JPS61232668A - Image sensor and manufacture thereof - Google Patents

Image sensor and manufacture thereof

Info

Publication number
JPS61232668A
JPS61232668A JP60074766A JP7476685A JPS61232668A JP S61232668 A JPS61232668 A JP S61232668A JP 60074766 A JP60074766 A JP 60074766A JP 7476685 A JP7476685 A JP 7476685A JP S61232668 A JPS61232668 A JP S61232668A
Authority
JP
Japan
Prior art keywords
light
film
image sensor
photoconductor layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60074766A
Other languages
Japanese (ja)
Inventor
Mamoru Nobue
守 信江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP60074766A priority Critical patent/JPS61232668A/en
Priority to US06/849,145 priority patent/US4894700A/en
Publication of JPS61232668A publication Critical patent/JPS61232668A/en
Priority to US07/416,132 priority patent/US4997773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To specify the area of light-reception, and to obtain a high-resolution image sensor having high reliability by forming a light-shielding film into a photoconductor layer. CONSTITUTION:A chromium thin-film is applied onto an insulating glass substrate 1, and a lower electrode 2 is shaped through photolithographic etching. Polyimide is applied and dried as an insulating film 3, and patterning for prescribing the area of a lower electrode and the formation of a through-hole for changing wirings into multilayers are conducted. A first amorphous hydride silicon layer 4a constituting one part of a photoconductor layer is deposited. A chromium thin-film is shaped, an internal light-shielding electrode 5 is formed through patterning by photolithographic etching, the surface of the substrate is etched for several sec by diluted hydrofluoric/nitric acid, and the photoconductor layer 4 is constituted. Lastly, an indium oxide tin film as a light-transmitting upper electrode 6 is shaped, and a polyimide resin film as a surface protective film 7 is applied.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イメージセンサおよびその’FJ 遣方法に
係り、特に、高m像度で信頼性の高い密着型イメージセ
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image sensor and its FJ usage method, and particularly relates to a contact type image sensor with high m-image resolution and high reliability.

[従来技術] 原稿と同一幅のセンサ長を有する長尺読み取り素子を用
いた密着型イメージセンサは、アモルファスシリコン(
a−8i ’)等のアモルファス半導体薄膜あるいは硫
化カドミウム(CdS) 、セレン化カドミウム(Cd
Se)等の多結晶薄膜等を光導電体層として利用するこ
とにより、縮小光学系を必要としない大面積デバイスと
しての使用が可能となり、小型の原稿読み取り装置への
幅広い使用が注目されている。
[Prior art] A contact image sensor that uses a long reading element with a sensor length that is the same width as the original is made of amorphous silicon (
a-8i') or cadmium sulfide (CdS), cadmium selenide (Cd
By using a polycrystalline thin film such as Se) as a photoconductor layer, it is possible to use it as a large-area device that does not require a reduction optical system, and its wide use in small document reading devices is attracting attention. .

このイメージセンサのセンサ部の基本構造としてザンド
イッチ型センサがあげられる。この4ノ−ンドイッヂハ
リセンザは、第9図に示す如く、基板101−J二に形
成された下部電極102と透光性の上部電極103とに
よって光導電体層104を挾んだもので、密着型イメー
ジセンサにおいては、長尺基板上に、このザンドイッチ
型センlすが複数個(例えば、8ドツh / mmの場
合日本工業規格A列4番用としては1728個、同規格
B列4番用としては2048個)並設されている。そし
て、正確な読み取りを可能どするためには、これらのセ
ンサは互いに独立であると共に、センサ部の面積も同一
でな(プればならない。
The basic structure of the sensor section of this image sensor is a Zandwich type sensor. As shown in FIG. 9, this four-node hedge sensor has a photoconductor layer 104 sandwiched between a lower electrode 102 formed on a substrate 101-J2 and a transparent upper electrode 103. In the case of a contact image sensor, a plurality of Zandwich-type sensors are mounted on a long substrate (for example, in the case of 8 dots h/mm, 1728 sensors are used for Japanese Industrial Standards A row No. 2048 pieces for row 4) are arranged in parallel. In order to enable accurate reading, these sensors must be independent from each other and the areas of their sensor sections must be the same.

