JPS6139574A - Image sensor and manufacture thereof - Google Patents

Image sensor and manufacture thereof

Info

Publication number
JPS6139574A
JPS6139574A JP16012684A JP16012684A JPS6139574A JP S6139574 A JPS6139574 A JP S6139574A JP 16012684 A JP16012684 A JP 16012684A JP 16012684 A JP16012684 A JP 16012684A JP S6139574 A JPS6139574 A JP S6139574A
Authority
JP
Japan
Prior art keywords
layer
lower electrode
sensor
image sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16012684A
Other languages
Japanese (ja)
Inventor
Mamoru Nobue
守 信江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP16012684A priority Critical patent/JPS6139574A/en
Priority to US06/753,568 priority patent/US4727407A/en
Publication of JPS6139574A publication Critical patent/JPS6139574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent the reduction of reliability due to the dispersion of a photo detective area or the contamination in the process of manufacture by limiting the photo detective area providing an insulation layer between a bottom electrode and a photo conductive layer. CONSTITUTION:A sensor S consists of a bottom electrode 12 consisting of an electrode 12a divided on a glass substrate 11 and a lead wire 12b, an insulation layer 13 of a silicon oxide film, a photoconductive layer 14 of a-Si:H, a translucent top electrode 15 and a surface protection film 16. A driving mechanism D is connected to the lead wire of each sensor and consists of wiring layers 17, 18 each arranged in longitudinal or transverse stripes. The lead wire 12b is covered with the insulation layer 13 and only the electrode 12a is kept in contact with the photoconductive layer 14 as the bottom electrode 12. A photo detective area is precisely limited by the bottom electrode 12 and the insulation layer 13 and the materials used are not damaged by such a process as photoetching.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイメージセンサおよびその製造方法に係シ、特
に、密着型の原稿読み取シ装置として用いられる高解像
度のイメージセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image sensor and a method for manufacturing the same, and more particularly to a high-resolution image sensor used as a contact type document reading device.

〔従来の技術〕[Conventional technology]

原稿と同一幅のセンサ部を有する長尺読み取)素子を用
いた密着型イメージセンサは、アモルファスシリコン(
a−8i )等のアモルファス半i体sるいは硫化カド
ミウム(CdS )−セレン化カドミウム(CdSe’
)等の多結晶薄膜等を光導電体層として利用することに
より、縮小光学系を必要としない大面積デバイスとして
の使用が可能となシ、小型の原稿読み取シ装置等への幅
広い利用が注目されている。
A close-contact image sensor that uses a long reading (reading) element with a sensor part the same width as the original is made of amorphous silicon (
a-8i) or cadmium sulfide (CdS)-cadmium selenide (CdSe')
) etc. as a photoconductor layer, it is possible to use it as a large-area device that does not require a reduction optical system, and it is attracting attention for its wide use in small document reading devices, etc. has been done.

このイメージセンサのセンナ部の基本構造の1つとして
サントイ、チ型センサがあげられる。このサンドイッチ
型センサは第8図に示す如く、基板1上に形成された下
部電極2と、透光性の上部電極3とKよりて光導電体層
4を桝んだもので、密着型イメージセンサにおいては、
長尺基板上に、このサンドイッチ型センサが複数個(例
えば、8ドツト/Iiの場合日本工業規格A列4番用と
しては1728個、同規格B列4番用としては2048
個)並設されている。そして、正確な読み取シを可能と
するためKは、これらのセンナは互いに完全に独立であ
ると共に、受光部の面積も同一でなければならない。
One of the basic structures of the sensor section of this image sensor is a Santoi type sensor. As shown in FIG. 8, this sandwich type sensor consists of a lower electrode 2 formed on a substrate 1, a photoconductor layer 4 sandwiched between a light-transmitting upper electrode 3 and K, and has an image of a close-contact type sensor. In sensors,
A plurality of these sandwich type sensors are installed on a long board (for example, in the case of 8 dots/Ii, 1728 sensors are installed for No. 4 in row A of the Japanese Industrial Standards, and 2048 sensors are installed for No. 4 in row B of the same standard).
) installed in parallel. In order to make accurate reading possible, these sensors must be completely independent of each other, and the areas of the light receiving sections must be the same.

このため、長尺基板上における各センナの受光面積の規
定についてはいろいろな試みがなされている。
For this reason, various attempts have been made to define the light-receiving area of each sensor on a long substrate.

