JPS6369967A - Deposited film forming device - Google Patents

Deposited film forming device

Info

Publication number
JPS6369967A
JPS6369967A JP21276386A JP21276386A JPS6369967A JP S6369967 A JPS6369967 A JP S6369967A JP 21276386 A JP21276386 A JP 21276386A JP 21276386 A JP21276386 A JP 21276386A JP S6369967 A JPS6369967 A JP S6369967A
Authority
JP
Japan
Prior art keywords
vapor deposition
crucible
heat insulating
insulating member
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21276386A
Other languages
Japanese (ja)
Inventor
Shigeru Semura
滋 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21276386A priority Critical patent/JPS6369967A/en
Publication of JPS6369967A publication Critical patent/JPS6369967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a deposited film forming device which can suppress the heat loss from a vapor deposition material, by interposing a heat insulating member between a vapor deposition material and the inside surface of a crucible contg. said material. CONSTITUTION:An electron beam 7 generated when a filament 8 is energized by a power supply 3 is projected to the vapor deposition material 2 and the heat generated by the material 2 is transferred to the heat insulating member 10 to increase the temp. of the material 2 and the member 10. Since the heat transfer between the member 10 and the crucible 6 is small, the heat loss can be kept low; therefore, the material 2 can be efficiently heated by the beam 7. As a result, the formation of the vapor deposited film on the substrate surface is executable at a high speed. Since the member 10 can house a relatively large amt. of the material 2, the vapor deposition amt. per time is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸着材を電子ビームで加熱し、基板表面に蒸着
膜を形成する蒸着膜形成装置に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor deposition film forming apparatus for heating a vapor deposition material with an electron beam to form a vapor deposition film on a substrate surface.

〔従来の技術〕[Conventional technology]

半導体装置の製造工程等においては、基板表面に電極材
料等を蒸着形成するために蒸着膜形成装置が用いられる
。かかる蒸着膜形成装置を蒸着材の加熱方法により大別
すると、抵抗加熱法によるものと、高周波加熱法による
ものと、電子ビーム加熱法によるものとがおる。
2. Description of the Related Art In the manufacturing process of semiconductor devices, a deposition film forming apparatus is used to deposit electrode materials and the like on the surface of a substrate. When such vapor deposition film forming apparatuses are roughly classified according to the method of heating the vapor deposition material, there are those that use a resistance heating method, those that use a high frequency heating method, and those that use an electron beam heating method.

抵抗加熱法による蒸着膜形成装置は、例えば第4図の構
成図に示すようになっている。タングステン、タンタル
、モリブデン等の金属でできたヒータ1のボート部には
、アルミニウム等の所望の金属が蒸着材2として載せら
れる。そして、このヒータ1は電源3に接続され、通電
されるようになっている。
An apparatus for forming a deposited film using the resistance heating method is shown in the configuration diagram of FIG. 4, for example. A desired metal such as aluminum is placed as a vapor deposition material 2 on a boat portion of a heater 1 made of metal such as tungsten, tantalum, or molybdenum. This heater 1 is connected to a power source 3 and is energized.

電源3により通電されるとヒータ1はジュール熱により
発熱し、これによって蒸着材2は加熱されて温度が上昇
する。蒸着材2の温度が所定値を越えると蒸発が始まり
、これによって図示しない基板の表面に蒸着膜が形成さ
れる。
When energized by the power source 3, the heater 1 generates heat due to Joule heat, thereby heating the vapor deposition material 2 and increasing its temperature. When the temperature of the vapor deposition material 2 exceeds a predetermined value, evaporation begins, thereby forming a vapor deposition film on the surface of a substrate (not shown).

高周波加熱法による蒸着膜形成装置については図示しな
いが、これは蒸着材を高周波電力により加熱するもので
ある。この方法によっても、蒸着材が所定値以上の温度
になると蒸発が始まり、図示しない基板の表面に蒸着膜
が形成される。
Although a vapor deposition film forming apparatus using a high frequency heating method is not shown in the drawings, this device heats the vapor deposition material using high frequency power. Also with this method, when the temperature of the vapor deposition material reaches a predetermined value or higher, evaporation starts, and a vapor deposition film is formed on the surface of the substrate (not shown).