このため、長尺基板上におりる各センサの実効的センサ
面積すなわぢ受光面積の規定についてはいろいろな試み
がなされており、その代表的なものに(1)各受光素子
毎にすべての層を夫々分離形成する方法(第11図)、
(2)受光素子土部に遮光膜を形成する方法(第12図
、第13図)、(3)下部電極面積を規定する方法(第
10図)等がある。
For this reason, various attempts have been made to define the effective sensor area, or light-receiving area, of each sensor on a long substrate. A method of forming separate layers (FIG. 11),
(2) A method of forming a light-shielding film on the soil portion of the light-receiving element (FIGS. 12 and 13), (3) A method of defining the area of the lower electrode (FIG. 10), etc.

これらの方法のうち、(3)の方法は、第10図に示す
如く、例えば基板101上に所望の形状に分割して並設
された下部電極102とアモルファス半導体層104と
の間に絶縁層105を選択的に介在せしめ、実効的な受
光面1(tンザ面積)を規定する方法(特願59−16
0126)であり、製造プロセスの簡易性の面からみる
と最も有効な方法であるが、イメージセンサーの高解像
化への要求が高まるにつれて、各素子間の間隔の微細化
が進み、隣接する各受光素子からの相互のもれ電流が大
きくなり、高解像化には限界があるという問題があった
Among these methods, the method (3) is, as shown in FIG. 105 selectively intervening to define the effective light-receiving surface 1 (t area) (Patent Application No. 59-16)
0126), which is the most effective method from the viewpoint of simplicity of the manufacturing process, but as the demand for higher resolution of image sensors increases, the spacing between each element becomes finer, and the distance between adjacent elements increases. There is a problem in that mutual leakage current from each light-receiving element becomes large, and there is a limit to high resolution.

この問題を解決するためには、(1)(2)の方法の方
が優れているが、夫々のプロセスの複雑化、特にフォト
エツヂングプロセスに伴なう欠陥誘発等の問題が避Iプ
がだい。
Methods (1) and (2) are better for solving this problem, but they do not avoid problems such as complication of the respective processes, especially defects caused by the photo-etching process. That's it.

すなわち(1)の方法では、例えば第11図に示す如く
、下部電極202も光導電体層204も各受光素子毎に
分割形成されると共に、透光性の上部電極203も、電
気的には接続されているもののパターンどしては分割形
成されており、下部電極と透光性の上部電極とによって
光導電体層が挾まれた領域を受光面積(センサ面積)ど
して規定し、各素子を分離するようにしている。
That is, in the method (1), as shown in FIG. 11, for example, the lower electrode 202 and the photoconductor layer 204 are formed separately for each light receiving element, and the transparent upper electrode 203 is also electrically separated. The connected patterns are formed in sections, and the area where the photoconductor layer is sandwiched between the lower electrode and the transparent upper electrode is defined as the light receiving area (sensor area). The elements are separated.

この方法では、下部電極の形成、光導電体層の形成、上
部電極の形成、これらすべてにフォトリソエツチングプ
ロセスを用いなければならず、製造工程が繁雑である上
、パターンのずれ等により、各素子の受光面積にばらつ
きが生じる等の不都合があった。また、光導電体層のパ
ターニングのためのフォトリソエツチングプロセス等に
おいて、マスクとの境界にあたる部分で光導電体層の端
部が汚染され損傷を受けて、信頼性の低下、歩留りの低
下を生じるという決定的な問題もあった。
In this method, a photolithographic etching process must be used for all of the formation of the lower electrode, photoconductor layer, and upper electrode, making the manufacturing process complicated, and causing pattern misalignment, etc. There were disadvantages such as variations in the light-receiving area. In addition, during the photolithography process for patterning the photoconductor layer, the edges of the photoconductor layer are contaminated and damaged at the boundary with the mask, resulting in decreased reliability and yield. There was also a crucial problem.

