JPS6372150A - Dynamic ram - Google Patents

Dynamic ram

Info

Publication number
JPS6372150A
JPS6372150A JP61217449A JP21744986A JPS6372150A JP S6372150 A JPS6372150 A JP S6372150A JP 61217449 A JP61217449 A JP 61217449A JP 21744986 A JP21744986 A JP 21744986A JP S6372150 A JPS6372150 A JP S6372150A
Authority
JP
Japan
Prior art keywords
capacitor
electrode
insulating film
region
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61217449A
Other languages
Japanese (ja)
Inventor
Ichiro Matsuo
一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP61217449A priority Critical patent/JPS6372150A/en
Publication of JPS6372150A publication Critical patent/JPS6372150A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To realize the high integration without reducing the size of a device by a method wherein an insulated-gate type transistor and a capacitor are formed inside a hole which is made on the main surface of a semiconductor substrate. CONSTITUTION:A source (or a drain) region 22 of an n-channel insulated-gate type transistor is formed on the surface of a P-type semiconductor substrate 21, and a hole 23 which pierced this source region 22 is made inside the P-type semiconductor substrate 21. A drain (or a source) region 24 of an insulated-gate type transistor is formed at the bottom of the hole 23. In addition, a gate insulating film 25 of the insulated-gate type transistor,a gate electrode 26, an interlayer insulating film 27, the first electrode 28 of a capacitor, a capacitor insulating film 29 and the second electrode 30 of the capacitor are laminated in succession along the side wall of the hole 23, and the first electrode 28 is connected to the drain region 24 which is formed at the bottom of the hole 23. Through this constitution, it is possible to raise the integration density without reducing the size of a device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、1ビツトの情報を1個の絶縁ゲート型トラン
ジスタと1個のキャパシタとを用いて記憶する高集積化
に適したダイナミックRAM (以後D RA Mと記
す)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dynamic RAM (hereinafter referred to as D (referred to as RAM).

従来の技術 半導体記憶装置のうち、自由に情報の読み出しおよび書
き込みのできる、いわゆるR AM (RandomA
ccess Memory)装置には種々の構造のもの
が有るが、大容量化を第1の目的とする場合には、1ビ
ツトの情報を絶縁ゲート型トランジスタ1個とキャパシ
タ1個とで記憶することができる、いわゆる1トランジ
スタ型のDRAMが最適である。
Among conventional semiconductor memory devices, so-called RAM (Random A
(access memory) devices have various structures, but if the primary purpose is to increase capacity, it is possible to store 1 bit of information with one insulated gate transistor and one capacitor. A so-called one-transistor type DRAM is optimal.

この1トランジスタ型D RA Mの1ビツト分のセル
は第3図に示すような回路で表わすことができる。すな
わち、情報の読み出しおよび書き込み用トランジスタ1
のゲートがワード線2に、またソース(あるいはドレイ
ン)がビット腺3にそれぞれ接続され、読み出しおよび
書き込み用トランジスタ1のドレイン(あるいはソース
)が電荷蓄積キャパシタ4の一方の電極に接続され、さ
らに、電荷蓄積キャパシタ4の他方の電極が一定電位点
5に接続されている。かがるDRAMに好適な構造は、
たとえば前田和夫(t!!m、r超LSIデバイスハン
ドブックJ P292.1893年に記載されている。
A cell for one bit of this one-transistor type DRAM can be represented by a circuit as shown in FIG. That is, the transistor 1 for reading and writing information
has its gate connected to the word line 2 and its source (or drain) connected to the bit gland 3, the drain (or source) of the read/write transistor 1 connected to one electrode of the charge storage capacitor 4, and further, The other electrode of charge storage capacitor 4 is connected to constant potential point 5 . A suitable structure for a curved DRAM is
For example, it is described in Kazuo Maeda (t!!m, r Ultra LSI Device Handbook JP 292.1893).

この構造のD RA Mを第4図に示す。第4図(a)
は従来例のDRAMの1ビツト分の断面図を、また第4
図(b)はDRAMの平面図をそれぞれ表わしており、
これらの図面を参照して説明する。
A DRAM with this structure is shown in FIG. Figure 4(a)
shows a cross-sectional view of one bit of a conventional DRAM, and the fourth
Figure (b) shows a plan view of the DRAM,
Description will be given with reference to these drawings.

