ni-7,5%Cr (8T%)
, steel ingots melted, refined and cast in a vacuum induction furnace,
℃, and the obtained sheet bar was heated to 1130°C and rolled to 10mm.
After holding at 1100°C for 15 minutes, it was air cooled.

本実施例によるMi織写真を第2図Bに示す。なおAは
鋳造ままの参考Bは焼鈍後のものである。
A photograph of the Mi weave according to this example is shown in FIG. 2B. Note that A is as-cast and Reference B is after annealing.

実施例3.純クロムターゲット 純クロムターゲット材(99,9%以上)を、クロム粉
末をカプセルに封入し、旧Pでシートバーに焼結し、1
100°Cで、30分以上加熱保持後、10m厚さに熱
間圧延して、1000℃ないし1150℃に30分間保
持後、曲取りをして約50℃/HRで徐冷して制作した
Example 3. Pure chromium target Pure chromium target material (99.9% or more) is encapsulated with chromium powder and sintered into a sheet bar using old P.
After heating and holding at 100°C for 30 minutes or more, hot rolling to a thickness of 10m, holding at 1000°C to 1150°C for 30 minutes, decurving and slowly cooling at about 50°C/HR. .

比較のために、鋳造法によるもの(写真A)、粉末焼結
法によるもの(写真B)、および本発明によるもの(写
真C)のミクロ組織を第3図に示す。
For comparison, FIG. 3 shows the microstructures of those produced by the casting method (Photo A), those produced by the powder sintering method (Photo B), and those produced by the present invention (Photo C).

また、これらの方法によって作られたクーゲット材の比
重は、それぞれ、A : 7.155. B : 7.
168゜C: 7.184であり、本発明によるCは、
ミクロ組織が均質であり、空孔がないことが判る。
Further, the specific gravity of the Cougett material made by these methods is A: 7.155. B: 7.
168°C: 7.184, and C according to the present invention is
It can be seen that the microstructure is homogeneous and there are no pores.

上記実施例の他に、Co −Cr系、Co−Ni系、N
i−、Fe−Mo系およびFe −Co系についてテス
トした結果、いずれも本発明の適用が可能であり、かつ
結晶粒径制御が可能で、均質化、空孔発生防止の効果が
顕著であることが確認された。
In addition to the above examples, Co-Cr type, Co-Ni type, N
As a result of testing on i-, Fe-Mo system, and Fe-Co system, it was found that the present invention can be applied to all of them, the crystal grain size can be controlled, and the effect of homogenization and prevention of pore generation is remarkable. This was confirmed.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明はターゲット材の結晶粒径制
?l[l、均質化、空孔の発生防止を可能とし、これに
よりグロー放電を安定化するとともに使用率が向上する
等、高品質のターゲット材の製造を可能とするものであ
る。
As mentioned above, the present invention is based on the crystal grain size control of the target material. This makes it possible to homogenize and prevent the generation of pores, thereby stabilizing glow discharge and increasing the usage rate, making it possible to manufacture high-quality target materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による17.6wt%Fe−Niター
ゲット材のミクロ金属組織写真であり、AおよびBはそ
れぞれ表のTPNII 1および2によるもの、第2図
は、本発明の結晶粒径制御効果を説明するミクロ金属組
織写真で、AおよびBはそれぞれ鋳造のままおよび焼鈍
後のもの、第3図は、従来および本発明の製造法による
ミクロ金属組織の比較写真であり、Aは鋳造法、Bは粉
末焼結法、Cは本発明によるものである。 第1図 (xlooイ0 第2図(×/ρ0イ幻
Figure 1 is a micrometallic structure photograph of a 17.6wt% Fe-Ni target material according to the present invention, A and B are those of TPNII 1 and 2 in the table, respectively, and Figure 2 is a photograph of the crystal grain size of the present invention. Micrometallic structure photographs to explain the control effect, A and B are as-cast and after annealing, respectively. Figure 3 is a comparative photograph of micrometallic structures produced by conventional and inventive manufacturing methods, and A is cast method, B is a powder sintering method, and C is according to the present invention. Figure 1 (xloooi 0 Figure 2 (x/ρ0i illusion)

Claims (1)