また、(2)の方法は、第12図に示す如く、センサの
構成部月そのものによって受光面積を規定するのではな
り、遮光膜205ににって規定寸る方法であり、第11
図で示された(1)の方法における上部電極203の端
部近傍で生じた光導電体層204の損傷がセンサ特性に
影響を与えるのを防ぐべく、その部分を含めて不要部を
遮光膜205で遮蔽し、遮光膜205と下部電極とによ
って受光面積を規定するようにしている。
Furthermore, as shown in FIG. 12, method (2) is a method in which the light receiving area is not defined by the component part of the sensor itself, but by the light shielding film 205.
In order to prevent damage to the photoconductor layer 204 that occurs near the end of the upper electrode 203 in method (1) shown in the figure from affecting sensor characteristics, unnecessary parts including that part are covered with a light-shielding film. 205, and the light receiving area is defined by the light shielding film 205 and the lower electrode.

この構成では遮光膜の窓を形成するためのフォトリソエ
ツチング工程において、下地の透光性電極が直接に損傷
を受け、光導電体層と透光性電極との界面における接合
特性が劣化するどいつ不都合があった。
In this configuration, the underlying light-transmitting electrode is directly damaged during the photolithography process for forming the window of the light-shielding film, and the bonding characteristics at the interface between the photoconductor layer and the light-transmitting electrode deteriorate, which is an inconvenience. was there.

また、遮光膜は、あくまで下部電極により規定されてい
る受光面積を補助的に規定しているのみであり、下部電
極の引き出し線206についても遮光膜から露出してい
る部分にはセンサが形成されることになり、この引き出
し線206の面積による影響も各センサの特性にばらつ
きの生じる原因となっていた。
Furthermore, the light-shielding film only supplementally defines the light-receiving area defined by the lower electrode, and a sensor is formed in the part of the lower electrode lead line 206 that is exposed from the light-shielding film. Therefore, the influence of the area of the lead line 206 also causes variations in the characteristics of each sensor.

そこで第13図に示す如く、下部N極202′を大きめ
のパターンで形成しておき、まずセンザの形成された基
板表面全体を保護膜207で被覆した後、遮光膜205
′を形成し、遮光膜のみによって受光面積を規定Jる方
法も提案されている。
Therefore, as shown in FIG. 13, the lower N-pole 202' is formed in a larger pattern, and the entire surface of the substrate on which the sensor is formed is first covered with a protective film 207, and then the light-shielding film 202' is covered with a protective film 207.
A method has also been proposed in which the light-receiving area is defined only by the light-shielding film.

この方法では、信頼性は向」−するが、保護IQの形成
、遮光膜のパターニング等のプロセスが複刹となるとい
う不都合があった。
Although this method improves reliability, it has the disadvantage that processes such as forming the protective IQ and patterning the light-shielding film become complicated.

[発明が解決すべぎ問題点] 本発明は、前記実情に鑑み、受光面積のばらつき、製造
工程におりる汚染等に起因する信頼1弓の低下、製造■
稈の繁雑さ等の上述の如ぎ問題点を解決すべく<’Nさ
れたもので、製造が容易で信頼f11の高いイメージセ
ンサを提供Jることを目的とする。
[Problems to be Solved by the Invention] In view of the above-mentioned circumstances, the present invention solves the problem of reducing reliability due to variations in light receiving area, contamination in the manufacturing process, etc.
In order to solve the above-mentioned problems such as the complexity of the culm, the purpose is to provide an image sensor that is easy to manufacture and has high reliability.

[問題点を解決するための手段] 上記問題点を解決するため、本発明では、光導電体層を
下部電極と透光性の上部電極とで挾/υだサンドイッチ
構造のセンサにおいて受光面積を規定すべく、光導電体
層の内部に遮光膜を形成するようにしている。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a sensor with a sandwich structure in which a photoconductor layer is sandwiched between a lower electrode and a translucent upper electrode to increase the light receiving area. In order to specify this, a light shielding film is formed inside the photoconductor layer.

望ましくは、この遮光膜を導電性月利によって構成し、
第3の電極として作用させるようにしてもよい。
Preferably, this light-shielding film is made of conductive material,
It may also be made to act as a third electrode.