このDRAMは、P形半導体基板6内にソース(あるい
はドレイン)領域7とドレイン(あるいはソース)領域
8が形成され、ソース領域7とドレイン領域8の間の半
導体基板6の上にゲート絶縁膜9が形成され、ゲート絶
縁膜9の上にゲート電極10が形成され、半導体基板6
の上に選択的に素子分離用絶縁膜11が形成され、ドレ
イン領域8と素子分離用絶縁膜11の間にキャパシタ用
絶縁膜12が形成され、このキャパシタ用絶縁膜12の
上にキャパシタの第1の電極13が形成され、ゲート電
極とキャパシタの第1の電極13の上に層間絶縁膜14
が形成され、この層間絶縁膜14の上にコンタクト窓1
5を通してソース領域7に繋がるビット線16が形成さ
れた構造である。
In this DRAM, a source (or drain) region 7 and a drain (or source) region 8 are formed in a P-type semiconductor substrate 6, and a gate insulating film 9 is formed on the semiconductor substrate 6 between the source region 7 and the drain region 8. is formed, a gate electrode 10 is formed on the gate insulating film 9, and a semiconductor substrate 6 is formed.
An insulating film 11 for element isolation is selectively formed thereon, an insulating film 12 for a capacitor is formed between the drain region 8 and the insulating film 11 for element isolation, and the insulating film 12 for a capacitor is formed on the insulating film 12 for a capacitor. 1 electrode 13 is formed, and an interlayer insulating film 14 is formed on the gate electrode and the first electrode 13 of the capacitor.
is formed, and a contact window 1 is formed on this interlayer insulating film 14.
This structure has a bit line 16 connected to the source region 7 through the bit line 5 .

なお、キャパシタの第2の電極17はP形半導体基板6
の上のキャパシタ絶縁膜12直下をデプレッション型に
することによりキャパシタ絶縁膜12の直下に形成され
ている。また、ゲート電極10はワード線として働く。
Note that the second electrode 17 of the capacitor is connected to the P-type semiconductor substrate 6.
The capacitor insulating film 12 is formed directly under the capacitor insulating film 12 by making the part directly under the capacitor insulating film 12 a depression type. Further, the gate electrode 10 functions as a word line.

発明が解決しようとする問題点 上記のような従来例のDRAMでは、絶縁ゲート型トラ
ンジスタと電荷蓄積キャパシタとが半導体基板の主面と
平行な位置関係で形成されている。このような構造の下
で、同一半導体基板上に搭載するセルの数を増し、記憶
容量の増大をはかろうとすると、半導体基板の面積を太
き(することには制限があるため、比例縮小的に各部分
の寸法を微細化しなければならない。この場合必然的に
、絶縁ゲート型トランジスタのゲート長は短がくなり、
また電荷蓄積キャパシタの面積が小さくなる。絶縁ゲー
ト型トランジスタのゲート長が短かくなると、いわゆる
短チヤネル効果によりしきい値電圧が低下し、オフ状態
におけるもれ電流が増加するため電荷蓄積キャパシタに
蓄積された電荷、すなわち記憶情報の減衰が早(なると
いう問題が生じる。また、絶縁ゲート型トランジスタの
ゲート長が短かくなると、ソース・ドレイン間のパンチ
スルー耐圧が低下するため書き込み時のビット線の電圧
振幅を大きくする事ができないという問題も生じる。さ
らに、電荷蓄積キャパシタの面積が小さくなると、蓄積
可能な電荷量が少くなるため読み出し時に誤まりを生じ
たり、また情報の保持時に放射線等の影響により情報の
内容が反転する、いわゆるソフト・エラーの確率が高(
なるという問題も生じる。
Problems to be Solved by the Invention In the conventional DRAM as described above, an insulated gate transistor and a charge storage capacitor are formed in a positional relationship parallel to the main surface of a semiconductor substrate. Under such a structure, if you try to increase the number of cells mounted on the same semiconductor substrate and increase the storage capacity, you will have to increase the area of the semiconductor substrate (because there is a limit to it, it will be proportionally reduced). As a result, the dimensions of each part must be miniaturized.In this case, the gate length of insulated gate transistors will inevitably become shorter.
Also, the area of the charge storage capacitor becomes smaller. When the gate length of an insulated gate transistor becomes short, the threshold voltage decreases due to the so-called short channel effect, and the leakage current increases in the off-state, causing the charge stored in the charge storage capacitor, that is, the attenuation of stored information. Another problem arises: when the gate length of an insulated gate transistor becomes short, the punch-through voltage between the source and drain decreases, making it impossible to increase the voltage amplitude of the bit line during writing. Furthermore, as the area of the charge storage capacitor becomes smaller, the amount of charge that can be stored decreases, leading to errors during readout, and when information is retained, the content of the information is reversed due to the influence of radiation, so-called software problems.・High probability of error (
The problem also arises.

