JPS6372166A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6372166A
JPS6372166A JP21505286A JP21505286A JPS6372166A JP S6372166 A JPS6372166 A JP S6372166A JP 21505286 A JP21505286 A JP 21505286A JP 21505286 A JP21505286 A JP 21505286A JP S6372166 A JPS6372166 A JP S6372166A
Authority
JP
Japan
Prior art keywords
mesa
film
algaas
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21505286A
Other languages
Japanese (ja)
Other versions
JPH0760897B2 (en
Inventor
Kenichi Imamura
健一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61215052A priority Critical patent/JPH0760897B2/en
Publication of JPS6372166A publication Critical patent/JPS6372166A/en
Publication of JPH0760897B2 publication Critical patent/JPH0760897B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make the title device multifunctional and highly speedy, and to prevent the generation of big stepped parts and to improve a yield by a method wherein a superlattice is formed on the side of a mesa which is composed of more than one semiconductor layers including a heterojunction on a substrate. CONSTITUTION:For the manufacutre of a semiconductor device, an i-type GaAs active layer 2 and an n<+> type AlGaAs electron supply layer 3 are first formed on a semi-insulating GaAs substrate 1, and, by etching the n<+> type AlGaAs electron supply layer 3 and the i-type GaAs active layer 2, a mesa is then formed. Then, after an AlGaAs film 4 has been formed, the AlGaAs film 4 is etched by anisotropic etching so that only a coated part on the side of the mesa remains unetched. Then, the formation of films by means of a molecular beam epitaxy method and the anisotropical etching process by means of a reactive ion etching method are repeated so that a GaAs film 5, an AlGaAs film 6 and an n-type GaAs electrode contact layer 7 can be formed. Then, from an SL on both sides of the mesa and the electrode contact layer 7, e.g., the part on the right side is removed. Then, a source electrode 8, a drain electrode 9 and a gate electrode 10 to be located on the surface of the electron supply layer 2 are formed.

Description

【発明の詳細な説明】 〔概要〕 本発明は、半導体装置の製造方法に於いて、基板上のヘ
テロ接合を含む複数の半導体層からなるメサの側面に超
格子を形成することに依り、多機能で高速の半導体装置
が得られるようにすると共に超格子を有する半導体装置
を製造する場合に於けるプロセスの困難性を解消したも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention provides a method for manufacturing a semiconductor device, in which a superlattice is formed on the side surface of a mesa consisting of a plurality of semiconductor layers including a heterojunction on a substrate. This makes it possible to obtain a functionally high-speed semiconductor device, and also eliminates the difficulty of the process in manufacturing a semiconductor device having a superlattice.

〔産業上の利用分野〕[Industrial application field]

本発明は、縦方向に形成されたヘテロ接合と横方向に形
成されたヘテロ接合と組み合わせて新しい機能を持たせ
た半導体装置を製造するのに好適な方法に関する。
The present invention relates to a method suitable for manufacturing a semiconductor device having a new function by combining a vertically formed heterojunction and a horizontally formed heterojunction.

〔従来の技術〕[Conventional technology]

近年、ヘテロ接合、或いは、多数のヘテロ接合からなる
超格子(super  1attice:SL)を利用
する半導体装置の開発が盛んであり、例えば、高電子移
動度トランジスタ(highelectron  mo
bility  transistor:HEMT)、
ホット・エレクトロン・トランジスタ(hot  el
ectrontransistor:HET)、共鳴ト
ンネリング・ホット・エレクトロン・トランジスタ(r
esonant−tunneling  hotele
ctron  transistor:RHET)等が
知られている。
In recent years, there has been active development of semiconductor devices that utilize heterojunctions or super lattices (SL) consisting of multiple heterojunctions, such as high electron mobility transistors (SL).
capacity transistor: HEMT),
hot electron transistor
electrontransistor (HET), resonant tunneling hot electron transistor (r
esonant-tunneling hotel
ctron transistor (RHET) and the like are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記したヘテロ接合半導体装置の殆どは、例えば、通常
の電界効果半導体装置などに比較すると極めて高速であ
るが、それが唯一の利点であって、特殊な構成にしない
限り、他に特別な機能を持たないものが多い。
Most of the heterojunction semiconductor devices mentioned above are extremely fast compared to, for example, normal field effect semiconductor devices, but this is their only advantage and unless they are specially configured, they do not have any other special functions. There are many things I don't have.

