JPS6370566A - Photoelectric conversion element - Google Patents
Photoelectric conversion elementInfo
- Publication number
- JPS6370566A JPS6370566A JP61216243A JP21624386A JPS6370566A JP S6370566 A JPS6370566 A JP S6370566A JP 61216243 A JP61216243 A JP 61216243A JP 21624386 A JP21624386 A JP 21624386A JP S6370566 A JPS6370566 A JP S6370566A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- conversion element
- film
- photoconductive film
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 34
- 239000000758 substrate Substances 0.000 abstract description 8
- 230000004044 response Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000007493 shaping process Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229910003322 NiCu Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14665—Imagers using a photoconductor layer
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、充電変換素子に関し、更に詳しくは、光導N
膜を用い且つ応答性を改善した光電変換素子に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a charging conversion element, and more particularly to a light guide N
The present invention relates to a photoelectric conversion element that uses a film and has improved responsiveness.
従来技術
光電変換素子のうちCdS、CdSe等の光導電膜を用
いたものは、十分高い信号出力が得られるため実時間型
の読み取り方式を用いることが出来、マトリクス駆動が
可能で、スイッチ素子数を低減できるなどの利点を持っ
ている。Among conventional photoelectric conversion elements, those using photoconductive films such as CdS and CdSe can obtain sufficiently high signal output, so real-time reading methods can be used, matrix driving is possible, and the number of switch elements can be reduced. It has the advantage of being able to reduce
その一般的構成は、第7図および第8図に示すようであ
る。Its general configuration is shown in FIGS. 7 and 8.
第7図に示す光電変換素子11は、絶縁性基板12上に
、CdSやCdSeの如き材料の光導電1臭14を形成
し、その光導電膜14の上面に、対の電極15.16を
形成した構造である。In the photoelectric conversion element 11 shown in FIG. 7, a photoconductive film 14 made of a material such as CdS or CdSe is formed on an insulating substrate 12, and a pair of electrodes 15 and 16 are formed on the upper surface of the photoconductive film 14. This is the structure formed.
また、第8図に示す光電変換素子21は、絶縁性基板2
2上に、電極25を形成し、その電極25の上に光導電
ll!24を形成し、更にその光導電膜24の上に透明
電極26を形成した構造である。Furthermore, the photoelectric conversion element 21 shown in FIG.
2, an electrode 25 is formed on the electrode 25, and a photoconductive layer is formed on the electrode 25. 24 is formed, and a transparent electrode 26 is further formed on the photoconductive film 24.
これらの光1!変換素子11又は21において、光導電
!ll!14又は24の上面に光を照射すると、電極1
5.16の間の抵抗値又は電極25.26の間の抵抗値
が変化する。These lights 1! In the conversion element 11 or 21, photoconductive! ll! When the upper surface of electrode 14 or 24 is irradiated with light, electrode 1
The resistance between 5.16 and 25.26 or the resistance between electrodes 25.26 changes.
そこで、光強度を電気信号に変換することができる。Therefore, the light intensity can be converted into an electrical signal.
従来技術の問題点
従来の光導電膜を用いた光電変換素子では、その返答性
を数usec以下とするのは困難であり、高速読み取り
を行う必要のある用途には使用できないという問題点が
あった。Problems with the Prior Art It is difficult for photoelectric conversion elements using conventional photoconductive films to have a response time of several seconds or less, and there is a problem in that they cannot be used in applications that require high-speed reading. Ta.
発明の目的
本発明の目的とするところは、光導電膜を用い且つ応答
性を改善した光電変換素子を提供することにある。OBJECTS OF THE INVENTION It is an object of the present invention to provide a photoelectric conversion element that uses a photoconductive film and has improved responsiveness.
発明の構成
本発明の光電変換素子は、光導電膜の上面に第11!極
と第2電掻とを形成し、その光導電膜の上面に光を照射
し、そのときの両電極間の抵抗値の変化により光強度を
電気信号に変換する光電変換素子において、光導電膜の
下面に第3の電極を形成し、その第3電極と第1電極と
を接続したことを構成上の特徴とするものである。Structure of the Invention The photoelectric conversion element of the present invention has an 11th! In a photoelectric conversion element that forms a pole and a second electrode, irradiates the upper surface of the photoconductive film with light, and converts the light intensity into an electrical signal by changing the resistance value between both electrodes at that time, the photoconductive The structure is characterized in that a third electrode is formed on the lower surface of the membrane, and the third electrode and the first electrode are connected.