例えば、最も基本的な密着型イメージセンサでは第9図
に示す如く下部電極2も光導電体層4も各センサ毎に分
割形成されると共に、透光性の上部電極3も要部では分
割形成されて、下部電極2と透光性の上部電極3とによ
って光導電体層が挾まれた領域を受光面積(セン?面積
)として規定し、各センサを分離形成している。
For example, in the most basic contact type image sensor, as shown in FIG. 9, the lower electrode 2 and the photoconductor layer 4 are formed separately for each sensor, and the translucent upper electrode 3 is also formed separately in important parts. The area where the photoconductor layer is sandwiched between the lower electrode 2 and the light-transmitting upper electrode 3 is defined as a light-receiving area, and each sensor is formed separately.

この構成では、下部電極の形成、光導電体層の形成、上
部電極の形成、これらすべてにフォトリソエツチングプ
ロセスを用いなければならず製造工程が繁雑である上、
パターンのずれ等によ)、各センナの受光面積にばらつ
きが生じる等の不都合があった。また、上部電極形成の
ための7オトリソエ、チングプロセス等において、マス
クとの境界にあたる部分で光導電体層の端部が汚染され
損傷を受けて信頼性の低下、歩留りの低下を生じるとい
う問題もあった。
In this structure, a photolithography process must be used for all of the formation of the lower electrode, the photoconductor layer, and the upper electrode, and the manufacturing process is complicated.
(Due to pattern misalignment, etc.), there were disadvantages such as variations in the light-receiving area of each sensor. In addition, during the etching and etching process for forming the upper electrode, the end of the photoconductor layer is contaminated and damaged at the boundary with the mask, resulting in decreased reliability and yield. there were.

また、ノンドープのアモルファスシリコンt−ff1導
電体層として用いた密着型イメージセンサではアモルフ
ァスシリコン自体が高抵抗(暗時の抵抗率〜10Ωcr
rL)であることを利用して隣接ピット間(隣接する各
センナ間)の分離(アイソレーシゴン)を省略し、第1
0図−に示す如く、例えば下部電極のみを分割形成し、
光導電体層4および上部電極3は1体的に形成している
。かかる構成におりても上部電極と下部電極との重な)
によって受光面積が規定され、フォトリソエツチングプ
ロセスは、下部電極の形成時に用いられるのみで、上部
電極の着膜は、メタルマス(等を介してスノ臂ツタリン
グ法等によシ選択的に行なわれ、製造工程は簡略化され
るが、メタルマスクの端部にあたる部分も下地の光導電
体層が損傷を受け、これが製造歩留シの低下につながっ
ていた。
In addition, in a contact image sensor using non-doped amorphous silicon as the t-ff1 conductor layer, the amorphous silicon itself has a high resistance (resistivity in the dark ~10Ωcr).
rL), the separation (isolation) between adjacent pits (between each adjacent senna) is omitted, and the first
As shown in Figure 0, for example, only the lower electrode is formed separately,
The photoconductor layer 4 and the upper electrode 3 are integrally formed. Even with such a configuration, there is no overlap between the upper and lower electrodes).
The light-receiving area is defined by Although the process is simplified, the underlying photoconductor layer is also damaged at the edges of the metal mask, leading to a reduction in manufacturing yield.

これらの問題を解決するため、第11図又は第12図に
示す如く、センナの構成部材そのものによって受光面積
を規定するのではなく、遮光膜5によって規定する方法
も考、見られている。
In order to solve these problems, as shown in FIG. 11 or FIG. 12, a method of defining the light-receiving area not by the constituent members of the senna itself but by a light-shielding film 5 has also been considered.

まず、第11図に示されているのは、第10図に示され
た構造例における上部電極3の端部近傍で生じた光導電
体層の損“傷がセンサ特性に影響を与えるのを防ぐべく
、その部分を含めて不用部を遮光膜5で遮蔽し、遮光膜
と下部電極とによって受光面が1を規宗している。
First, FIG. 11 shows how damage to the photoconductor layer that occurs near the end of the upper electrode 3 in the structural example shown in FIG. 10 affects the sensor characteristics. In order to prevent this, the unnecessary portion including that portion is shielded with a light-shielding film 5, and the light-receiving surface is the same as 1 by the light-shielding film and the lower electrode.