また、製造に際しては、光導電体層の着膜工程を、第1
および第2の工程に分【ノ、この間に遮光膜の形成工程
を伺加するJ:うにしている。
In addition, during manufacturing, the photoconductor layer deposition process is performed in the first step.
During the second step, a step of forming a light shielding film is added.

[作用] すなわち、受光面積を規定するだめの遮光膜のパターニ
ングが、光導電体層と透光性の上部電極との界面におけ
る接合の形成に先立って行なわれ得るため、フォトリソ
エツチングプロセスにより、センサとしての信頼性の低
下を招くことなく、簡単なプロセスで設計どおりの特性
を有するイメージセンサを形成することができる。
[Function] That is, since the patterning of the light-shielding film that defines the light-receiving area can be performed prior to the formation of a bond at the interface between the photoconductor layer and the transparent upper electrode, the sensor An image sensor having the characteristics as designed can be formed by a simple process without causing a decrease in reliability.

また、受光面積の規定がフォトリソエツチング法等の微
細加工技術を駆使して行1.【われることによってなさ
れるため、各素子毎にばらつきのない、精度の良い長尺
イメージセン4ノを得ることができる。
In addition, the light-receiving area is determined by making full use of microfabrication techniques such as photolithography and etching. Since this is done by repeating the process, it is possible to obtain a long image sensor with high precision and no variation from element to element.

[実施例] 以下、本発明の実施例について図面を参照しつ−7一 つ詳細に説明する。[Example] Hereinafter, embodiments of the present invention will be described with reference to the drawings. I will explain it in detail.

このイメージセンサリ−は、解像度600spi(sp
ot  per  1nch)、寸なわら艮尺基根土に
1インチ当り600個の光電変換素子からなるセンサが
並設されてなるもので、第1図に1部平面図、第2図に
第1図のA、−A断面図を示す如く、センザ部Sは絶縁
性のガラス基板1上に所望の形状に分割形成された電極
部2aと引き出し線部2bとからなる下部電極2として
のクロム電極と、該引き出し線部を覆うと共に電極部2
aを露呈するにうに形成されたポリイミド膜からなる絶
縁層3と、この上層に一体的に形成された水素化アモル
ファスシリコン層(a−3i:H)からなる光導電体層
4と、該光導電体層4中に、前記下部電極2に対応して
形成されたクロム薄膜からなる内部遮光電極5と、ざら
に該光導電体層4の上層に、前記下部電極2および内部
遮光電極に対応するように一体的に形成された酸化イン
ジウム錫(ITO)膜からなる透光性の上部電極6と、
該基板の表面全体を覆うように形成されたポリイミド樹
脂膜からなる表面保護膜7とから構成されている。
This image sensor has a resolution of 600spi (sp
ot per 1 nch), in which sensors consisting of 600 photoelectric conversion elements per inch are arranged side by side on the base soil of about 1000 yen per inch. As shown in cross-sectional views A and -A in the figure, the sensor part S is a chromium electrode as a lower electrode 2 consisting of an electrode part 2a and a lead wire part 2b which are divided into desired shapes on an insulating glass substrate 1. and covers the lead wire portion and the electrode portion 2.
an insulating layer 3 made of a polyimide film formed to expose a, a photoconductor layer 4 made of a hydrogenated amorphous silicon layer (a-3i:H) integrally formed on top of the insulating layer 3; An internal light-shielding electrode 5 made of a thin chromium film is formed in the conductor layer 4 to correspond to the lower electrode 2, and an inner light-shielding electrode 5 formed on the upper layer of the photoconductor layer 4 corresponds to the lower electrode 2 and the inner light-shielding electrode. a translucent upper electrode 6 made of an indium tin oxide (ITO) film integrally formed to
A surface protection film 7 made of a polyimide resin film is formed to cover the entire surface of the substrate.

次に、このイメージセンサの製造方法について説明する
Next, a method for manufacturing this image sensor will be explained.