本発明において、実施態様として、第3の電極はマトリ
ックス配線のブロック毎に形成し、第1のN極と電気的
に接続している。In the present invention, as an embodiment, the third electrode is formed for each block of matrix wiring and is electrically connected to the first N-pole.
また、第3の電極は、第1の電極と第2の電極のギャッ
プ中央付近にまで設け、光導電膜にバイアス電圧を有効
に働かせるように構成している。Further, the third electrode is provided near the center of the gap between the first electrode and the second electrode, so as to effectively apply a bias voltage to the photoconductive film.
また、第1の電極と第3の電極とは光導電膜の上下では
お互いに重ならないように構成している。Further, the first electrode and the third electrode are configured so as not to overlap each other above and below the photoconductive film.
作用
第1電極と第2電極との間には直流電圧が印加され、光
強度による両電極間の抵抗値の変化が光電流の変化とし
て検出される。A DC voltage is applied between the working first electrode and the second electrode, and a change in resistance between the two electrodes due to light intensity is detected as a change in photocurrent.
ところが、第1電極と接続された第3電極が存在するた
め、第2111極と第3電極の間にも直流電圧が印加さ
れたことになる。However, since there is a third electrode connected to the first electrode, a DC voltage is also applied between the 2111th pole and the third electrode.
すなわち、第1電極と第2電極の間の直流電圧によって
光導電膜の横方向に電界を生じ、且つ、第2電極と第3
電極の間の直流電圧によって光導電膜の膜厚方向にも電
界を生じる。That is, an electric field is generated in the lateral direction of the photoconductive film by a DC voltage between the first electrode and the second electrode, and an electric field is generated between the second electrode and the third electrode.
An electric field is also generated in the thickness direction of the photoconductive film due to the DC voltage between the electrodes.
そうすると、両電界によって光導mflのバンド構造が
変化し、光照射によって生成されるキャリアの緩和過程
が変化する。そして、これにより応答性が改善される。Then, the band structure of the light guide mfl changes due to both electric fields, and the relaxation process of carriers generated by light irradiation changes. This also improves responsiveness.
実施例
以下、図に示す実施例に基づいて本発明を更に詳しく説
明する・ここに第1図+al、 (blは本発明の一実
施例の光1!変換棄子を示すもので、(alは[blに
おけるx−x’断面図、山)は平面図である。第2図は
第1図に示す光電変換素子とその読み出し回路を示す回
路図である。第3図Fal、 (blは第3電極の形成
工程を示す断面図及び平面図、第4図(8)。EXAMPLES Hereinafter, the present invention will be explained in more detail based on the examples shown in the figures. Herein, FIG. is a cross-sectional view taken along line x-x' in bl, (mountain) is a plan view. FIG. 2 is a circuit diagram showing the photoelectric conversion element shown in FIG. 1 and its readout circuit. FIG. 4(8) is a cross-sectional view and a plan view showing the formation process of the third electrode.
(b)は光導電膜の形成工程を示す断面図及び平面図、
第5図tag、 (blは第1電極及び第2電極の形成
工程を示す断面図及び平面図、第6図fat、 (bl
は透明絶縁膜および読み出し電極の形成工程を示す断面
図及び平面図である。なお、図に示す実施例により本発
明が限定されるものではない。(b) is a cross-sectional view and a plan view showing the process of forming a photoconductive film,
Figure 5 tag, (bl is a cross-sectional view and plan view showing the formation process of the first electrode and second electrode, Figure 6 fat, (bl
2A and 2B are a cross-sectional view and a plan view showing a process of forming a transparent insulating film and a readout electrode. Note that the present invention is not limited to the embodiments shown in the figures.