また、特に、諸手導体層を縦方向に積層するようにして
いるので、ヘテロ接合も縦方向に生成されることになる
為、その製造プロセスの面で種々の問題を生じ、例えば
、素子間分離や電極導出部分を形成する為に深いエツチ
ングを行う必要があり、素子間分離には約1 〔μm〕
程度のエツチングを必要とする場合も稀ではなく、しか
も、電極導出の為には複雑な階段状メサ・エツチングを
行わなければならず、この種の半導体装置の製造歩留り
は大変悪いものとなっている。
In addition, since the various conductor layers are stacked vertically, heterojunctions are also created vertically, which causes various problems in the manufacturing process, such as isolation between elements. It is necessary to perform deep etching to form electrode lead-out parts, and the separation between elements is approximately 1 [μm].
It is not uncommon for some degree of etching to be required, and moreover, complex step-like mesa etching must be performed to lead out the electrodes, resulting in a very poor manufacturing yield for this type of semiconductor device. There is.

本発明は、ヘテロ接合を縦方向と横方向に形成して半導
体装置を構成することに依り、従来の半導体装置にない
機能を持たせ、且つ、大きな段差が生ずることを防止し
、製造プロセスを容易なものとして歩留りを高め、また
、安価に製造できるようにする。
By configuring a semiconductor device by forming heterojunctions in the vertical and horizontal directions, the present invention provides functions not found in conventional semiconductor devices, prevents the occurrence of large steps, and speeds up the manufacturing process. To increase yield by being easy and to manufacture at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に依る半導体装置の製造方法では、基板(例えば
半絶縁性GaAs基板1)上に少なくとも一つのヘテロ
接合を含む複数の半導体層(例えばi型GaAs能動N
2及びn型Al1GaAs電子供給層)を縦方向に積層
して成長させる工程と、該半導体層をパターニングして
メサを形成する工程と、該メサの側面にバリヤとなる半
導体層(例えばAJGaAs膜4及び6)及びウェルと
なる半導体層(例えばGaAs膜5)からなる超格子を
形成する工程とが含まれてなる構成になっている。
In the method for manufacturing a semiconductor device according to the present invention, a plurality of semiconductor layers (for example, an i-type GaAs active N
2 and n-type Al1GaAs electron supply layer) in the vertical direction, patterning the semiconductor layer to form a mesa, and forming a barrier semiconductor layer (for example, AJGaAs film 4) on the sides of the mesa. and 6) and a step of forming a superlattice made of a semiconductor layer (for example, the GaAs film 5) that will become a well.

〔作用〕[Effect]

前記手段を採ることに依り、縦方向にヘテロ接合を、ま
た、横方向に超格子を有する半導体装置を得ることがで
き、高速であるのみならず、例えば微分負特性を有する
ようなヘテロ接合半導体装置を容易に製造することがで
き、しかも、そのヘテロ接合半導体装置に於いては、表
面に大きな段差を生じさせることなく素子間分離を行う
ことが可能。となり、製造プロセスに於ける困難性が解
消されるので歩留りが向上し、その結果、高速且つ特殊
機能を有する半導体装置を安価に提供することができる
By adopting the above method, it is possible to obtain a semiconductor device having a heterojunction in the vertical direction and a superlattice in the horizontal direction, which is not only high-speed but also a heterojunction semiconductor having, for example, differential negative characteristics. The device can be manufactured easily, and furthermore, in the heterojunction semiconductor device, it is possible to perform isolation between elements without creating a large step on the surface. Since difficulties in the manufacturing process are eliminated, the yield is improved, and as a result, semiconductor devices with high speed and special functions can be provided at low cost.

〔実施例〕〔Example〕

第1図乃至第8図は本発明一実施例を解説する為の工程
要所に於ける半導体装置の要部切断側面図を表し、以下
、これ等の図を参照しつつ説明する。尚、ここでは、共
鳴トンネリング・ダイオード(resonant−tu
nneling  diode:RTD)とHEMTと
を組み合わせた半導体装置を製造する場合を対象として
いる。
1 to 8 are cross-sectional side views of essential parts of a semiconductor device at key points in the process for explaining one embodiment of the present invention, and the following description will be made with reference to these figures. Note that here, a resonant tunneling diode (resonant-tu
The target is the case where a semiconductor device is manufactured by combining an internal ring diode (RTD) and a HEMT.

第1図参照 (11分子線エピタキシャル成長(molecular
  beam  epitaxy:MBE)法を適用す
ることに依り、半絶縁性GaAs基板1上にi型GaA
s能動層2、n+型Aj!GaAs電子供給N3を形成
する。
See Figure 1 (11 molecular beam epitaxial growth (molecular beam epitaxial growth)
By applying the beam epitaxy (MBE) method, i-type GaAs is deposited on the semi-insulating GaAs substrate 1.
s active layer 2, n+ type Aj! GaAs electron supply N3 is formed.