この構成では、遮光膜はあくまで下地電極により規定さ
れている受光面積を補助的に規定しているのみであシ、
下地電極の引き出し線6についても遮光膜から露出して
いる部分には、セ/すが形成さルることになシ、この引
き出し線6の面積による影響も各センサの特性のばらつ
きの原因となっていた。
In this configuration, the light-shielding film only supplementally defines the light-receiving area defined by the base electrode.
As for the lead wire 6 of the base electrode, a hole is formed in the part exposed from the light-shielding film, and the influence of the area of the lead wire 6 is also a cause of variations in the characteristics of each sensor. It had become.

また、第12図に示す如く下部電極2を大きめの/4タ
ーンで形成しておき、まず、センサの形成された基板表
面全体を表面保護膜7で被覆した後、遮光膜5を形成し
たもので、遮光膜のみによって受光面積を規定している
。この場合、遮光膜に形成される窓部Wのパターニング
は精度を要するため、フォトリソエツチング法等によっ
て行なわれる。
Further, as shown in FIG. 12, the lower electrode 2 is formed in a larger quarter turn, and the entire surface of the substrate on which the sensor is formed is first covered with a surface protection film 7, and then the light shielding film 5 is formed. In this case, the light-receiving area is defined only by the light-shielding film. In this case, since the patterning of the window portion W formed in the light shielding film requires precision, it is carried out by photolithography or the like.

この構成では、信頼性は向上するが、保護膜の形成、遮
光膜の・やターニング等のプロセスがM 14である。
This configuration improves reliability, but processes such as forming the protective film and turning the light shielding film are M14.

〔発明が解決すべき間龜点〕[Gap points to be solved by the invention]

本発明は、前記実情に鑑み、受光面積のばらつき°、製
造工程における汚染等に起因する信頼性の低下、製造工
程の繁雑さ等の上述の如き餌題点を解決すべくなされた
もので、製造工程が簡単で、各センサの特性にばらつき
がなく、信頼性の高いイメージセンサを提供することを
目的とする。
The present invention has been made in view of the above-mentioned circumstances in order to solve the above-mentioned problems such as variations in light-receiving area, decreased reliability due to contamination in the manufacturing process, and complexity of the manufacturing process. The purpose of the present invention is to provide a highly reliable image sensor with a simple manufacturing process and no variation in the characteristics of each sensor.

〔問題点を解決するための手段〕、 上記問題点を解決するため本発明では、基板上で所望の
形状に分割して並設された下部電極とアモルファス半導
体層からなる光導電体層との間に、受光面積(センサ面
積)を規定すべく、該下部電極に対応して絶縁層を付加
的に介在させ、サンドイッチ構造のセンサを構成してい
る。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes a photoconductor layer consisting of a lower electrode divided into desired shapes and arranged in parallel on a substrate and an amorphous semiconductor layer. In order to define the light-receiving area (sensor area), an insulating layer is additionally interposed in between, corresponding to the lower electrode, thereby forming a sandwich-structured sensor.

また製造に際しては、下部電極の形成後、光導電体層の
形成に先立ち下部電極の/9ターンに対応して絶縁層を
形成する工程を通常のセンナの製造工程に付加し、この
絶縁層によって受光面積(センサ面積)を規定するよう
にしている。
In addition, during manufacturing, after forming the lower electrode and prior to forming the photoconductor layer, a step of forming an insulating layer corresponding to /9 turns of the lower electrode was added to the normal Senna manufacturing process, and this insulating layer The light receiving area (sensor area) is defined.

〔作用〕[Effect]

すなわち、受光面積の規定をセンサの形成前、特に、損
傷を受は易い光導電体層の形成前に行なうことかできる
ため、フォトリソエツチングプロセス等によるセンサと
しての信頼性の低下を招くことなく簡単なプロセスで設
計通シの特性のイメージセンサを形成することができる
In other words, the light-receiving area can be determined before the formation of the sensor, especially before the formation of the photoconductor layer, which is easily damaged. An image sensor with characteristics consistent with the design can be formed using a process that is consistent with the design.

また、受光面積の規定が下部電極側でフォ) IJノン
エツチング法の微細加工技術を駆使して行なわれること
によってなされるため、センサの特性は一様で精度の良
いものとなる。
Furthermore, since the light-receiving area is defined on the lower electrode side by making full use of the microfabrication technology of the IJ non-etching method, the characteristics of the sensor are uniform and highly accurate.