第1図に示す光m変換素子1において、絶縁性基板2の
上面に第3の電極3が形成され、その上面に光導電膜4
が形成され、その光導電膜4の上面に第1電極5及び第
2電極6a、6b+ ・・・が形成され、更にそれらの
上面に透明絶縁膜7が形成され、その透明絶縁膜7の上
面に読み出し電極A、B、・・・を形成して構成されて
いる。In the light m conversion element 1 shown in FIG. 1, a third electrode 3 is formed on the upper surface of an insulating substrate 2, and a photoconductive film 4 is formed on the upper surface.
is formed, a first electrode 5 and second electrodes 6a, 6b+, etc. are formed on the upper surface of the photoconductive film 4, a transparent insulating film 7 is further formed on the upper surface thereof, and the upper surface of the transparent insulating film 7 is formed. The reading electrodes A, B, . . . are formed on the electrodes.
ここで注忘すべきことは、本発明に係る光電変換素子1
の特徴として、第3N極3が形成されていることである
。What should be noted here is that the photoelectric conversion element 1 according to the present invention
The feature is that a third north pole 3 is formed.
その第3電極3は、第1電極5と第21!!極6゜+6
に+ ・・・の間部分に対応する光導電膜4の下面に形
成されており、両電極5.6&、6に、・・・とは光導
電1臭4の膜厚方向において重ならないように両電極5
.6&、6&、・・・のギャップ中央付近に位置して配
置され、第1電極5とは電気的に接続されて光導電膜4
にバイアス電圧が有効に働くように構成されている。こ
れは暗W流を抑止するためである。The third electrode 3 is connected to the first electrode 5 and the 21st! ! pole 6°+6
It is formed on the lower surface of the photoconductive film 4 corresponding to the part between + and . Both electrodes 5
.. 6&, 6&, . . . and is electrically connected to the first electrode 5 to form a photoconductive film 4
The structure is such that the bias voltage works effectively. This is to suppress the dark W flow.
第2図はこの光電変換素子1とその読み出し回路を示す
電気回路図である。FIG. 2 is an electrical circuit diagram showing this photoelectric conversion element 1 and its readout circuit.
すなわち、第1電極5.5’、・・・(および第3電極
3.3’、・・・)は、スイッチS、、S、、・・・に
よって選択されたものが電源Eからの直流電圧を印加さ
れ、選択されなかったものが接地される。That is, the first electrodes 5.5', . . . (and the third electrodes 3.3', . Voltage is applied, and those not selected are grounded.
一方、読み出し電極A、B、・・・は、スイッチS□、
S、、・・・によって選択されたものが負倚抵抗Rに接
続され、他は負荷抵抗Rから切り離される。On the other hand, the readout electrodes A, B, . . . are connected to the switches S□,
Those selected by S, . . . are connected to the negative resistance R, and the others are disconnected from the load resistance R.
そこで例えば第2図に示すようにスイッチSIとスイッ
チS、とをオンとすれば、先導?tll!4の一つの画
素に対応する部分の抵抗値r、の変化が検出され、出力
電圧■。とじて得られる。なお、この画素は、第1図(
blにおいて、第1電極5と第2電極6.の間部分であ
る。So, for example, if switch SI and switch S are turned on as shown in Fig. 2, will it lead? tll! A change in the resistance value r of a portion corresponding to one pixel of 4 is detected, and the output voltage . Obtained by binding. Note that this pixel is shown in Figure 1 (
In bl, the first electrode 5 and the second electrode 6. This is the part between.
同様にして、スイッチSl、S2+ ・・・とスイッチ
S、、S、、・・・とのマトリクス駆動によって、各画
素を順次選択的に読み出すことが出来る。Similarly, each pixel can be sequentially and selectively read out by driving the switches Sl, S2+, . . . and switches S, , S, . . . in a matrix.
したがって、この光電変換素子1は、−次元のイメージ
センサである。Therefore, this photoelectric conversion element 1 is a -dimensional image sensor.
次に、第3′FgJ〜第6図を参照し、上記光N変換素
子1の製作例について説明する。Next, an example of manufacturing the optical N conversion element 1 will be described with reference to 3'FgJ to FIG. 6.