この場合の各半導体層の主要データを例示すると次の通
りである。
An example of the main data of each semiconductor layer in this case is as follows.

■ 能動層2について 厚さ:300  (人〕 ■ 電子供給層3について X値:0.3 厚さ:200(人〕 不純物濃度: I X 10I8(cm−’)第2図参
照 (2)通常のフォト・リソグラフィ技術に於けるレジス
ト・プロセス及びエツチング・ガスをCF4とする反応
性イオン・エツチング(r e a ctive  i
on  etching:RIE)法を適用することに
依り、n+型AlGaAs電子供給層3及びi型GaA
s能動層2のエツチングを行ってメサを形成する。
■ Thickness of active layer 2: 300 (people) ■ X value of electron supply layer 3: 0.3 Thickness: 200 (people) Impurity concentration: I x 10I8 (cm-') See Figure 2 (2) Normal Resist process in photolithography technology and reactive ion etching using CF4 as etching gas
By applying the on etching (RIE) method, the n + type AlGaAs electron supply layer 3 and the i type GaA
s The active layer 2 is etched to form a mesa.

このメサの大きさは、平面的に見て、例えば1 〔μm
〕×10〔μm〕程度が選択される。
The size of this mesa is, for example, 1 [μm] in plan view.
]×10 [μm] is selected.

第3図参照 +31MBE法を適用することに依り、厚さ例えば50
〔人〕のAj!GaAs膜4を形成する。
By applying the +31MBE method (see Figure 3), the thickness can be reduced to
Aj of [person]! A GaAs film 4 is formed.

第4図参照 (4)エツチング・ガスをCF4とするRIE法を通用
することに依り、AlGaAs膜4の異方性エツチング
を行い、メサの側面に被着された部分のみを残して他を
除去する。
See Figure 4. (4) By applying the RIE method using CF4 as the etching gas, the AlGaAs film 4 is anisotropically etched, leaving only the part adhered to the side surface of the mesa and removing the rest. do.

第5図参照 (5)前記したように、MBE法に依る被膜の形成とR
IE法に依る異方性エツチングとを繰り返して、厚さ例
えば50(人〕のGaAs膜5、同じく厚さ例えば50
〔人〕のAfGaAs膜6、厚さ例えば1000 (人
〕のn型GaAs電極コンタクトN7を形成する。尚、
電極コンタクト層7の不純物濃度はI X 10I8(
ell−’)程度にして良い。
See Figure 5. (5) As mentioned above, film formation by MBE method and R
By repeating the anisotropic etching using the IE method, a GaAs film 5 having a thickness of, for example, 50 mm, and a GaAs film 5 having a thickness of, for example, 50 mm are formed.
An n-type GaAs electrode contact N7 is formed using an AfGaAs film 6 having a thickness of, for example, 1,000 mm.
The impurity concentration of the electrode contact layer 7 is I x 10I8 (
ell-') may be used.

前記のようにして形成したAJGaAs膜4、GaAs
膜5、Aj!GaAs膜6はSLを構成していることは
勿論であり、これ等は必要に応じて更に多層にして良い
AJGaAs film 4 formed as described above, GaAs
Membrane 5, Aj! It goes without saying that the GaAs film 6 constitutes the SL, and these may be formed into multiple layers if necessary.

第6図参照 (6)通常のフォト・リソグラフィ技術を適用すること
に依り、メサの両側面に在ったSL及び電極コンタクト
層7のうち、例えば、右側に在るものを除去する。
Refer to FIG. 6 (6) By applying a normal photolithography technique, of the SL and electrode contact layers 7 on both sides of the mesa, for example, the one on the right side is removed.

第7図参照 (7)通常のフォト・リソグラフィ技術のレジスト・プ
ロセス及びリフト・オフ法を適用することに依り、ソー
ス電極8及びドレイン電極9を形成する。尚、ソース電
極8及びドレイン電極9を構成する材料としてA u 
G e / A uを用い、それ等の厚さは200 〔
人)/800(人〕として良い。
See FIG. 7. (7) A source electrode 8 and a drain electrode 9 are formed by applying a resist process and a lift-off method of normal photolithography technology. In addition, the material constituting the source electrode 8 and drain electrode 9 is A
G e / A u are used, and their thickness is 200 [
) / 800 (persons) is good.

