JPS6376864A - Vapor deposited film forming device - Google Patents

Vapor deposited film forming device

Info

Publication number
JPS6376864A
JPS6376864A JP21904786A JP21904786A JPS6376864A JP S6376864 A JPS6376864 A JP S6376864A JP 21904786 A JP21904786 A JP 21904786A JP 21904786 A JP21904786 A JP 21904786A JP S6376864 A JPS6376864 A JP S6376864A
Authority
JP
Japan
Prior art keywords
vapor deposition
heat insulating
insulating material
crucible
deposition material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21904786A
Other languages
Japanese (ja)
Inventor
Shigeru Semura
滋 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21904786A priority Critical patent/JPS6376864A/en
Publication of JPS6376864A publication Critical patent/JPS6376864A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To provide a titled device which can increase the rate of evaporation per time and is capable of forming vapor-deposited films at a high speed by heating a vapor deposition material put together with a heat insulating material into a crucible by an electron beam so that the vapor-deposited film can be formed on a substrate surface. CONSTITUTION:A filament 8 projects the electron beam 7 toward the crucible 6 when the filament is energized by a power supply 3. The vapor deposition material 2 and the heat insulating material 10 in the crucible 6 are heated by the beam 7 and the temps. thereof are increased while the transfer and reception of the heat between each are executed according to the respective physical values. The heat insulating material 10 is heated to the high temp. earlier than the vapor deposition material 2 while said material absorbs the energy of the beam 7 together with the vapor deposition material, if the heat capacity of; for example, the heat insulating material 10 is smaller than the heat capacity of the vapor deposition material 2. As a result, a temp. gradient is generated between the heat insulating material 10 and the vapor deposition material 2 and the transfer of the heat from the material 10 to the material 2 arises. The material 2 is, therefore, efficiently evaporated by the low energy of the beam 7 and in addition, the growing speed of the vapor deposited film is increased to a remarkably high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は蒸着材を電子ビームで加熱し、基板表面に蒸着
膜を形成する蒸着膜形成装置に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor deposition film forming apparatus for heating a vapor deposition material with an electron beam to form a vapor deposition film on a substrate surface.

〔従来の技術〕[Conventional technology]

半導体装置の製造工程等においては、基板表面に電極材
料等を蒸着形成するために蒸着膜形成装置が用いられる
。かかる蒸着膜形成装置を蒸着材の加熱方法により大別
すると、抵抗加熱法によるものと、高周波加熱法による
ものと、電子ビーム加熱法によるものとがおる。
2. Description of the Related Art In the manufacturing process of semiconductor devices, a deposition film forming apparatus is used to deposit electrode materials and the like on the surface of a substrate. When such vapor deposition film forming apparatuses are roughly classified according to the method of heating the vapor deposition material, there are those that use a resistance heating method, those that use a high frequency heating method, and those that use an electron beam heating method.

抵抗加熱法による蒸着膜形成装置は、例えば第4図の構
成図に示すようになっている。タングステン、タンタル
、モリブデン等の金属でできたヒータ1のボート部には
、アルミニウム等の所望の金属が蒸着材2として載せら
れる。そして、このヒータ1は電源3に接続され、通電
されるようになっている。
An apparatus for forming a deposited film using the resistance heating method is shown in the configuration diagram of FIG. 4, for example. A desired metal such as aluminum is placed as a vapor deposition material 2 on a boat portion of a heater 1 made of metal such as tungsten, tantalum, or molybdenum. This heater 1 is connected to a power source 3 and is energized.

電源3により通電されるとヒータ1はジュール熱にJ、
り発熱し、これによって蒸着材2は8口熱されて温度が
上昇する。蒸着材2の温度が所定値を越えると蒸発が始
まり、これにJ、って図示しない基板の表面に蒸着膜が
形成される。
When energized by the power source 3, the heater 1 generates Joule heat J,
As a result, the vapor deposition material 2 is heated by 8 tubes and its temperature rises. When the temperature of the vapor deposition material 2 exceeds a predetermined value, evaporation begins, and a vapor deposition film J is formed on the surface of a substrate (not shown).