1作男
(1)第3図+a+、 (blに示すように、ガラス基
板2 (コーニング社製#7059)上に、EB薄着法
により厚さ約3000人のT、膜を形成し、通常のフォ
トリソグラフィ法を用いてバターニングし、第3の電極
3を形成した。この第3の電極3は第2の共通電極とし
てマトリックス配線のブロック毎に形成(第1図(bl
参照)し、後述するように第1の共通電極としての第1
の電極5と光導ml膜4の上下では重ならないようにバ
ターニングしている。1. (1) As shown in Figure 3 + a + (bl), a film with a thickness of about 3,000 thick was formed on the glass substrate 2 (Corning #7059) by the EB thin deposition method, and then A third electrode 3 was formed by patterning using a photolithography method.This third electrode 3 was formed for each block of matrix wiring as a second common electrode (see FIG.
) and the first common electrode as the first common electrode as described later.
The upper and lower portions of the electrode 5 and the light guide ML film 4 are patterned so that they do not overlap.
(2)粒子径が0.2μm〜2μm(例えば平均粒径約
1μm)のCdSe微結晶粉に、活性化処理(CdC1
*4.4モル%ドープ、N2雰囲気800℃処理)を施
し、次にCdC1*4.5モル%と粘度調整のためのエ
チレングリコールとを通量添加し、サンドミル中で20
時間混合し、光導電材ペーストを作成した。(2) CdSe microcrystalline powder with a particle size of 0.2 μm to 2 μm (for example, an average particle size of about 1 μm) is subjected to activation treatment (CdC1
*4.4 mol% dope, N2 atmosphere 800°C treatment), then CdC1*4.5 mol% and ethylene glycol for viscosity adjustment were added through the flow, and the mixture was heated in a sand mill for 20
A photoconductive material paste was prepared by mixing for a period of time.
(3) 第4図(al、 (blに示すように、上記
光導電材ペーストを、第3電極3および基板2上に、ス
クリーン印刷により塗布し、次いでN2 +02雰囲気
中で100℃×1時間熱処理を施し、更に300℃×1
時間熱処理を施し、更に500℃×30分間熱処理を施
し、微結晶粒を焼結、成長させて光導電膜4を形成した
。焼成後の光導?!膜4の膜厚は、約6.5μmで、粗
度約0.7μmであった。(3) As shown in Figure 4 (al, (bl), the photoconductive material paste was applied onto the third electrode 3 and the substrate 2 by screen printing, and then heat-treated at 100°C for 1 hour in an N2+02 atmosphere. and further heated to 300℃ x 1
A heat treatment was performed for a time, and then a heat treatment was performed at 500° C. for 30 minutes to sinter and grow the microcrystalline grains, thereby forming a photoconductive film 4. Light guide after firing? ! The film thickness of the film 4 was about 6.5 μm, and the roughness was about 0.7 μm.
(4)基板2.第3電極3及び光導電膜4の上に、厚さ
約3μmのレジスト層をコーティングし、モノクロロベ
ンゼン中に25℃×30分間浸漬し、N、中で70℃×
30分間熱処理し、UV光にて露光し、第1の共通電極
としての第1電極5および第2電極61,6b、・・・
用のレジストパターンを形成した。(4) Substrate 2. A resist layer with a thickness of approximately 3 μm was coated on the third electrode 3 and the photoconductive film 4, and immersed in monochlorobenzene at 25°C for 30 minutes.
Heat treated for 30 minutes and exposed to UV light, the first electrode 5 as the first common electrode and the second electrodes 61, 6b, . . .
A resist pattern was formed.
+51EB蒸着法により厚さ約8000人のT i膜を
形成し、アセトン中でレジストを剥離し、第5図(ag
、 (blに示すように、第1電極5及び第2電極6□
、6b、・・・を形成した。なお、これら第1電極5お
よび第2電極61.6i、、・・・と前記第3N極3と
は、光導電膜4の上下方向において重ならないようにバ
ターニングすると共に第1の電極5と第3の電極3とは
光導電PJ4の存在していない基板上で電気的に接続さ
れるように構成している。A Ti film with a thickness of about 8,000 thick was formed by +51EB vapor deposition method, and the resist was peeled off in acetone.
, (as shown in bl, the first electrode 5 and the second electrode 6□
, 6b, . . . were formed. The first electrode 5 and the second electrode 61.6i, . . . and the third N-pole 3 are patterned so that they do not overlap in the vertical direction of the photoconductive film 4, and It is configured to be electrically connected to the third electrode 3 on the substrate where the photoconductive PJ 4 is not present.