これらに対して電子ビーム加熱法による蒸着膜形成装置
は、例えば第5図の構成図に示すようになっている。冷
却装置として機能する箱体5の上面には凹部が形成され
、この凹部がるつぼ6をなしている。るつぼ6には所望
の金属等が蒸着材2として容れられ、従って蒸着材2は
るつぼ6を介して冷却水9により冷却されるようになっ
ている。
On the other hand, an apparatus for forming a deposited film using the electron beam heating method is shown in the configuration diagram of FIG. 5, for example. A recess is formed in the upper surface of the box 5 which functions as a cooling device, and this recess forms a crucible 6. A desired metal or the like is placed in the crucible 6 as a vapor deposition material 2, and therefore the vapor deposition material 2 is cooled by cooling water 9 via the crucible 6.

なお、この冷却はるつぼ6の材料(例えば銅)と蒸着材
2の材料(例えばアルミニウム)との反応を抑えるため
になされる。フィラメント8は電子ビーム7を発生させ
るためのもので、このフィラメント8には電源3から電
力が供給される。
Note that this cooling is performed to suppress the reaction between the material of the crucible 6 (for example, copper) and the material of the vapor deposition material 2 (for example, aluminum). The filament 8 is used to generate the electron beam 7, and power is supplied to the filament 8 from the power source 3.

電源3からフィラメント8に電力が供給されると電子ビ
ーム7が発生し、この電子ビーム7はるつぼ6に容れら
れた蒸着材2に照射される。すると、蒸着材2は電子ビ
ーム7のエネルギーによって発熱され、温度が上昇する
。蒸着材2の温度が上昇して所定値を越えると蒸発が始
まり、これによって図示しない基板の表面に蒸着膜が形
成される。
When power is supplied from the power source 3 to the filament 8, an electron beam 7 is generated, and the vapor deposition material 2 contained in the crucible 6 is irradiated with the electron beam 7. Then, the vapor deposition material 2 is heated by the energy of the electron beam 7, and its temperature increases. When the temperature of the vapor deposition material 2 rises and exceeds a predetermined value, evaporation begins, thereby forming a vapor deposition film on the surface of a substrate (not shown).

(発明が解決しようとする問題点〕 しかしながらこれら従来装置では、以下に示すような種
々の問題がおる。
(Problems to be Solved by the Invention) However, these conventional devices have various problems as shown below.

まず、抵抗加熱によるものでは比較的高速の蒸着を行な
えるが、1回当りの蒸着量が少ない。これは、蒸着材を
容れるためのボートの容量が小さいためで、このために
厚膜の形成には通しない。
First, although resistance heating can perform vapor deposition at a relatively high speed, the amount of vapor deposition per time is small. This is due to the small capacity of the boat to accommodate the deposition material, which makes it impractical for thick film formation.

また、高周波加熱によるものでは装置が高価であり、従
って製造される製品(半導体装置等)のコスト上昇を招
いてしまう。
Furthermore, the equipment using high-frequency heating is expensive, leading to an increase in the cost of manufactured products (semiconductor devices, etc.).

これに対して電子ビーム加熱によるものでは、1回当り
の蒸着量を多くすることができ、従って薄膜の形成に限
らず厚膜の形成にも有効に適用することができる。しか
しながら従来の電子ビーム加熱による蒸着膜形成装置で
は、蒸着材がるつぼを介して冷却されているため単位時
間当りに十分な量の蒸発を行うことができず、従って蒸
着膜の形成速度が遅い。また、冷却を上回る発熱を生じ
させるために電子ビームを高エネルギーにすると、るつ
ぼ内の蒸着材から飛沫が出てしまう。
On the other hand, electron beam heating can increase the amount of vapor deposition per one time, and therefore can be effectively applied not only to the formation of thin films but also to the formation of thick films. However, in the conventional vapor deposition film forming apparatus using electron beam heating, the vapor deposition material is cooled through a crucible, so a sufficient amount of vapor cannot be evaporated per unit time, and therefore the formation rate of the vapor deposition film is slow. Furthermore, if the electron beam is made to have high energy to generate heat that exceeds cooling, droplets will come out from the evaporation material in the crucible.