〔実施例〕〔Example〕

以下、本発明実施例のマ) IJクス配線部をもつマト
リクス駆動型のイメージセンサについて、図尺基板上に
1728個の光電変換素子からなるセンサが並設されて
なるもので、g1図にその主要部の平面図を示すと共に
、第2図に第1図のA−入断面図を示す如くであシ、セ
ンナ部Sは絶縁性のガラス基板11上に所望の形状に分
割形成された電極部12aと引き出し線部12bとすら
表る下部電極12としてのクロム電極と、該引き出し線
部12bを覆うと共に電極部12mを露呈するように形
成された酸化シリコン膜(SIOりからなる絶縁層13
と、この上層に一体的に形成されたアモルファス水素化
シリコン層(a−8l:H)からなる光4電坏層14と
、さらに該光導電体層14の上層に前記下部電極12に
重なるように一体的に形成された酸化インジウム錫(I
TO)膜からなる透光性の上部電極15と、該基板のセ
ンサ部の表面全体を覆うように形成されたポリイミド樹
脂膜からなる表面保護膜16とから構成されている。
Hereinafter, a matrix-driven image sensor with an IJ wiring section according to an embodiment of the present invention will be described, in which a sensor consisting of 1728 photoelectric conversion elements is arranged in parallel on a scale board, and the image sensor is shown in Figure g1. As shown in FIG. 2, which shows a plan view of the main part and a sectional view taken along the line A in FIG. A chromium electrode as the lower electrode 12, which even shows the lead line part 12a and the lead line part 12b, and an insulating layer 13 made of a silicon oxide film (SIO) formed to cover the lead line part 12b and expose the electrode part 12m.
A photoconductor layer 14 made of an amorphous hydrogenated silicon layer (a-8l:H) is integrally formed on the upper layer, and a photoconductor layer 14 is formed on the photoconductor layer 14 so as to overlap with the lower electrode 12. Indium tin oxide (I
It consists of a transparent upper electrode 15 made of a TO) film, and a surface protection film 16 made of a polyimide resin film formed to cover the entire surface of the sensor section of the substrate.

また、駆動部りは、各センサの引き出し線に連結され、
縦方向にストライプ状に配列されたクロ今薄膜からなる
第1の配線層17と、絶縁層13を介して横方向にスト
ライ、プ状に配列されたクロム薄膜からなる第2の配線
層18とからなシ、これらの配線層17および18は、
夫々、交差する1点のみでスルーホール19を介して電
気的に接続されておシ、第2の配線層は電源回路(図示
せず)に接続されている。
In addition, the drive section is connected to the lead wire of each sensor,
A first wiring layer 17 made of a chromium thin film arranged in stripes in the vertical direction, and a second wiring layer 18 made of a chromium thin film arranged in stripes in the horizontal direction with an insulating layer 13 in between. These wiring layers 17 and 18 are
They are electrically connected via a through hole 19 at only one point where they intersect, and the second wiring layer is connected to a power supply circuit (not shown).

かかる構成により、引き出しa12bは絶縁層13で被
覆され、電極部12mのみが下部電極12として光導電
体層14に接触するようになっておシ、下部電極12と
絶縁層13とによシ(下部電極側のみによって)受光面
積が規定されているため、狛″度良く規定され得ると共
に各センサの構成部材が7オトリソ工ツチングプロセス
等ニよって損傷を受けることもないため、各センサの特
性のばらつきはほとんどなくすることが可能となる。
With this configuration, the drawer a12b is covered with the insulating layer 13, and only the electrode part 12m comes into contact with the photoconductor layer 14 as the lower electrode 12, and the lower electrode 12 and the insulating layer 13 are separated ( Since the light-receiving area is defined only by the lower electrode side, it can be precisely defined, and the constituent members of each sensor will not be damaged by the etching process, etc., so the characteristics of each sensor can be improved. This makes it possible to almost eliminate variations in .