(6)第6図ta+に示すように、厚さ約5μmのポリ
イミド膜を透明絶縁1!17としてコーティングし、次
いで第2M極61.6I、、・・・と読み出し電極A、
B、・・・とを接続するためのコンタクトホール7□、
・・・をエツチングにより形成し、次いで第6Ha1山
)に示すように、上部配線形成のためDCスパッタ法に
よりA1を厚さ約2000人、TIを厚さ約3000人
、NiCuを厚さ約10000人に着膜し、通常のフォ
トリソグラフィ法でバターニングし、読み出し電liA
、・・・を形成した。(6) As shown in FIG. 6 ta+, a polyimide film with a thickness of approximately 5 μm is coated as a transparent insulation 1!17, and then the second M poles 61.6I, . . . , the readout electrodes A,
Contact hole 7□ for connecting B,...
... was formed by etching, and then as shown in the 6th Ha1 peak), A1 was formed to a thickness of approximately 2,000 mm, TI to a thickness of approximately 3,000 mm, and NiCu to a thickness of approximately 10,000 mm by DC sputtering to form the upper wiring. The film is deposited on a person, patterned using normal photolithography, and readout electrodes
,... were formed.
(7)以上により線密度8ドツト/ m 、画素数17
28の密着形−次元イメージセンサとして光電変換素子
1を製作した。(7) As a result of the above, the linear density is 8 dots/m and the number of pixels is 17.
A photoelectric conversion element 1 was manufactured as a contact type 28-dimensional image sensor.
(8) 上記光電変換素子lに波長695nm、強度
約64μW/−の光を照射したところ、第11極5およ
び第3電極3に印加する電圧12Vにおいて、約30μ
Aの出力電流を得ることができ、その応答速度は2m5
ec以下であった。これは第3電極3を有しない従来の
光電変換素子に比べて約2倍以上応答速度が速くなった
。また、第3電極3をTiにて形成したことにより耐熱
性、耐蝕性に擾れていた。(8) When the photoelectric conversion element 1 was irradiated with light having a wavelength of 695 nm and an intensity of approximately 64 μW/-, the voltage of 12 V applied to the eleventh pole 5 and the third electrode 3 was approximately 30 μ.
An output current of A can be obtained, and the response speed is 2m5.
It was below ec. This is about twice the response speed compared to a conventional photoelectric conversion element that does not have the third electrode 3. Furthermore, since the third electrode 3 was formed of Ti, the heat resistance and corrosion resistance were poor.
発明の効果
本発明によれば、光導?!!模の上面に第1電極と第2
電極とを形成し、その光導電膜の上面に光を照射し、そ
のときの両電極間の抵抗値の変化により光強度を電気信
号に変換する光電変換素子において、光導1!膜の下面
に第3の電極を形成し、その第3電極と第1電極とを接
続したことを特徴とする光電変換素子が提供され、これ
により光導電膜を用い且つ高速応答性を持つ充電変換素
子が得られる。この光電変換素子は、大面積にわたる均
一な光導電膜を形成することができるので、密着型イメ
ージ素子として特に有用である。Effects of the Invention According to the present invention, light guiding? ! ! The first electrode and the second electrode are on the top surface of the pattern.
In a photoelectric conversion element that forms an electrode, irradiates the upper surface of the photoconductive film with light, and converts the light intensity into an electrical signal by changing the resistance value between both electrodes at that time, the light guide 1! A photoelectric conversion element is provided, characterized in that a third electrode is formed on the lower surface of the film, and the third electrode and the first electrode are connected. A conversion element is obtained. Since this photoelectric conversion element can form a uniform photoconductive film over a large area, it is particularly useful as a contact type image element.