更に、蒸@膜の形成が低速度でおると、蒸着に要する時
間は膜の厚さが大きければ大きいほど長くなり、その結
果基板の温度が蒸着中に上昇してしまう。基板の温度が
上昇するとそこに形成される蒸着膜には微小な凹凸が現
われ、いわゆる「曇り」が生じて良好な膜を得ることが
できない。
Furthermore, if the deposition rate is low, the time required for deposition increases as the thickness of the film increases, resulting in an increase in the temperature of the substrate during deposition. When the temperature of the substrate rises, minute irregularities appear in the vapor deposited film formed on the substrate, causing so-called "cloudiness" and making it impossible to obtain a good film.

そこで本発明は、1回当りの蒸@量を大きくすることが
でき、かつ蒸着膜の形成を高速に行なうことのできる蒸
着膜形成装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a vapor deposited film forming apparatus that can increase the amount of vapor per vapor deposition and form a vapor deposited film at high speed.

[問題点を解決するための手段] 本発明に係る蒸着膜形成装置は、るつぼに容れた蒸着材
を電子ビームで加熱する装置で必って、るつぼの内面と
蒸着材の間に保温部材を介在させて設けたことを特徴と
する。
[Means for Solving the Problems] The vapor deposited film forming apparatus according to the present invention is an apparatus that heats a vapor deposition material contained in a crucible with an electron beam, and must include a heat insulating member between the inner surface of the crucible and the vapor deposition material. It is characterized in that it is provided in an interposed manner.

〔作用〕[Effect]

本発明に係る蒸着膜形成装置は以上のように偶成される
ので、保温部材は比較的多くの量の蒸着材をその中に容
れるように働き、かつ蒸着材からの熱がるつぼに伝わる
のを阻止するように働く。
Since the vapor deposition film forming apparatus according to the present invention is constructed as described above, the heat insulating member functions to contain a relatively large amount of vapor deposition material therein, and prevents heat from the vapor deposition material from being transmitted to the crucible. work to prevent it.

〔実施例〕〔Example〕

以下、添付図面の第1図および第2図を参照して本発明
のいくつかの実施例を説明する。なあ、図面の説明にお
いて同一の要素には同一の符号を付し、重複する説明を
省略する。
Hereinafter, some embodiments of the present invention will be described with reference to FIGS. 1 and 2 of the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description will be omitted.

第1図は本発明に係る蒸着膜形成装置の構成図である。FIG. 1 is a configuration diagram of a vapor deposition film forming apparatus according to the present invention.

そしてこれが第4図の従来装置と異なる点は、断面凹形
状のるつぼ6に保温部材10が嵌められ、この中に蒸着
材2が容れられていることで必る。るつぼ6の材料とし
ては例えば銅が用いられ、保温部材10の材料としては
例えばボロンナイトライドが用いられる。
The difference from the conventional apparatus shown in FIG. 4 is that a heat insulating member 10 is fitted into a crucible 6 having a concave cross section, and the vapor deposition material 2 is contained therein. For example, copper is used as the material for the crucible 6, and boron nitride is used as the material for the heat insulating member 10, for example.

次に、上記実施例の装置の作用を説明する。Next, the operation of the apparatus of the above embodiment will be explained.

フィラメント8に対して電源3から通電すると電子ビー
ム7が発生され、この電子ビーム7は蒸着材2に照射さ
れる。このため、蒸着材2は電子ビーム7のエネルギー
により発熱し、この熱は保温部材10に伝わって蒸着材
2と保温部材10の温度が共に上昇する。ところが、保
温部材10とるつぼ6の間の熱伝導は少ないので熱損失
は少なく抑えることができ、従って蒸着材2は電子ビー
ム7によって効率よく加熱される。その結果、蒸着材2
を効率よく蒸発させることができるので、基板(図示し
ない)表面におりる蒸着膜の形成を高速に行なうことが
できる。
When the filament 8 is energized from the power source 3, an electron beam 7 is generated, and the vapor deposition material 2 is irradiated with the electron beam 7. For this reason, the vapor deposition material 2 generates heat due to the energy of the electron beam 7, and this heat is transmitted to the heat insulating member 10, so that the temperatures of both the vapor deposition material 2 and the heat insulating member 10 rise. However, since the heat conduction between the heat insulating member 10 and the crucible 6 is small, the heat loss can be suppressed to a low level, and therefore the vapor deposition material 2 is efficiently heated by the electron beam 7. As a result, the vapor deposition material 2
can be efficiently evaporated, so that a deposited film can be formed on the surface of a substrate (not shown) at high speed.