問題点を解決するための手段 上記のような問題点を解決するための本発明のD RA
 Mは、表面に沿ってソースあるいはドレイン領域とな
る第1の拡散領域が形成された半導体基板に、同第1の
拡散領域を貫通する孔が形成され、同孔の底面にドレイ
ンあるいはソース領域となる第2の拡散領域が形成され
、さらに前記孔の側壁に沿ってゲート絶縁膜、ゲート電
極、層間絶縁膜、キャパシタの第1の電極、キャパシタ
の絶縁膜およびキャパシタの第2の電極が順次積層され
るとともに、前記キャパシタの第1あるいは第2の電極
のいずれか一方が前記第2の拡散領域に接続されている
構造のものである。
Means for Solving the Problems The DRA of the present invention for solving the above problems
M is a semiconductor substrate in which a first diffusion region serving as a source or drain region is formed along the surface, a hole penetrating the first diffusion region is formed, and a drain or source region is formed at the bottom of the hole. A second diffusion region is formed, and a gate insulating film, a gate electrode, an interlayer insulating film, a first electrode of a capacitor, an insulating film of a capacitor, and a second electrode of a capacitor are sequentially laminated along the side wall of the hole. and one of the first and second electrodes of the capacitor is connected to the second diffusion region.

作用 本発明のDRAMでは、絶縁ゲート型トランジスタのゲ
ート長および電荷蓄積キャパシタの面積を十分に確保し
て、しかも、1ビツトあたりの記憶部分の面積を縮小す
ることができる。
Function: In the DRAM of the present invention, the gate length of the insulated gate transistor and the area of the charge storage capacitor can be sufficiently ensured, and the area of the storage portion per one bit can be reduced.

実施例 本発明のDRAMの実施例を第1図と第2図に示し、こ
れを参照して説明する。第1図(a)は第2図に示した
平面図のビット線に平行なA−A’線に沿った断面図、
第1図(b)は第2図のビット線と直交するB−B’腺
に沿った断面図である。
Embodiment An embodiment of the DRAM of the present invention is shown in FIGS. 1 and 2, and will be described with reference to these. FIG. 1(a) is a sectional view taken along the line A-A' parallel to the bit line of the plan view shown in FIG.
FIG. 1(b) is a sectional view taken along line BB', which is perpendicular to the bit line in FIG.

図示するように、P形半導体基板21の表面にnチャネ
ル絶縁ゲート型トランジスタのソース(あるいはドレイ
ン)領域22が形成され、このソース領域22を貫通し
てP形半導体基板21の中に孔23が設けられている。
As shown in the figure, a source (or drain) region 22 of an n-channel insulated gate transistor is formed on the surface of a P-type semiconductor substrate 21, and a hole 23 is formed in the P-type semiconductor substrate 21 through the source region 22. It is provided.

そして、孔23の底面には絶縁ゲート型トランジスタの
ドレイン(あるいはソース)領域24が形成されている
A drain (or source) region 24 of an insulated gate transistor is formed at the bottom of the hole 23.

さらに、孔23の側壁に沿って、絶縁ゲート型トランジ
スタのゲート絶縁膜25、ゲート電極26、層間絶縁膜
27、キャパシタの第1の電極28、キャパシタ絶縁膜
29およびキャパシタの第2の電極30が順次積層され
、第1の電極28は孔23の底面に形成されたドレイン
領域24と接続されている。
Further, along the side wall of the hole 23, a gate insulating film 25, a gate electrode 26, an interlayer insulating film 27, a first electrode 28, a capacitor insulating film 29, and a second electrode 30 of the insulated gate transistor are formed. The first electrode 28 is sequentially laminated, and the first electrode 28 is connected to the drain region 24 formed at the bottom of the hole 23 .