まず、絶縁性のガラス基板1上に蒸着法により膜厚20
0OAのクロム薄膜を着膜した後(@膜温度:250°
C)、フォトリソエツチングにJ:り第3図に示す如く
、下部電極2を形成する。
First, a film with a thickness of 20 mm was deposited on an insulating glass substrate 1 by vapor deposition.
After depositing a 0OA thin chromium film (@film temperature: 250°
C) A lower electrode 2 is formed by photolithography as shown in FIG.

次いで、第4図に示す如く絶縁膜3としてポリイミドを
塗布乾燥した後、フォトリソエツチングにより、下部電
極面積を規定するためのパターニングおよび配線の多層
化のためのスルーホール(図示せず)の形成を行なう。
Next, as shown in FIG. 4, polyimide is applied and dried as an insulating film 3, and then patterned to define the area of the lower electrode and through holes (not shown) for multilayering the wiring are formed by photolithography. Let's do it.

この後、プラズマCVD法により光導電体層の1部を構
成する第1の水素化アモルファスシリコン層4aを、ま
ず、約1μm堆積する。(第5図)このとき着膜温度は
250℃とする。
Thereafter, a first hydrogenated amorphous silicon layer 4a constituting a part of the photoconductor layer is first deposited to a thickness of about 1 μm by plasma CVD. (Fig. 5) At this time, the film deposition temperature is 250°C.

続いて、蒸着法により230℃で膜厚約50OAのクロ
ム薄膜を形成した後、フォトリソエツチングによりパタ
ーニングを行ない、第6図に示す如く、内部遮光電極5
を形成する。
Next, a thin chromium film with a thickness of about 50 OA was formed at 230° C. by vapor deposition, and then patterned by photolithography to form internal light-shielding electrodes 5 as shown in FIG.
form.

そして、希釈し1=弗硝Am (1−lr : 1−I
NO3)によって基板表面を数秒間エツチングし、該第
1の水素化アモルファスシリコンQ ’I ’a表面を
清浄化した後、再び、プラズマCVD法にJ、り第2の
水素化アモルファスシリコン4bを230て)で100
0A形成し□、第7図に示す如く、光導電体層4を構成
する。
Then, it is diluted and 1=fluorous nitrate Am (1-lr: 1-I
After cleaning the surface of the first hydrogenated amorphous silicon Q'I'a by etching the substrate surface with NO3) for a few seconds, the second hydrogenated amorphous silicon 4b was etched again using the plasma CVD method. ) for 100
0A is formed, and the photoconductor layer 4 is constructed as shown in FIG.

最後に、透光性の上部電極6としての酸化インジウム錫
膜をスパッタリング法により形成した後、表面保護膜7
としてのポリイミド樹脂膜を塗在し、第1図および第2
図に示したようなイメージセンサ−が完成する。
Finally, after forming an indium tin oxide film as a transparent upper electrode 6 by sputtering, a surface protective film 7 is formed.
A polyimide resin film is applied as shown in Figures 1 and 2.
The image sensor shown in the figure is completed.

かかる構成にJ:す、光1?[?体層ど透光1+の上部
電極との界面におりる接合特性を良好に保ちつつ、光導
電体層中にお【)る受光面積を規定覆ることができる上
、下部電極上に設(Jられた絶縁層によって引き出し線
部2bは被覆され、電極部2aのみが下部電極2どして
光導電体層4に接触刀゛るようになっているため、受光
面積は極めて精度良く規定されlqlばらつきのない安
定な特性を♀づることのできる高解像度のイメージセン
サを得ることができる。
In such a configuration, J: So, light 1? [? While maintaining good bonding characteristics at the interface between the body layer and the upper electrode of the light-transmitting 1+ layer, it is possible to cover the light-receiving area in the photoconductor layer. The lead wire portion 2b is covered with the insulating layer, and only the electrode portion 2a is in contact with the photoconductor layer 4 through the lower electrode 2. Therefore, the light-receiving area can be defined with extremely high precision. It is possible to obtain a high-resolution image sensor that can exhibit stable characteristics without variations.