高周波加熱法による蒸着膜形成装置については図示しな
いが、これは蒸着材を高周波電力により加熱するもので
ある。この方法によっても、蒸着材が所定値以上の温度
になると蒸発が始まり、図示しない基板の表面に蒸着膜
が形成される。
Although a vapor deposition film forming apparatus using a high frequency heating method is not shown in the drawings, this device heats the vapor deposition material using high frequency power. Also with this method, when the temperature of the vapor deposition material reaches a predetermined value or higher, evaporation starts, and a vapor deposition film is formed on the surface of the substrate (not shown).

これらに対して電子ビーム加熱法による蒸着膜形成装置
は、例えば第5図の構成図に示すようになっている。冷
却装置として機能する箱体5の上面には凹部が形成され
、この凹部がるつは6をなしている。るつは6には所望
の金属等が蒸着材2として容れられ、従って蒸着材2は
るつぼ6を介して冷却水9により冷却されるようになっ
ている。
On the other hand, an apparatus for forming a deposited film using the electron beam heating method is shown in the configuration diagram of FIG. 5, for example. A recess is formed in the upper surface of the box 5 which functions as a cooling device, and this recess has a shape of 6. A desired metal or the like is placed in the crucible 6 as a vapor deposition material 2, and therefore the vapor deposition material 2 is cooled by cooling water 9 via the crucible 6.

なお、この冷却はるつぼ6の溶融を防ぐとともに、るつ
ぼ6の材料(例えば銅)と蒸着材2の材料(例えばアル
ミニウム)との反応を抑えるためになされる。フィラメ
ント8は電子ビーム7を発生させるためのもので、この
フィラメント8には電源3から電力が供給される。
Note that this cooling is performed to prevent the crucible 6 from melting and to suppress the reaction between the material of the crucible 6 (for example, copper) and the material of the vapor deposition material 2 (for example, aluminum). The filament 8 is used to generate the electron beam 7, and power is supplied to the filament 8 from the power source 3.

電源3からフィラメント8に電力が供給されると電子ビ
ーム7が発生し、この電子ビーム7はるつぼ6に容れら
れた蒸着材2に照射される。すると、蒸着材2は電子ビ
ーム7のエネルギーによって発熱され、温度が上昇する
。蒸着′vJ2の温度が上昇して所定値を越えると蒸発
が始まり、これによって図示しない基板の表面に蒸着膜
が形成される。
When power is supplied from the power source 3 to the filament 8, an electron beam 7 is generated, and the vapor deposition material 2 contained in the crucible 6 is irradiated with the electron beam 7. Then, the vapor deposition material 2 is heated by the energy of the electron beam 7, and its temperature increases. When the temperature of the vapor deposition 'vJ2 rises and exceeds a predetermined value, evaporation begins, thereby forming a vapor deposited film on the surface of a substrate (not shown).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながらこれら従来装置では、以下に示すような種
々の問題がある。
However, these conventional devices have various problems as shown below.

まず、抵抗加熱によるものでは比較的高速の蒸着を行な
えるが、1回当りの蒸着量が少ない。これ(よ、蒸着材
を容れるためのボートの容量が小さいためで、このため
に蒸@膜の膜厚を厚く形成する目的には適しない。また
、高周波加熱によるものでは装置が高価であり、従って
製造される製品(半導体装置等)のロス1〜上昇を招い
てしまう。
First, although resistance heating can perform vapor deposition at a relatively high speed, the amount of vapor deposition per time is small. This is because the capacity of the boat to hold the vapor deposition material is small, and for this reason it is not suitable for the purpose of forming a thick vaporized film.In addition, the equipment using high frequency heating is expensive; Therefore, the loss of manufactured products (semiconductor devices, etc.) increases by 1 to 10%.

これに対して電子ビーム加熱によるものでは、1回当り
の蒸着量を多くすることができ、従って膜厚の比較的薄
い蒸着膜の形成に限らず、膜厚が1μ以上の厚い膜を形
成する場合にも有効に適用することができる。しかしな
がら従来の電子ビーム加熱による蒸着膜形成装置では、
蒸着材がるつぼを介して冷却されているため単位時間当
りに十分な量の蒸発を行うことができず、従って蒸着膜
の形成速度が遅い。また、冷却を上回る発熱を生じさせ
るために電子ビームを高エネルギーにすると、るつぼ内
の蒸着材から飛沫が出てしまう。
On the other hand, with electron beam heating, it is possible to increase the amount of evaporation per cycle, and therefore it is possible to form not only a relatively thin evaporated film but also a thick film with a thickness of 1μ or more. It can also be effectively applied in any case. However, with conventional vapor deposition film forming equipment using electron beam heating,
Since the vapor deposition material is cooled through the crucible, a sufficient amount of vapor cannot be evaporated per unit time, and therefore the formation rate of the vapor deposited film is slow. Furthermore, if the electron beam is made to have high energy to generate heat that exceeds cooling, droplets will come out from the evaporation material in the crucible.