なお、絶縁ゲート型トランジスタのチャネル領域31は
、P形半導体基板21の中の孔23の側壁に沿った部分
に形成される。
Note that the channel region 31 of the insulated gate transistor is formed in a portion along the sidewall of the hole 23 in the P-type semiconductor substrate 21.

また、ソース領域22はビット線に相当し、素子分離用
絶縁膜32およびチャネルストッパ領域33により隣接
するビット線221と電気的に分離されている。また、
ゲート電極26はワード線に相当する。
Further, the source region 22 corresponds to a bit line and is electrically isolated from the adjacent bit line 221 by an element isolation insulating film 32 and a channel stopper region 33. Also,
Gate electrode 26 corresponds to a word line.

このDRAMの構造では、絶縁ゲート型トランジスタの
ゲート長および電荷蓄積キャパシタの面積は、孔23の
深さによって決定される。このため、素子を縮小せず集
積度を高めることができる。
In this DRAM structure, the gate length of the insulated gate transistor and the area of the charge storage capacitor are determined by the depth of the hole 23. Therefore, the degree of integration can be increased without reducing the size of the device.

第2図は、上記のDRAMのセルを同一半導体基板上に
複数個集積した場合の配置例を示した平面図である。キ
ャパシタの第2電極30はほぼ全面に存在するが省略し
た。平行線状に形成されたビット線22すなわちソース
領域22に直交してやはり平行線状に形成されたワード
線26すなわちゲート電極6があり、両者の交点の孔2
3の中に記憶素子部分が形成された構造となっている。
FIG. 2 is a plan view showing an arrangement example in which a plurality of the above DRAM cells are integrated on the same semiconductor substrate. Although the second electrode 30 of the capacitor is present on almost the entire surface, it has been omitted. There is a word line 26, that is, a gate electrode 6, which is also formed in a parallel line and is perpendicular to the bit line 22, that is, the source region 22, which is formed in a parallel line.
It has a structure in which a memory element portion is formed in the inner part 3.

ところで、ビット線22の間には素子分離用絶縁膜32
が存在し、ビット線22は互いに分離されている。
By the way, there is an insulating film 32 for element isolation between the bit lines 22.
are present, and the bit lines 22 are separated from each other.

なお、第2図の実施例では孔の平面形状を正方形として
描いているが、これは円、楕円、六角形等の任意の形状
であってもよい。また、同一半導体基板上に複数個集積
する場合の配置も第2図に従う必要はない。
In the embodiment shown in FIG. 2, the planar shape of the hole is depicted as a square, but this may be any shape such as a circle, an ellipse, or a hexagon. Further, when a plurality of semiconductor devices are integrated on the same semiconductor substrate, the arrangement does not need to follow FIG. 2.

また、第1図の実施例では孔23の底面のドレイン領域
24がキャパシタの第1の電極と接続された例を示した
が、これに限られたわけではなくドレイン領域24がキ
ャパシタの第2の電極と接続されたものであってもよい
Further, in the embodiment shown in FIG. 1, an example is shown in which the drain region 24 on the bottom surface of the hole 23 is connected to the first electrode of the capacitor, but the invention is not limited to this, and the drain region 24 is connected to the second electrode of the capacitor. It may be connected to an electrode.

さらに、実施例においては説明の都合上、P形半導体基
板上のnチャネル絶線ゲート型トランジスタを用いてい
たが、n形半導体基板上のPチャネル絶縁ゲート型トラ
ンジスタを用いても同様の効果が得られる。
Furthermore, in the examples, for convenience of explanation, an n-channel isolated gate transistor on a P-type semiconductor substrate was used, but the same effect can be achieved by using a P-channel insulated gate transistor on an n-type semiconductor substrate. can get.