また、センサ面積(受光面積)の規定は、下部電極とそ
の上に積層される絶縁層とによって下部電極側でのみ行
なわれるため、光導電体層および上部電極は、従来例に
示された場合のように受光面積の規定に寄与しない。従
って光導電体層および上部電極は、下部電極側で規定さ
れた受光面積を十分に覆う程度に大きめにノ臂ターニン
グすればよく、ノ母ターン端部の膜厚等にばらつきの生
じ易い部分はセンサ構成部として作用しないため、安定
な特性を得ることができ、正確な画像読み取シを行なう
ことのできる高解像度の密着型イメージセンサを得るこ
とができる。
In addition, since the sensor area (light receiving area) is defined only on the lower electrode side by the lower electrode and the insulating layer laminated thereon, the photoconductor layer and the upper electrode are It does not contribute to the regulation of the light-receiving area. Therefore, the photoconductor layer and the upper electrode should be turned to a large extent to sufficiently cover the light-receiving area defined on the lower electrode side. Since it does not act as a sensor component, stable characteristics can be obtained, and a high-resolution contact image sensor that can perform accurate image reading can be obtained.

次にこのマトリクス駆動型のイメージセンサの製造方法
について説明する。
Next, a method for manufacturing this matrix-driven image sensor will be described.

まず、絶縁性のガラス基板11上に、蒸着法によって笛
3図に示す如くクロム薄膜Cを着膜する。
First, a chromium thin film C is deposited on an insulating glass substrate 11 by vapor deposition as shown in Figure 3.

次いで、フォトリンエツチング法により、第4図に示す
如く不用部のクロム薄膜Cを選択的にエツチング除去し
、所望の形状の下部電極12と、この下部電極12の引
き出し線12bに夫々、接続されたストライプ状の第1
の配線層17とのノJ?ターン形成を行なう。
Next, as shown in FIG. 4, the unnecessary portions of the chromium thin film C are selectively etched away by a photorin etching method to form a lower electrode 12 of a desired shape and a wire connected to the lead wire 12b of this lower electrode 12. The first striped
No J? with the wiring layer 17? Form a turn.

この後、CvD法忙よシ膜厚約2μmの酸化シリコン膜
を着膜する。そしてフォトリンエツチング法によシ第5
図に示す如く前記さンサ部では下部電極の引き出し線1
2bを覆い、電極部12aを露呈せしめると共に、前記
駆動部ではスルーホール19の穿孔を行ない他の部分は
そのまま残すような形状に、前記酸化シリコン膜のパタ
ーニングを行なう。このとき、酸化シリコン膜の膜厚を
約2μm程度に抑えるのは、パターニングの際に下部電
極のi4ターンを透視可能なようにするとマスク合わせ
がよシ容易になるという理由によるが、実用上は必ずし
も透明である必要はなく、パターン精度および絶縁度の
みを考慮した厚さにとればよい。
Thereafter, a silicon oxide film having a thickness of approximately 2 μm is deposited using a CvD method. Then, the photolithography method is used.
As shown in the figure, in the sensor part, the lead wire 1 of the lower electrode
The silicon oxide film is patterned to cover the electrode portion 2b and expose the electrode portion 12a, and to form a through hole 19 in the driving portion while leaving other portions as they are. At this time, the reason why the thickness of the silicon oxide film is kept to about 2 μm is that mask alignment becomes easier if the i4 turn of the lower electrode can be seen through during patterning. It does not necessarily have to be transparent, and the thickness may be set considering only pattern accuracy and insulation degree.

続いて、蒸着法によりクロム薄膜を着膜した後1フオト
リンエツチング法によシ、該クロム薄膜を第6図に示す
如くストライプ状の第2の配線層18にパターニングす
る。
Subsequently, a thin chromium film is deposited by vapor deposition, and then patterned into a striped second wiring layer 18 by photo-etching, as shown in FIG.