【特許請求の範囲】[Claims] スパッタリング法で、金属薄膜を製造する場合に使用さ
れる金属または合金系ターゲット材において、熱間もし
くは冷間塑性加工または熱間および冷間塑性加工並びに
焼鈍を施すことを特長とする、ターゲット材の製造方法
A metal or alloy target material used in the sputtering process to produce a metal thin film, which is characterized by subjecting it to hot or cold plastic working, hot and cold plastic working, and annealing. Production method.
JP25727786A 1986-10-29 1986-10-29 Production of target material Pending JPS63111172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25727786A JPS63111172A (en) 1986-10-29 1986-10-29 Production of target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25727786A JPS63111172A (en) 1986-10-29 1986-10-29 Production of target material

Publications (1)

Publication Number Publication Date
JPS63111172A true JPS63111172A (en) 1988-05-16

Family

ID=17304140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25727786A Pending JPS63111172A (en) 1986-10-29 1986-10-29 Production of target material

Country Status (1)

Country Link
JP (1) JPS63111172A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216966A (en) * 1987-03-06 1988-09-09 Toshiba Corp Target for sputtering
JP2012052193A (en) * 2010-09-01 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for manufacturing the same
US9023487B2 (en) 2011-09-21 2015-05-05 Jx Nippon Mining & Metals Corporation Laminated structure and method for producing the same
US9139900B2 (en) 2011-03-01 2015-09-22 JX Nippon Mining Metals Corporation Indium target and manufacturing method thereof
US9758860B2 (en) 2012-01-05 2017-09-12 Jx Nippon Mining & Metals Corporation Indium sputtering target and method for manufacturing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216966A (en) * 1987-03-06 1988-09-09 Toshiba Corp Target for sputtering
JPH0371510B2 (en) * 1987-03-06 1991-11-13 Tokyo Shibaura Electric Co
JP2012052193A (en) * 2010-09-01 2012-03-15 Jx Nippon Mining & Metals Corp Indium target and method for manufacturing the same
US9490108B2 (en) 2010-09-01 2016-11-08 Jx Nippon Mining & Metals Corporation Indium target and method for manufacturing same
US9139900B2 (en) 2011-03-01 2015-09-22 JX Nippon Mining Metals Corporation Indium target and manufacturing method thereof
US9023487B2 (en) 2011-09-21 2015-05-05 Jx Nippon Mining & Metals Corporation Laminated structure and method for producing the same
US9758860B2 (en) 2012-01-05 2017-09-12 Jx Nippon Mining & Metals Corporation Indium sputtering target and method for manufacturing same
US9761421B2 (en) 2012-08-22 2017-09-12 Jx Nippon Mining & Metals Corporation Indium cylindrical sputtering target and manufacturing method thereof
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof

Similar Documents

Publication Publication Date Title
DE60003994T2 (en) Process for the production of sputter targets from high-purity cobalt, which have a low magnetic permeability
JP4593475B2 (en) Tantalum sputtering target
JP5325472B2 (en) Aluminum alloy substrate for magnetic disk and manufacturing method thereof
JP2003517101A (en) High strength sputtering target and method for manufacturing the same
TW200407203A (en) Method of manufacturing Ta sputtering target
US4318753A (en) Thermal treatment and resultant microstructures for directional recrystallized superalloys
US2768915A (en) Ferritic alloys and methods of making and fabricating same
US5256202A (en) Ti-A1 intermetallic compound sheet and method of producing same
JPS63111172A (en) Production of target material
WO2018092547A1 (en) Aluminum alloy substrate for magnetic disc and method of manufacture therefor
US2859143A (en) Ferritic aluminum-iron base alloys and method of producing same
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPH05239584A (en) Rolled sheet of high strength aluminum alloy and its production
JP2003253411A (en) Method of producing titanium material for target
JP2001107226A (en) Co SERIES TARGET AND ITS PRODUCTION METHOD
JP4573381B2 (en) Manufacturing method of sputtering target
US20050183797A1 (en) Fine grained sputtering targets of cobalt and nickel base alloys made via casting in metal molds followed by hot forging and annealing and methods of making same
JP2002146521A (en) Method for manufacturing gold target
JP2527105B2 (en) Method for manufacturing thin plate duplex stainless steel slab
JPH0585630B2 (en)
JPH05277656A (en) Thin plate of alloy containing ti3al group intermetallic compound and manufacture thereof
JPS60238460A (en) Manufacture of superplastic aluminum alloy
WO2023167219A1 (en) Production method for aluminum alloy feedstock, production method for aluminum alloy ingot, production method for aluminum alloy sheet, production method for aluminum alloy substrate for plating, production method for aluminum alloy substrate for magnetic disk, production method for magnetic disk, and magnetic disk
JPH04202733A (en) Manufacture of co-base alloy member
JPH11131146A (en) Production of strip of iron-nickel alloy from continuously cast thin strip