発明の効果 本発明のDRAMは、半導体基板の主面上に穿たれた孔
の内部に形成された絶縁ゲート型トランジスタとキャパ
シタによって構成されているため、絶縁ゲート型トラン
ジスタのゲート長や電荷蓄積キャパシタの面積は孔の開
口面精よりもその深さによって決定される。この結果、
高集積にでき、しかも素子の大きさが小さくならない高
性能のDRAMを提供することができる。
Effects of the Invention Since the DRAM of the present invention is composed of an insulated gate transistor and a capacitor formed inside a hole drilled on the main surface of a semiconductor substrate, the gate length of the insulated gate transistor and the charge storage capacitor are The area of the hole is determined by the depth rather than the surface area of the hole. As a result,
It is possible to provide a high-performance DRAM that can be highly integrated and the size of the element does not become small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明のDRAMの実施例
を示す断面図、第2図は本発明のDRAMの配置例を示
す平面図、第3図は1トランジスタ型D RA Mの1
ビツトセルの回路図、第4図(a) 、 (b)は従来
例のDRAMを示す断面図と平面図である。 21・・・・・・P形半導体基板、22・・・・・・ソ
ース(あるいはドレイン)領域(ビット線)、23・・
・・・・孔、24・・・・・・ドレイン(あるいはソー
ス領域)、25・・・・・・ゲート酸化膜、26・・・
・・・ゲート電極(ワード線)、27・・・・・・層間
絶縁膜、28・・・・・・キャパシタの第1の電極、2
9・・・・・・キャパシタの絶縁膜、30・・・・・・
キャパシタの第2の電極、31・・・・・・チャネル領
域、32・・・・・・素子分離用の絶縁膜、33・・・
・・・チャネルストッパ領域。 代理人の氏名 弁理士 中尾敏男 ほか1名21−・P
膠季享fεf沃
FIGS. 1(a) and (b) are cross-sectional views showing embodiments of the DRAM of the present invention, FIG. 2 is a plan view showing an example of the arrangement of the DRAM of the present invention, and FIG. 3 is a cross-sectional view of a one-transistor type DRAM. 1
The circuit diagram of the bit cell, FIGS. 4(a) and 4(b), is a sectional view and a plan view showing a conventional DRAM. 21... P-type semiconductor substrate, 22... Source (or drain) region (bit line), 23...
... Hole, 24 ... Drain (or source region), 25 ... Gate oxide film, 26 ...
... Gate electrode (word line), 27 ... Interlayer insulating film, 28 ... First electrode of capacitor, 2
9... Insulating film of capacitor, 30...
Second electrode of capacitor, 31... Channel region, 32... Insulating film for element isolation, 33...
...Channel stopper area. Name of agent: Patent attorney Toshio Nakao and one other person 21-P
Glue seasoning fεfwo

Claims (1)

【特許請求の範囲】[Claims]  表面に沿ってソースあるいはドレイン領域となる第1
の拡散領域が形成された半導体基板に、同第1の拡散領
域を貫通する孔が形成され、同孔の底面にドレインある
いはソース領域となる第2の拡散領域が形成され、さら
に前記孔の側壁に沿ってゲート絶縁膜、ゲート電極、層
間絶縁膜、キャパシタの第1の電極、キャパシタの絶縁
膜およびキャパシタの第2の電極が順次積層されるとと
もに、前記キャパシタの第1あるいは第2の電極のいず
れか一方が前記第2の拡散領域に接続されていることを
特徴とするダイナミックRAM。
The first region along the surface serves as the source or drain region.
A hole penetrating the first diffusion region is formed in the semiconductor substrate having a diffusion region formed therein, a second diffusion region serving as a drain or source region is formed at the bottom of the hole, and a second diffusion region is formed on the side wall of the hole. A gate insulating film, a gate electrode, an interlayer insulating film, a first electrode of a capacitor, an insulating film of a capacitor, and a second electrode of a capacitor are sequentially laminated along the first or second electrode of the capacitor. A dynamic RAM characterized in that either one of them is connected to the second diffusion region.
JP61217449A 1986-09-16 1986-09-16 Dynamic ram Pending JPS6372150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61217449A JPS6372150A (en) 1986-09-16 1986-09-16 Dynamic ram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61217449A JPS6372150A (en) 1986-09-16 1986-09-16 Dynamic ram

Publications (1)

Publication Number Publication Date
JPS6372150A true JPS6372150A (en) 1988-04-01

Family

ID=16704411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61217449A Pending JPS6372150A (en) 1986-09-16 1986-09-16 Dynamic ram

Country Status (1)