第8図参照 (8)通常のフォト・リソグラフィ技術のレジスト・プ
ロセス及びリフト・オフ法を適用することに依り、電子
供給層3の表面にゲート電極10を形成する。尚、ゲー
ト電極10の材料としてはAj2を用い、その厚さを3
000 (人〕として良い。
See FIG. 8. (8) Gate electrode 10 is formed on the surface of electron supply layer 3 by applying a resist process and lift-off method of normal photolithography technology. Note that Aj2 is used as the material of the gate electrode 10, and its thickness is 3.
Good as 000 (person).

尚、第8図に見られる記号11は能動層2と電子供給層
3とで構成されるヘテロ界面近傍の能動層2側に生成さ
れた二次元電子ガス層を、また、記号12はRTD部分
をそれぞれ指示している。尚、RTD部分12に於いて
は、AlGaAs膜4、GaAs膜5、Aj2GaAs
膜°6の部分がSLとして作用する。
In addition, the symbol 11 seen in FIG. 8 indicates the two-dimensional electron gas layer generated on the active layer 2 side near the hetero interface composed of the active layer 2 and the electron supply layer 3, and the symbol 12 indicates the RTD part. are instructed respectively. In addition, in the RTD portion 12, an AlGaAs film 4, a GaAs film 5, and an Aj2GaAs
The 6° portion of the membrane acts as SL.

このようにして作成された半導体装置に於けるドレイン
・ソース間電圧v0対ドレイン電流■。
Drain-source voltage v0 vs. drain current (■) in the semiconductor device thus fabricated.

の関係は第9図に見られる通りである。The relationship is as seen in Figure 9.

第9図に於いては、横軸にドレイン・ソース間電圧VO
Sを、また、縦軸にドレイン電流IDをそれぞれ採って
あり、ゲート電圧■9がO(V)の場合及び成る正の値
を採った場合のそれぞれについて特性線を示しである。
In Figure 9, the horizontal axis represents the drain-source voltage VO.
S is plotted on the vertical axis, and drain current ID is plotted on the vertical axis, and characteristic lines are shown for cases where the gate voltage (1) is O(V) and a positive value, respectively.

図示の特性線から明らかなように、本発明の半導体装置
は微分負特性を有し、例えば、ゲート電圧■9が異なっ
ていても、ドレイン・ソース間電圧VDSの如何に依り
、ドレイン電流ll1lが同じになる場合と異なる場合
とがある。
As is clear from the characteristic line shown, the semiconductor device of the present invention has negative differential characteristics. For example, even if the gate voltage (19) is different, the drain current 1111 depends on the drain-source voltage VDS. Sometimes they are the same and sometimes they are different.

このような特性が得られることから、論理動作成いは発
振動作をさせることが可能である。
Since such characteristics are obtained, it is possible to perform logical operation or oscillation operation.

〔発明の効果〕〔Effect of the invention〕

本発明に依る半導体装置の製造方法では、基板上のヘテ
ロ接合を含む複数の半導体層からなるメサの側面に超格
子を形成する構成になっている。
In the method for manufacturing a semiconductor device according to the present invention, a superlattice is formed on the side surface of a mesa made of a plurality of semiconductor layers including a heterojunction on a substrate.