第1図fat、 (blは本発明の一実施例の光電変換
素子を示すもので、(alは山)におけるx−x’断面
図、 Q)lは平面図である。第2図は第1図に示す光
電変換素子とその読み出し回路を示す回路図である。
第311(al、 (blは第3電極の形成工程を示す
断面図及び平面図、第4図tar、 Q)lは光導Wi
膜の形成工程を示す断面図及び平面図、第5図fat、
(blは第1電極及び第211極の形成工程を示す断
面図及び平面図、第6図(al、 (blは透明絶縁膜
および読み出し電極の形成工程を示す断面図及び平面図
である。第7図は従来の充電変換素子の一例を示す模式
的断面図、第8図は従来の光電変換素子の他の一例を示
す模式的断面図である。
(符号の説明)
1・・・光電変換素子 2・・・絶縁性基板3・・・
第3電極 4・・・光導1!膜5・・・第1電極
61.6+、、〜・・・第2電極
7・・・透明絶縁膜
A、 B、〜・・・読み出し電極。FIG. 1 fat, (bl shows a photoelectric conversion element according to an embodiment of the present invention, (al is a mountain) xx' cross-sectional view, and Q)l is a plan view. FIG. 2 is a circuit diagram showing the photoelectric conversion element shown in FIG. 1 and its readout circuit. 311(al) (bl is a cross-sectional view and a plan view showing the formation process of the third electrode, FIG. 4 tar, Q)l is the light guide Wi
A cross-sectional view and a plan view showing the film formation process, FIG.
(bl is a cross-sectional view and a plan view showing the formation process of the first electrode and the 211th electrode, FIG. Fig. 7 is a schematic cross-sectional view showing an example of a conventional charging conversion element, and Fig. 8 is a schematic cross-sectional view showing another example of a conventional photoelectric conversion element. (Explanation of symbols) 1... Photoelectric conversion Element 2... Insulating substrate 3...
Third electrode 4...Light guide 1! Membrane 5...First electrode 61.6+, . . . Second electrode 7...Transparent insulating film A, B, . . . Readout electrode.
Claims (1)
その光導電膜の上面に光を照射し、そのときの両電極間
の抵抗値の変化により光強度を電気信号に変換する光電
変換素子において、 光導電膜の下面に第3の電極を形成し、そ の第3電極と第1電極とを接続したことを特徴とする光
電変換素子。[Claims] 1. Forming a first electrode and a second electrode on the upper surface of the photoconductive film,
In a photoelectric conversion element that irradiates the upper surface of the photoconductive film with light and converts the light intensity into an electrical signal by changing the resistance value between both electrodes at that time, a third electrode is formed on the lower surface of the photoconductive film. , a photoelectric conversion element characterized in that the third electrode and the first electrode are connected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61216243A JPS6370566A (en) | 1986-09-12 | 1986-09-12 | Photoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61216243A JPS6370566A (en) | 1986-09-12 | 1986-09-12 | Photoelectric conversion element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6370566A true JPS6370566A (en) | 1988-03-30 |
Family
ID=16685516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61216243A Pending JPS6370566A (en) | 1986-09-12 | 1986-09-12 | Photoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6370566A (en) |
-
1986
- 1986-09-12 JP JP61216243A patent/JPS6370566A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5980964A (en) | Photoelectric conversion element | |
JPS6370566A (en) | Photoelectric conversion element | |
JPS60239072A (en) | Photosensor | |
JPS628951B2 (en) | ||
CN209674135U (en) | A kind of electrically-controlled liquid crystal optically focused micro mirror with high-light-energy utilization rate | |
JPS6370565A (en) | Image element | |
US4701997A (en) | Method of making photo-electric converting elements | |
JPS61216360A (en) | Contact-type image sensor | |
JPS6132571A (en) | Photoelectric conversion device | |
JPS61189065A (en) | Image sensor | |
JPH0258381A (en) | Photoelectric conversion element and line image sensor | |
JPH0525253Y2 (en) | ||
JPH0433144B2 (en) | ||
JPS58223971A (en) | Solid-state image pickup element | |
JPH0715144Y2 (en) | Coplanar type optical sensor | |
JPS63124563A (en) | Image sensor | |
JPS5961079A (en) | Thin film type photoelectric conversion element and manufacture thereof | |
JP2658079B2 (en) | Manufacturing method of optical sensor | |
JPS63226061A (en) | Color image sensor | |
JPS62249480A (en) | Manufacture of contact type image device | |
JPH0548403B2 (en) | ||
JPS61232668A (en) | Image sensor and manufacture thereof | |
JPS62216358A (en) | Image sensor | |
JPS63141378A (en) | Thin film photo sensor | |
JPS63240065A (en) | Method of driving image sensor |