また、この方法では、透光性の−に部電極どの間で接合
の形成される光導電体層の表面あるいは接合面の形成後
にフォ1−リソエツヂング王程を実施することなく、受
光面積を精度良く規定することかできるため、接合特性
の劣化を生じることなく、センサ特性が良好で信頼性の
高いイメージセンサを1qることかできる。
In addition, with this method, the light-receiving area can be accurately determined without performing photolithography after the formation of the surface of the photoconductor layer or the bonding surface where the bond is formed between the light-transmitting electrodes. Since it can be well defined, an image sensor with good sensor characteristics and high reliability can be manufactured without deterioration of bonding characteristics.

更に、第1の水素化アモルファスシリコン層表面は、内
部遮光電極の形成後、表面処理を経て清浄化された後、
第2の水素化アモルファスシリコン層が積層せしめられ
るため、デバイスどしての性能の劣化が生じたりするこ
ともない。
Further, the surface of the first hydrogenated amorphous silicon layer is cleaned through surface treatment after forming the internal light-shielding electrode, and then
Since the second hydrogenated amorphous silicon layer is laminated, the performance of the device does not deteriorate.

また、本発明の他の実施例として、第8図に示す如く、
内部遮光電極5にバイアスを印加するJ:うな′M4造
にしてもよい。ここで第2の水素化アモルファスシリコ
ン層4b’ は、絶縁破壊を防ぐため膜厚を約1μmと
した。伯は第1図および第2図に示した構造と全く同一
である。
Further, as another embodiment of the present invention, as shown in FIG.
It is also possible to apply a bias to the internal light-shielding electrode 5. Here, the second hydrogenated amorphous silicon layer 4b' had a thickness of about 1 μm to prevent dielectric breakdown. The structure is exactly the same as that shown in FIGS. 1 and 2.

そして、実際の駆動時には、下部電極にOv、透光性の
上部電極に一10V、内部遮光電極に一5Vのバイアス
を印加すると、光S電体層4′内部での電位分布は垂直
方向にほぼ1様となる。
During actual driving, when a bias of Ov is applied to the lower electrode, -10V to the light-transmitting upper electrode, and -5V to the internal light-shielding electrode, the potential distribution inside the photo-S electric layer 4' is vertically distributed. It will be almost like 1.

ここで、内部遮光電極と上部電極に秋まれた部分で発生
した)A1〜キャリア(光電子)は該内部遮光電極にと
らえられることになり、該内部遮光電極外にはもれ出さ
ない。従って、必要受光領域外(規定された受光面積外
)で発生したフ第1・キャリアは内部遮光電極に捕獲さ
れることにより、外部隣接ピッl〜へのもれ出しを激減
させることが可能となる。
Here, A1~carriers (photoelectrons) generated at the portion between the inner light-shielding electrode and the upper electrode are captured by the inner light-shielding electrode and do not leak out of the inner light-shielding electrode. Therefore, the first carriers generated outside the required light-receiving area (outside the specified light-receiving area) are captured by the internal light-shielding electrode, making it possible to drastically reduce leakage to the external adjacent pit. Become.

なお、光導電体層中におりる内部遮光電極の位回すなわ
ち、第1および第2の水素化アモルファスシリコン層の
膜厚の比率は必要に応じて適宜変更可能である。
Note that the depth of the internal light-shielding electrode extending into the photoconductor layer, that is, the ratio of the film thicknesses of the first and second hydrogenated amorphous silicon layers can be changed as necessary.

また、実施例においては、下部電極上に絶縁膜を形成す
ることによっても受光面積を規定したがこの絶縁膜を除
去し、内部遮光膜のみによって規−12一 定するようにしてもよい。
Further, in the embodiment, the light-receiving area was also defined by forming an insulating film on the lower electrode, but this insulating film may be removed and the light-receiving area may be kept constant at 12 by using only the internal light-shielding film.

更に、この内部遮光膜は実施例では導電性材料から形成
したが、必ずしも導電性を有するものでなくても良い。
Furthermore, although this internal light-shielding film is made of a conductive material in the embodiment, it does not necessarily have to be conductive.