前記構成を採ることに依り、縦方向にヘテロ接合を、ま
た、横方向に超格子を有する半導体装置を得ることがで
き、高速であるのみならず、例えば微分負特性を有する
ようなヘテロ接合半導体装置を容易に製造することがで
き、しかも、そのヘテロ接合半導体装置に於いては、表
面に大きな段差を生じさせることなく素子間分離を行う
ことが可能となり、製造プロセスに於ける困難性が解消
されるので歩留りが向上し、その結果、この種の半導体
装置を安価に提供することができる。
By adopting the above structure, it is possible to obtain a semiconductor device having a heterojunction in the vertical direction and a superlattice in the horizontal direction, which is not only high-speed but also a heterojunction semiconductor having, for example, differential negative characteristics. The device can be manufactured easily, and in the heterojunction semiconductor device, it is possible to perform isolation between elements without creating a large step on the surface, eliminating difficulties in the manufacturing process. As a result, the yield is improved, and as a result, this type of semiconductor device can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は本発明一実施例を説明する為の工程
要所に於ける半導体装置の要部切断側面図、第9図は第
1図乃至第8図について説明した実施例に依って製造さ
れた半導体装置の特性を説明する為の線図をそれぞれ表
している。 図に於いて、1は半絶縁性GaAs基板、2はi型Ga
AS能動層、3はn型AlGaAs電子供給層、4はA
lGaAs膜、5はGaAs膜、6はA I G a 
A s膜、7はn+型電極コンタクト層、8はソース電
極、9はドレイン電極、10はゲート電極、11は二次
元電子ガス層、12はRTD部分をそれぞれ示している
。 特許出願人   富士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − 第1図 第2図 第3図 第6図 第7図
1 to 8 are cut-away side views of essential parts of a semiconductor device at key points in the process for explaining one embodiment of the present invention, and FIG. Each diagram represents a diagram for explaining the characteristics of a semiconductor device manufactured in this manner. In the figure, 1 is a semi-insulating GaAs substrate, 2 is an i-type GaAs substrate, and 2 is an i-type GaAs substrate.
AS active layer, 3 is n-type AlGaAs electron supply layer, 4 is A
1GaAs film, 5 is GaAs film, 6 is A I Ga
7 is an n+ type electrode contact layer, 8 is a source electrode, 9 is a drain electrode, 10 is a gate electrode, 11 is a two-dimensional electron gas layer, and 12 is an RTD portion. Patent Applicant: Fujitsu Ltd. Representative Patent Attorney Akira Aitani Representative Patent Attorney Hiroshi Watanabe - Figure 1 Figure 2 Figure 3 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 基板上に少なくとも一つのヘテロ接合を含む複数の半導
体層を縦方向に積層して成長させる工程と、 該半導体層をパターニングしてメサを形成する工程と、 該メサの側面にバリヤとなる半導体層及びウェルとなる
半導体層からなる超格子を形成する工程と が含まれてなることを特徴とする半導体装置の製造方法
[Claims] A step of vertically stacking and growing a plurality of semiconductor layers including at least one heterojunction on a substrate, a step of patterning the semiconductor layer to form a mesa, and a side surface of the mesa. 1. A method of manufacturing a semiconductor device, comprising: forming a superlattice made up of a semiconductor layer serving as a barrier and a semiconductor layer serving as a well.
JP61215052A 1986-09-13 1986-09-13 Method for manufacturing semiconductor device Expired - Lifetime JPH0760897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61215052A JPH0760897B2 (en) 1986-09-13 1986-09-13 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61215052A JPH0760897B2 (en) 1986-09-13 1986-09-13 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6372166A true JPS6372166A (en) 1988-04-01
JPH0760897B2 JPH0760897B2 (en) 1995-06-28

Family

ID=16665964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61215052A Expired - Lifetime JPH0760897B2 (en) 1986-09-13 1986-09-13 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0760897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232081A (en) * 2001-01-29 2002-08-16 Mitsubishi Electric Corp Semiconductor laser, optical modulator, semiconductor laser therewith, and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201492A (en) * 1985-03-04 1986-09-06 Hitachi Ltd Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201492A (en) * 1985-03-04 1986-09-06 Hitachi Ltd Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232081A (en) * 2001-01-29 2002-08-16 Mitsubishi Electric Corp Semiconductor laser, optical modulator, semiconductor laser therewith, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0760897B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JPH0797589B2 (en) Method for manufacturing heterojunction bipolar transistor
JPH0613411A (en) Field effect transistor and manufacture thereof
JP2002299637A (en) Negative resistance field effect element
JPS62202564A (en) Hetero-junction field effect transistor
JPS6372166A (en) Manufacture of semiconductor device
EP0545255A2 (en) Quantum semiconductor device employing quantum boxes for enabling compact size and high-speed operation
JP3013096B2 (en) High-speed semiconductor devices
US6570194B2 (en) Compound semiconductor field effect transistor with improved ohmic contact layer structure and method of forming the same
JPH0459786B2 (en)
JP2973225B2 (en) Semiconductor device and manufacturing method thereof
JPH0684959A (en) High electron mobility field effect semiconductor device
JP2655594B2 (en) Integrated semiconductor device
JP2504785B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH0243742A (en) Manufacture of compound semiconductor device
JPS6372158A (en) Manufacture of high-speed semiconductor device
JP3295897B2 (en) Semiconductor device and manufacturing method thereof
JPS609174A (en) Semiconductor device
JPH0523497B2 (en)
JPS60244065A (en) Manufacture of hetero-junction bipolar semiconductor device
JPS63232374A (en) Semiconductor device
JP2510864B2 (en) Field effect semiconductor device
JPS61206263A (en) Hetero-bipolar type semiconductor device
JP3323008B2 (en) Semiconductor device
JP2592302B2 (en) Quantum effect semiconductor device
JPH05102198A (en) Pseudo-one-dimensional field-effect transistor and its manufacture