更に、センサ部の下部電極12の電極部12aを十分に
覆うように光導電体層14として、ノンドープのアモル
ファス水素化シリコン層をグロー放電法により堆積した
後、さらにこの上層に透光  性の上部電極13として
酸化インジウム錫膜をスパッタリング法によ)形成し、
第7図に示す如くサンドイッチ型のセンサすなわち光電
変換装置を形成する。ζこで、下部電極と該下部電極上
に積層された絶縁層によって、受光面積は規定されてい
るため、アモルファス水素化シリコン層および酸化イン
ジウム錫膜のパターニングに際しては、前述の規定され
た受光範画よシも十分広い領域を覆うようにすればよく
、パターン精度は必要でない。従って、ここでは、着膜
すべき帯状の領域に選択窓をもつメタルマスクを使用し
て、選択的に着膜すればよい。
Furthermore, after a non-doped amorphous hydrogenated silicon layer is deposited as a photoconductor layer 14 by a glow discharge method so as to sufficiently cover the electrode part 12a of the lower electrode 12 of the sensor part, a light-transmitting upper layer is further deposited on this upper layer. Form an indium tin oxide film (by sputtering method) as the electrode 13,
As shown in FIG. 7, a sandwich type sensor, that is, a photoelectric conversion device is formed. ζThe light-receiving area is defined by the lower electrode and the insulating layer laminated on the lower electrode, so when patterning the amorphous silicon hydride layer and the indium tin oxide film, the above-mentioned defined light-receiving range is required. It is sufficient to cover a sufficiently wide area in terms of image and width, and pattern accuracy is not required. Therefore, here, the film may be selectively deposited using a metal mask having a selection window in the band-shaped region to which the film is to be deposited.

そして最後に、このようにして形成されたセンナ部を/
 IJイミド樹脂膜からなる表面保護膜16で被覆し、
第1図に示す如く、マ) IJクス駆動型のイメージセ
ンサを完成する。
And finally, the senna part formed in this way /
Covered with a surface protection film 16 made of an IJ imide resin film,
As shown in FIG. 1, an IJ drive type image sensor is completed.

この方法では、光導電体層の形成後にフォトリンエツチ
ング工程を実施することなく、受光面積を精度良く規定
することができるため、光導電体層の端部の汚染による
劣化等を生じることもなく、センサ特性が良好で信頼性
の高いイメージセンサを得る仁とができる。
With this method, the light-receiving area can be defined with high accuracy without performing a photophosphor etching process after the formation of the photoconductor layer, so there is no possibility of deterioration due to contamination of the edges of the photoconductor layer. This makes it possible to obtain a highly reliable image sensor with good sensor characteristics.

また、絶縁層のパターニングは、駆動部の層間絶縁膜と
同一の工程で行なえばよく、製造工程の簡略化をはかる
ことが寸能となる。
Further, the patterning of the insulating layer may be performed in the same process as that of the interlayer insulating film of the drive section, and it is important to simplify the manufacturing process.

ところで、マトリクス型の配線では、特にイメージセン
サの長尺化に伴い、配線長が長くなってしまい配線層自
体の容量等が無視できないため、配線層、配線間隔等を
考慮して容量の均一化をはかってaる。従って、配線相
互の絶縁物質として基板や空気雰囲気等を考慮しなけれ
ばならないが空気雰囲気の湿度変化はかなりの幅で絶縁
度を変化させると共に基板の表面抵抗にも影響を与える
ことになシ、センサの特性を変化させる場合があったが
、このように絶縁層がスルーホールを除いて基板表面全
体を覆っているため、センサの信頼性が向上する。
By the way, in matrix wiring, especially as image sensors become longer, the wiring length becomes longer and the capacitance of the wiring layer itself cannot be ignored. Measure and a. Therefore, it is necessary to consider the substrate, air atmosphere, etc. as the insulating material between the wirings, but changes in the humidity of the air atmosphere will not only change the insulation degree over a considerable range but also affect the surface resistance of the substrate. Although this may change the characteristics of the sensor, since the insulating layer covers the entire substrate surface except for the through holes, the reliability of the sensor is improved.

なお、゛実施例においては、絶縁層として酸化シリコン
膜を用いたが、窒化シリコン膜(stNx)等の他の無
機絶縁膜あるいは、ポリイミド系樹脂膜等の有機絶縁膜
等、他の絶縁膜を用いても、同様の効果を得ることがで
きる。
In addition, although a silicon oxide film was used as the insulating layer in the examples, other insulating films such as other inorganic insulating films such as silicon nitride film (stNx) or organic insulating films such as polyimide resin films may also be used. Similar effects can be obtained by using

また、実施例においては、マ) IJクス駆動型イメー
ジセンサについて述べたが、必ずしもこれに限定される
ものではなく、薄膜トランジスタ駆動量密着型イメージ
センサ等のマトリクス配線部をもつデバイスのように゛
駆動部を多層配線技術を用いて形成する場合には、特に
有効でおる。この場合はその層間絶縁膜の形成と同時に
1受光面積規定用の絶縁層の形成を行なえばよいため、
何ら工程を付加する必要もない。
Furthermore, in the embodiments, a matrix-driven IJ drive type image sensor has been described; however, the invention is not necessarily limited to this; This is particularly effective when forming the section using multilayer wiring technology. In this case, it is sufficient to form an insulating layer for defining one light-receiving area at the same time as forming the interlayer insulating film.
There is no need to add any process.