[効果コ 以上説明してきたように、本発明によれば、アモルファ
ス半導体層からなる光導電体層を下部電極と透光性の上
部電極とで挾んだザンドイッチ構造のセンサにおいて、
光導電体層の内部に遮光膜を形成することにJ:り受光
面積を規定するにうにしているため、信頼性の高い高解
像度のイメージセンサを得ることが可能となる。
[Effects] As explained above, according to the present invention, in a sensor having a Zandwich structure in which a photoconductor layer made of an amorphous semiconductor layer is sandwiched between a lower electrode and a transparent upper electrode,
Since the light-receiving area is defined by forming a light-shielding film inside the photoconductor layer, it is possible to obtain a highly reliable, high-resolution image sensor.

また、本発明の方法によれば、光導電体層の形成の中間
段階で遮光膜の形成がなされるため、光導電体層と上部
電極との間の接合特性の特性の劣化が大幅に抑制され、
極めて容易に、歩留りの高い高解像度のイメージセンサ
を得ることができる。
Furthermore, according to the method of the present invention, since the light-shielding film is formed at an intermediate stage of forming the photoconductor layer, deterioration of the bonding characteristics between the photoconductor layer and the upper electrode is significantly suppressed. is,
A high-yield, high-resolution image sensor can be obtained extremely easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明実施例のイメージセンサ
を示す部分概要図、第3図乃至第7図は同イメージl?
ン1ノの製造T稈図、第8図は、本発明のイメージセン
側ノーの変形例、第9図乃金第13図は夫々、従来例の
イメージセンリを示す図である。 1・・・ガラス基板、2・・・下部電極、2a・・・電
極部、2b・・・引ぎ出し線部、3・・・絶縁膜、4.
 /l’ ・・・光導電体層、7′la、4a’ ・・
・第1の水素化アモルファスシリコン層、4b、4b’
 ・・・第2の水素化アモルファスシリコン層、5・・
・内部遮光I11.6・・・上部電極、7・・・表面保
護膜、101.201・・・基板、102.202・・
・下部電極 、  103.  203  ・・・ −
に都電セV 、104.204・・・アモルファス半導
体層、205.205’ ・・・遮光膜、206・・・
下部電極引き出し線、207・・・表面保護膜。 第9図 第10図 第11図 第12図 1(逼
FIGS. 1 and 2 are partial schematic diagrams showing an image sensor according to an embodiment of the present invention, and FIGS. 3 to 7 are images of the same.
FIG. 8 shows a modification of the image sensor of the present invention, and FIGS. 9 to 13 show conventional image sensors. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Lower electrode, 2a... Electrode part, 2b... Leading wire part, 3... Insulating film, 4.
/l'...Photoconductor layer, 7'la, 4a'...
・First hydrogenated amorphous silicon layer, 4b, 4b'
...Second hydrogenated amorphous silicon layer, 5...
- Internal light shielding I11.6... Upper electrode, 7... Surface protective film, 101.201... Substrate, 102.202...
・Lower electrode, 103. 203...-
Toden SE V, 104.204...Amorphous semiconductor layer, 205.205'...Light shielding film, 206...
Lower electrode lead line, 207... surface protection film. Figure 9 Figure 10 Figure 11 Figure 12 Figure 1 (

Claims (5)