Country Link
JP (1) JPS6372150A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989055A (en) * 1989-06-15 1991-01-29 Texas Instruments Incorporated Dynamic random access memory cell
JPH03225954A (en) * 1990-01-31 1991-10-04 Sanyo Electric Co Ltd Semiconductor memory device
US5075817A (en) * 1990-06-22 1991-12-24 Ramtron Corporation Trench capacitor for large scale integrated memory
US5104822A (en) * 1990-07-30 1992-04-14 Ramtron Corporation Method for creating self-aligned, non-patterned contact areas and stacked capacitors using the method
JPH05211312A (en) * 1991-08-21 1993-08-20 Hyundai Electron Ind Co Ltd Manufacture of dram cell
US5244824A (en) * 1990-09-05 1993-09-14 Motorola, Inc. Trench capacitor and transistor structure and method for making the same
US5250830A (en) * 1990-11-30 1993-10-05 Kabushiki Kaisha Toshiba Dynamic type semiconductor memory device and its manufacturing method
US5382816A (en) * 1992-07-03 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having vertical transistor with tubular double-gate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155557A (en) * 1985-12-27 1987-07-10 Nec Corp Semiconductor memory device
JPS6340362A (en) * 1986-08-05 1988-02-20 Fujitsu Ltd Semiconductor storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155557A (en) * 1985-12-27 1987-07-10 Nec Corp Semiconductor memory device
JPS6340362A (en) * 1986-08-05 1988-02-20 Fujitsu Ltd Semiconductor storage device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4989055A (en) * 1989-06-15 1991-01-29 Texas Instruments Incorporated Dynamic random access memory cell
JPH03225954A (en) * 1990-01-31 1991-10-04 Sanyo Electric Co Ltd Semiconductor memory device
US5075817A (en) * 1990-06-22 1991-12-24 Ramtron Corporation Trench capacitor for large scale integrated memory
US5104822A (en) * 1990-07-30 1992-04-14 Ramtron Corporation Method for creating self-aligned, non-patterned contact areas and stacked capacitors using the method
US5244824A (en) * 1990-09-05 1993-09-14 Motorola, Inc. Trench capacitor and transistor structure and method for making the same
US5250830A (en) * 1990-11-30 1993-10-05 Kabushiki Kaisha Toshiba Dynamic type semiconductor memory device and its manufacturing method
US5350708A (en) * 1990-11-30 1994-09-27 Kabushiki Kaisha Toshiba Method of making dynamic random access semiconductor memory device
JPH05211312A (en) * 1991-08-21 1993-08-20 Hyundai Electron Ind Co Ltd Manufacture of dram cell
US5382816A (en) * 1992-07-03 1995-01-17 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having vertical transistor with tubular double-gate
US5480838A (en) * 1992-07-03 1996-01-02 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having vertical transistor with tubular double-gate

Similar Documents

Publication Publication Date Title
JP4559728B2 (en) Semiconductor memory device
US4860070A (en) Semiconductor memory device comprising trench memory cells
EP0175378A2 (en) Dynamic random access memory (DRAM)
JP2508288B2 (en) Semiconductor memory device
US4896197A (en) Semiconductor memory device having trench and stacked polysilicon storage capacitors
JPH0766659B2 (en) Semiconductor memory device
US4953125A (en) Semiconductor memory device having improved connecting structure of bit line and memory cell
JPS6372150A (en) Dynamic ram
JPS60189964A (en) Semiconductor memory
US5072270A (en) Stacked capacitor type dynamic random access memory
JPH03205867A (en) Semiconductor memory
JPH0214563A (en) Semiconductor memory device
JP2936659B2 (en) Dynamic memory device
JPS62169475A (en) Semiconductor memory device
JP2503689B2 (en) Semiconductor memory device
JPS63209158A (en) One-transistor type dynamic memory cell
JPS62273764A (en) Semiconductor memory
KR950009892B1 (en) Semiconductor memory device
JPS6218751A (en) Semiconductor integrated circuit device
JPS63257263A (en) Semiconductor storage device
KR860009490A (en) Semiconductor device
JPS61287162A (en) Semiconductor memory device
JPH02206165A (en) Semiconductor memory device
JPH06216337A (en) Semiconductor storage device
JPS6034272B2 (en) semiconductor equipment