更に、受光面積規定用の前記絶縁層は必ずしも駆動部の
層間絶縁膜と一体的に形成する必要はなく、又、別工程
で形成しても良いことは言うまでもない。
Furthermore, it goes without saying that the insulating layer for defining the light-receiving area does not necessarily need to be formed integrally with the interlayer insulating film of the driving section, and may be formed in a separate process.

〔発明の効果〕〔Effect of the invention〕

以上、説明してきたように、本発明によれば、下部電極
とその上に積層された絶縁層とによって受光面積(セン
ナ面積)を規定しているため、各センナの特性は一様で
精度の良いものとなる。
As explained above, according to the present invention, since the light receiving area (Senna area) is defined by the lower electrode and the insulating layer laminated thereon, the characteristics of each Senna are uniform and the accuracy is low. It will be good.

また、受光面積の規定を光導電体層の形成に先立ち、絶
縁層を形成するこ・とによって行なうため、製造が容易
である上、フォトリソエツチングプロセス等によシ、光
導電体層が損傷受けたシすることもなく、センナの信頼
性を向上することができる。
In addition, since the light-receiving area is determined by forming an insulating layer prior to forming the photoconductor layer, manufacturing is easy and the photoconductor layer is less susceptible to damage due to photolithography and etching processes. It is possible to improve the reliability of Senna without having to change it.

更に、多層配線プロセスを含むデバイスの場合には、層
間絶縁膜の形成と同時に受光面積規定用の絶縁層を形成
すればよいため、プロセスを付加することなく、都合良
く製造することができる。
Furthermore, in the case of a device that involves a multilayer wiring process, it is sufficient to form an insulating layer for defining a light receiving area at the same time as forming an interlayer insulating film, so that it can be conveniently manufactured without adding any additional processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施例のマトリクス駆動型のイメージ
センサの主要部を示す図、第2図は第1図のA−A断面
図、第3図乃至第7図は第1図に示されたイメージセン
サの製造工程を示す図、第8図はサンドイッチ型センサ
の基本構造を示す図、第9図乃至第12図は従来のセン
サの構造例を示す図である。 1・・・基板、2・・・下部電極、3・・・下部電極、
4・・・光導電体層、5・・・遮光膜、6・・・引き出
し線、7・・・13・・・絶縁層、14・・・光導電体
層、15・・・上部電極、16・・・表面保護膜、17
・・・第1の配線層、18・・・第2の配線層、19・
・・スルーホール、C・・・クロム薄膜、S・・・セン
サ部、D・・・駆動部。 出願人 代理人 木 村 高 久 第1図 第3図 第4図 第5図 1つ 第6図 第10図 第11図 第12図
FIG. 1 is a diagram showing the main parts of a matrix-driven image sensor according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIGS. 3 to 7 are shown in FIG. FIG. 8 is a diagram showing the basic structure of a sandwich type sensor, and FIGS. 9 to 12 are diagrams showing structural examples of conventional sensors. 1... Substrate, 2... Lower electrode, 3... Lower electrode,
4... Photoconductor layer, 5... Light shielding film, 6... Leading line, 7... 13... Insulating layer, 14... Photoconductor layer, 15... Upper electrode, 16...Surface protective film, 17
...first wiring layer, 18...second wiring layer, 19.
...Through hole, C...Chromium thin film, S...Sensor part, D...Drive part. Applicant Agent Takahisa Kimura Figure 1 Figure 3 Figure 4 Figure 5 One Figure 6 Figure 10 Figure 11 Figure 12

Claims (3)