同時に、るつぼ6に嵌められた保温部材10は比較的多
量の蒸着材2を容れることができるので、1回当りの蒸
着量を多くすることができる。従って、1膜の形成のみ
ならず厚膜の形成をも高速に行なうことができる。
At the same time, since the heat insulating member 10 fitted in the crucible 6 can contain a relatively large amount of the vapor deposition material 2, the amount of vapor deposition per time can be increased. Therefore, not only one film but also a thick film can be formed at high speed.

第2図は本発明に係る保温部材のいくつかの例を示す斜
視図である。同図(a)に示す如く保温部材10@筐体
構造とすれば、製造が容易であり多量の蒸着材2を容れ
ることができる。同図(b)に示す如く、筐体の内側に
底面から突出形成した突出部10aを配設すれば、蒸着
材2の温度分布の均一性を向上させることができる。こ
のため、熱損失をより少なくして蒸着速度を上げること
ができる。同図(C)に示す如く複数の突出部10bを
形成すれば、温度分布の均一性を更に向上させることが
できる。また、同図(d)に示す如く保温部材10をな
す筒体の側面から平板状の突出部10Gを形成するよう
にしてもよい。
FIG. 2 is a perspective view showing some examples of heat retaining members according to the present invention. If the heat insulating member 10 is constructed as a housing structure as shown in FIG. As shown in FIG. 2B, by providing a protrusion 10a protruding from the bottom surface inside the casing, the uniformity of the temperature distribution of the vapor deposition material 2 can be improved. Therefore, it is possible to further reduce heat loss and increase the deposition rate. By forming a plurality of protrusions 10b as shown in FIG. 3C, the uniformity of temperature distribution can be further improved. Further, as shown in FIG. 2D, a flat plate-shaped protrusion 10G may be formed from the side surface of the cylindrical body forming the heat insulating member 10.

保温部材10の形状は第2図のものに限られず、例えば
方形の筐体によって構成してもよい。また、保温部材1
0の材料はボロンナイトライドに限られず、アルミナ、
シリコンナイトライド、カーボン、炭化珪素、タンタル
、モリブデン、白金等の種々のものを用いることができ
る。
The shape of the heat insulating member 10 is not limited to that shown in FIG. 2, and may be configured as a rectangular housing, for example. In addition, heat insulation member 1
The material of 0 is not limited to boron nitride, but also alumina,
Various materials such as silicon nitride, carbon, silicon carbide, tantalum, molybdenum, and platinum can be used.

本発明者は以上説明した本発明の効果を確認するため、
下記の実験を行なった。まず、ボロンティ1〜ライドを
用いて第2図(b)に示す形状の保温部材を製作した。
In order to confirm the effects of the present invention explained above, the present inventors
The following experiment was conducted. First, a heat insulating member having the shape shown in FIG. 2(b) was manufactured using Volonty 1 to Ride.

ここで、保温部材の外径を24、51rIMφ、高さを
10mとし、中央の突出部は外径を10IrIIriφ
、高さを10#とじた。また、この保温部材を内径が2
5#φ、深さが10mのるつぼに嵌めこみ、蒸着材とし
てアルミニウムを1cc(2,7y)だけ容れた。そし
て、3膜wのエネルギーで電子ビームを照射し、20 
cm離れた位置のシリコン基板にアルミニウムを蒸着し
た。
Here, the outer diameter of the heat insulating member is 24.51rIMφ, the height is 10m, and the outer diameter of the central protrusion is 10IrIIriφ.
, the height was closed at 10#. In addition, this heat insulating member has an inner diameter of 2
The crucible was fitted into a crucible having a diameter of 5 mm and a depth of 10 m, and contained 1 cc (2.7 Y) of aluminum as a vapor deposition material. Then, an electron beam is irradiated with the energy of 3 films w, and 20
Aluminum was deposited on a silicon substrate at a distance of cm.

その結果、シリコン基板の表面には2.5μm/分の速
度で10μmの厚さの蒸着膜が形成された。
As a result, a 10 μm thick vapor deposition film was formed on the surface of the silicon substrate at a rate of 2.5 μm/min.

また、本発明者は第2図(a)に示す形状の保温部材を
用いて、上記と同様の実験を行なった。
Further, the inventor conducted an experiment similar to the above using a heat insulating member having the shape shown in FIG. 2(a).