【特許請求の範囲】[Claims] (1)光導電体層を下部電極と透光性の上部電極とで挾
んだサンドイッチ構造のイメージセンサにおいて、 受光面積を規定すべく、光導電体層の内部に遮光膜を配
設したことを特徴とするイメージセンサ。
(1) In an image sensor with a sandwich structure in which a photoconductor layer is sandwiched between a lower electrode and a transparent upper electrode, a light-shielding film is provided inside the photoconductor layer to define the light-receiving area. An image sensor featuring:
(2)前記遮光膜は、導電性材料からなる内部遮光電極
であることを特徴とする特許請求の範囲第(1)項記載
のイメージセンサ。
(2) The image sensor according to claim (1), wherein the light shielding film is an internal light shielding electrode made of a conductive material.
(3)前記光導電体層は、アモルファスシリコン層から
なることを特徴とする特許請求の範囲第(1)項又は第
(2)項記載のイメージセンサ。
(3) The image sensor according to claim (1) or (2), wherein the photoconductor layer is made of an amorphous silicon layer.
(4)基板上に、下部電極、光導電体層、および透光性
の上部電極を順次積層せしめ、サンドイッチ構造のイメ
ージセンサを形成する方法において、前記光導電体層の
形成が、第1および第2の工程からなり、第1の工程後
、第2の工程に先立ち、遮光膜パターンの形成工程を含
むようにしたことを特徴とするイメージセンサの製造方
法。
(4) A method of forming a sandwich-structured image sensor by sequentially laminating a lower electrode, a photoconductor layer, and a light-transmitting upper electrode on a substrate, in which the formation of the photoconductor layer includes forming the first and second photoconductor layers. A method for manufacturing an image sensor, comprising a second step, and including a step of forming a light-shielding film pattern after the first step and before the second step.
(5)更に、前記遮光膜パターンの形成後、基板表面を
清浄化するためのエッチング工程を含むようにしたこと
を特徴とする特許請求の範囲第(4)項記載のイメージ
センサの製造方法。
(5) The method for manufacturing an image sensor according to claim (4), further comprising an etching step for cleaning the substrate surface after forming the light-shielding film pattern.
JP60074766A 1985-04-09 1985-04-09 Image sensor and manufacture thereof Pending JPS61232668A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60074766A JPS61232668A (en) 1985-04-09 1985-04-09 Image sensor and manufacture thereof
US06/849,145 US4894700A (en) 1985-04-09 1986-04-07 Image sensor
US07/416,132 US4997773A (en) 1985-04-09 1989-10-27 Method of fabricating an image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60074766A JPS61232668A (en) 1985-04-09 1985-04-09 Image sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61232668A true JPS61232668A (en) 1986-10-16

Family

ID=13556728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60074766A Pending JPS61232668A (en) 1985-04-09 1985-04-09 Image sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61232668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293094A2 (en) * 1987-05-26 1988-11-30 Matsushita Electric Industrial Co., Ltd. Radiation detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112651A (en) * 1982-12-20 1984-06-29 Fujitsu Ltd Image sensor
JPS60186073A (en) * 1984-03-02 1985-09-21 Matsushita Electric Ind Co Ltd Photodetector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59112651A (en) * 1982-12-20 1984-06-29 Fujitsu Ltd Image sensor
JPS60186073A (en) * 1984-03-02 1985-09-21 Matsushita Electric Ind Co Ltd Photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293094A2 (en) * 1987-05-26 1988-11-30 Matsushita Electric Industrial Co., Ltd. Radiation detector

Similar Documents

Publication Publication Date Title
US6465286B2 (en) Method of fabricating an imager array
CN101494256B (en) X ray sensor and manufacturing method thereof
US4979007A (en) Photoelectric conversion device
JPH10214955A (en) Contact pad for radiation image pickup device
JPS61232668A (en) Image sensor and manufacture thereof
JPS6273669A (en) Manufacture of thin-film transistor device
JPS6132571A (en) Photoelectric conversion device
JPH0369186B2 (en)
EP0890190A1 (en) Corrosion resistant imager
WO1998032173A9 (en) Corrosion resistant imager
KR910005603B1 (en) Photo electric converter
JPH03212975A (en) Image sensor
JPS6139574A (en) Image sensor and manufacture thereof
JPS61171161A (en) One-dimensional image sensor
JPH0595100A (en) Image sensor
JP2639645B2 (en) Method for creating photoelectric conversion device
JP2573342B2 (en) Light receiving element
JPS61141172A (en) Linear image sensor
JPS6218066A (en) Image sensor and manufacture of the same
JPS62176159A (en) Manufacture of image sensor
JPS60263457A (en) Photoelectric conversion element array for hybrid integrated photosenser
JPS61198667A (en) Manufacture of image sensor
JPS633453A (en) Image sensor and manufacture thereof
JPS59161863A (en) Manufacture of reader element for continuous thin film manuscript
JPS60147173A (en) Photosensor array