【特許請求の範囲】[Claims] (1)光導電体層としてのアモルファス半導体層を基板
上に形成された下部電極と、上部電極とによって挾持し
てなるサンドイッチ型のイメージセンサにおいて、下部
電極とアモルファス半導体層との間に、該下部電極とア
モルファス半導体層との接触を部分的に阻止する絶縁層
を設け、該絶縁層によって有効受光面積を規定するよう
にしたことを特徴とするイメージセンサ。
(1) In a sandwich-type image sensor in which an amorphous semiconductor layer as a photoconductor layer is sandwiched between a lower electrode formed on a substrate and an upper electrode, the amorphous semiconductor layer is sandwiched between the lower electrode and the amorphous semiconductor layer. An image sensor characterized in that an insulating layer is provided to partially prevent contact between a lower electrode and an amorphous semiconductor layer, and an effective light-receiving area is defined by the insulating layer.
(2)前記絶縁層は、少なくとも、該下部電極の引き出
し線部を覆うように形成されていることを特徴とする特
許請求の範囲第(1)項記載のイメージセンサ。
(2) The image sensor according to claim (1), wherein the insulating layer is formed to cover at least a lead-out line portion of the lower electrode.
(3)基板上に形成された下部電極と上部電極とによっ
て、光導電体層としてのアモルファス半導体層を挾持し
てなるサンドイッチ型のイメージセンサの製造方法にお
いて、下部電極パターンを形成した後、光導電体層の形
成に先立ち、前記下部電極パターンと前記光導電体層と
の接触を部分的に阻止することにより有効受光面積を規
定する絶縁層を前記下部電極パターン上に形成する絶縁
層形成工程を具えたことを特徴とするイメージセンサの
製造方法。
(3) In a method for manufacturing a sandwich-type image sensor in which an amorphous semiconductor layer as a photoconductor layer is sandwiched between a lower electrode and an upper electrode formed on a substrate, after forming a lower electrode pattern, Prior to forming the conductor layer, an insulating layer forming step of forming an insulating layer on the lower electrode pattern to define an effective light-receiving area by partially blocking contact between the lower electrode pattern and the photoconductor layer. A method for manufacturing an image sensor, characterized by comprising:
JP16012684A 1984-07-13 1984-07-30 Image sensor and manufacture thereof Pending JPS6139574A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16012684A JPS6139574A (en) 1984-07-30 1984-07-30 Image sensor and manufacture thereof
US06/753,568 US4727407A (en) 1984-07-13 1985-07-10 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16012684A JPS6139574A (en) 1984-07-30 1984-07-30 Image sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6139574A true JPS6139574A (en) 1986-02-25

Family

ID=15708427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16012684A Pending JPS6139574A (en) 1984-07-13 1984-07-30 Image sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6139574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318896A (en) * 1995-05-26 1996-12-03 Shinkurushima Dock:Kk Course stabilizing fin of vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318896A (en) * 1995-05-26 1996-12-03 Shinkurushima Dock:Kk Course stabilizing fin of vessel

Similar Documents

Publication Publication Date Title
US6465861B1 (en) Corrosion resistant imager
JPH05251705A (en) Thin-film transistor
US20090294767A1 (en) Isolated Sensor Structures Such As For Flexible Substrates
KR20020001737A (en) Method of manufacturing a transistor
KR100348995B1 (en) The method for fabricating liquid crystal display using four masks and the liquid crystal display thereof
US6495386B2 (en) Method of manufacturing an active matrix device
US4979007A (en) Photoelectric conversion device
KR100309925B1 (en) Thin film transistor array panel for liquid crystal display and manufacturing method thereof, and photomasks used thereto
JPS6139574A (en) Image sensor and manufacture thereof
US4698495A (en) Amorphous silicon photo-sensor for a contact type image sensor
JP4478215B2 (en) Corrosion resistant imaging device
KR100646787B1 (en) a manufacturing method of a thin film transistor array panel for a liquid crystal display
JPS62154780A (en) Image sensor
JPS6132571A (en) Photoelectric conversion device
WO1998032173A9 (en) Corrosion resistant imager
JP3018669B2 (en) Semiconductor sensor
KR100330097B1 (en) Thin film transistor substrate for liquid crystal display and manufacturing method thereof
JPS61232668A (en) Image sensor and manufacture thereof
KR20020020450A (en) Thin film transistor and fabricating method thereof
KR100878263B1 (en) thin film transistor array panel for liquid crystal display and manufacturing method thereof
JPS60263457A (en) Photoelectric conversion element array for hybrid integrated photosenser
JPH0595100A (en) Image sensor
JP2573342B2 (en) Light receiving element
JPS6214708Y2 (en)
KR20000042086A (en) Thin film transistor substrate for liquid crystal display and method for manufacturing the same