但し、保温部材の外径寸法、電子ビームのエネルギー等
は上記実験と同一とした。
However, the outer diameter of the heat insulating member, the energy of the electron beam, etc. were the same as in the above experiment.

さらに本発明者は、第4図に示す従来の抵抗加熱法によ
る蒸着膜形成装置を用いて実験を行い、かつ第5図に示
す従来の電子ビーム加熱法による蒸着膜形成装置を用い
て同様の実験を行なった。
Furthermore, the present inventor conducted an experiment using a vapor deposition film forming apparatus using the conventional resistance heating method shown in FIG. 4, and a similar vapor deposition film forming apparatus using the conventional electron beam heating method shown in FIG. We conducted an experiment.

上記4つの実験の結果を第3図に示す。同図から明らか
なように、保温部材を用いるようにすれば蒸着mを多く
しながら蒸着速度を大きくすることができ、突出部のあ
る保温部材を用いれば蒸着速度を更に大きくすることが
できる。なお、突出部のない保温部材(第2図(a>図
示)を用いたときには蒸着膜の表面に曇りが現れたが、
これは基板が高温となったためにアルミニウムが結晶化
したものと考えられる。すなわち、突出部のおる保温部
材を用いると蒸着時間を短くでき、従って基板表面の温
度は100℃以下に抑えられるので曇りが現れない。と
ころが、突出部のない保温部材を用いると蒸着時間が長
くなり、従って基板表面の温度が200 ’C〜250
℃になってアルミニウムが結晶化してしまう。
The results of the above four experiments are shown in FIG. As is clear from the figure, if a heat retaining member is used, the deposition rate can be increased while increasing the amount of deposition m, and if a heat retaining member with a protrusion is used, the deposition rate can be further increased. Note that when using a heat insulating member without protrusions (as shown in FIG. 2 (a)), clouding appeared on the surface of the deposited film;
This is considered to be because the aluminum crystallized due to the high temperature of the substrate. That is, by using a heat insulating member with protrusions, the deposition time can be shortened, and the temperature of the substrate surface can be kept below 100° C., so that no clouding occurs. However, if a heat insulating member without protrusions is used, the deposition time becomes longer, and the temperature of the substrate surface increases from 200'C to 250'C.
℃, aluminum crystallizes.

よって、突出部のない保温部材を用いたものは薄膜を高
速に形成するのに特に適し、突出部のある保温部材を用
いたものは厚膜を形成するのに特に適していることがわ
かる。
Therefore, it can be seen that the one using a heat insulating member without a protrusion is particularly suitable for forming a thin film at high speed, and the one using a heat insulating member with a protrusion is particularly suitable for forming a thick film.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように本発明によれば、るつぼの
内面と蒸着材の間に保温部材を介在させて設けたので、
保温部材の中に比較的多量の蒸着材を容れることができ
、また蒸着材からの熱損失を抑えることができるので、
1回当りの蒸着量を多くし、かつ高速の蒸着を行うこと
ができるという効果がある。
As described above in detail, according to the present invention, since the heat insulating member is interposed between the inner surface of the crucible and the vapor deposition material,
A relatively large amount of vapor deposition material can be contained in the heat insulating member, and heat loss from the vapor deposition material can be suppressed, so
This has the effect of increasing the amount of vapor deposition per one time and allowing high-speed vapor deposition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る蒸着膜形成装置の構成
図、第2図は本発明装置に用いられる保温部材のいくつ
かの例の斜視図、第3図は従来装置および本発明装置に
よる実験結果を示す図、第4図は抵抗加熱法による従来
装置の構成図、第5図は電子ビーム加熱法による従来装
置の構成図である。 1・・・ヒータ、2・・・蒸着材、3・・・電源、6・
・・るつぼ、7・・・電子ビーム、8・・・フィラメン
ト、10・・・保温部材、108〜10G・・・突出部
。 第  1  図 0a (a)              (b)本発明に係
る保温部材の斜視図 第  2  図
FIG. 1 is a block diagram of a vapor deposited film forming apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view of several examples of heat insulating members used in the apparatus of the present invention, and FIG. 3 is a conventional apparatus and the present invention. FIG. 4 is a block diagram of a conventional device using a resistance heating method, and FIG. 5 is a block diagram of a conventional device using an electron beam heating method. 1... Heater, 2... Vapor deposition material, 3... Power supply, 6...
... Crucible, 7... Electron beam, 8... Filament, 10... Heat retention member, 108-10G... Projection. 1.0a (a) (b) Perspective view of the heat retaining member according to the present invention.FIG. 2

Claims (1)

【特許請求の範囲】 1、るつぼに容れた蒸着材を電子ビームで加熱し、基板
表面に蒸着膜を形成する蒸着膜形成装置において、 前記るつぼの内面と蒸着材の間に、保温部材を介在させ
て設けたことを特徴とする蒸着膜形成装置。 2、前記保温部材は前記るつぼに嵌められる筐体であり
、前記蒸着材はこの筐体に容れられる特許請求の範囲第
1項記載の蒸着膜形成装置。 3、前記筐体の内面に1又は2以上の突出部が形成され
ている特許請求の範囲第2項記載の蒸着膜形成装置。 4、前記保温部材は前記るつぼ内に挿脱自在に設けられ
る特許請求の範囲第1項記載の蒸着膜形成装置。
[Claims] 1. In a vapor deposition film forming apparatus that heats a vapor deposition material contained in a crucible with an electron beam to form a vapor deposition film on a substrate surface, a heat insulating member is interposed between the inner surface of the crucible and the vapor deposition material. A vapor deposition film forming apparatus characterized in that it is provided with 2. The vapor deposited film forming apparatus according to claim 1, wherein the heat insulating member is a casing fitted into the crucible, and the vapor deposition material is contained in the casing. 3. The vapor deposition film forming apparatus according to claim 2, wherein one or more protrusions are formed on the inner surface of the casing. 4. The vapor deposited film forming apparatus according to claim 1, wherein the heat insulating member is provided in the crucible so as to be freely inserted into and removed from the crucible.
JP21276386A 1986-09-11 1986-09-11 Deposited film forming device Pending JPS6369967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21276386A JPS6369967A (en) 1986-09-11 1986-09-11 Deposited film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21276386A JPS6369967A (en) 1986-09-11 1986-09-11 Deposited film forming device

Publications (1)

Publication Number Publication Date
JPS6369967A true JPS6369967A (en) 1988-03-30

Family

ID=16627994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21276386A Pending JPS6369967A (en) 1986-09-11 1986-09-11 Deposited film forming device

Country Status (1)

Country Link
JP (1) JPS6369967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017161624A1 (en) * 2016-03-21 2017-09-28 深圳市华星光电技术有限公司 Vapor deposition crucible

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017161624A1 (en) * 2016-03-21 2017-09-28 深圳市华星光电技术有限公司 Vapor deposition crucible

Similar Documents

Publication Publication Date Title
AU4507297A (en) Variable high temperature chuck for high density plasma chemical vapor deposition
JPS5939031A (en) Method of reflowing phosphosilicate glass
JPH0849067A (en) Vapor deposition method
JP2001023759A (en) Pyrolytic boron nitride radiation heater
JPS6369967A (en) Deposited film forming device
JPS58175826A (en) Heating method for semiconductor through light irradiation
KR100315982B1 (en) Side instantaneous evaporator
JPH027415A (en) Formation of soi thin film
JPS6376864A (en) Vapor deposited film forming device
JPS6043913B2 (en) Crucible for evaporation source
TWI287839B (en) Silicon nitride film forming method and silicon nitride forming apparatus
JPS62160461A (en) Heating source for manufacturing electrophotographic sensitive body
JP6553089B2 (en) Apparatus for processing melt, system for controlling heat flow in melt, and method for processing melt
JPH07249580A (en) Thin film manufacturing device
US6091889A (en) Rapid thermal processor for heating a substrate
JPS59113174A (en) Method and device for forming thin film
JPS63241921A (en) Substrate heating device for molecular beam epitaxy system
JP3580101B2 (en) Method and apparatus for producing negative electrode material for lithium ion battery
JPH06168899A (en) Heater unit for heating substrate
JPS6299459A (en) Evaporating source for vacuum deposition
JP2948791B2 (en) How to change the liquid storage container
JP2006225699A (en) Evaporation source for organic material and organic vapor deposition system
JPH03177565A (en) Crucible for vaporization source
JPS61149474A (en) Heating method of thin film material in vacuum deposition
JPH0345953Y2 (en)