更に、蒸着膜の形成が低速度であると、蒸着に要する時
間は膜の厚さが大きければ大ぎいほど長くなり、その結
果基板の温度が蒸着中に上昇してしまう。基板の温度が
上昇するとそこに形成される蒸着膜には微小な凹凸が現
われ、いわゆる「曇り」が生じて良好な膜を得ることが
できない。
Furthermore, if the deposition film is formed at a low rate, the time required for deposition becomes longer as the thickness of the film increases, resulting in an increase in the temperature of the substrate during deposition. When the temperature of the substrate rises, minute irregularities appear in the vapor deposited film formed on the substrate, causing so-called "cloudiness" and making it impossible to obtain a good film.

そこで本発明は、1回当りの蒸着ωを大きくすることが
でき、かつ蒸着膜の形成を高速に行なうことのできる蒸
着膜形成装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a vapor deposited film forming apparatus that can increase the vapor deposition ω per time and form a vapor deposited film at high speed.

(問題点を解決するための手段) 本発明に係る蒸着膜形成装置は、るつぼに容れた蒸着材
を電子ビームで加熱する装置であって、当該るつぼには
蒸着材に混交して保温材が収容されていることを特徴と
する。
(Means for Solving the Problems) A vapor deposited film forming apparatus according to the present invention is an apparatus that heats a vapor deposition material contained in a crucible with an electron beam, and the crucible includes a heat insulating material mixed with the vapor deposition material. It is characterized by being contained.

(作用〕 本発明に係る蒸着膜形成装置は以上のように構成される
ので、るつぼに容れられた蒸着材とそれに混交した保温
材とは電子ビームによって同時加熱され、それぞれの物
性値に従った熱ωを貯えるとともに、相互間で熱の授受
伝達を行うように働くので、電子ビームのエネルギーを
有効に@着付゛に注入させる作用をなす。
(Function) Since the vapor deposition film forming apparatus according to the present invention is configured as described above, the vapor deposition material contained in the crucible and the heat insulating material mixed therein are simultaneously heated by an electron beam, and are heated according to their respective physical property values. Since it works to store heat ω and to exchange heat between them, it effectively injects the energy of the electron beam into the deposit.

〔実施例〕〔Example〕

以下、添付図面の第1図及び第2図を参照して本発明の
いくつかの実施例を説明する。なお、図面の説明におい
て同一の要素には同一の符丹を付し、重複する説明を省
略する。
Hereinafter, some embodiments of the present invention will be described with reference to FIGS. 1 and 2 of the accompanying drawings. In addition, in the description of the drawings, the same elements are given the same reference numerals and redundant description will be omitted.

第1図は本発明に係る蒸着膜形成装置の構成図でおる。FIG. 1 is a block diagram of a vapor deposition film forming apparatus according to the present invention.

そしてこれが第5図の従来装置と異なる点は、断面凹状
のるつぼ6には蒸着材2に混交して保温材10が収容さ
れていることである。るつぼ6の材料としては例えば銅
が用いられ、保温材10の材料としては例えば窒化ホウ
素などの高沸点の無機化合物、炭素などの高沸点無機材
料が用いられる。
This is different from the conventional apparatus shown in FIG. 5 in that a heat insulating material 10 is housed in a crucible 6 having a concave cross section and mixed with the vapor deposition material 2. As the material for the crucible 6, for example, copper is used, and as the material for the heat insulating material 10, for example, a high boiling point inorganic compound such as boron nitride or a high boiling point inorganic material such as carbon is used.

次に、上記実施例の装置の作用を説明する。Next, the operation of the apparatus of the above embodiment will be explained.

フィラメント8に対して電源3から通電がなされると、
フィラメント8は電子ビーム7をるつぼ6に向けて照射
する。ここで、るつぼ6には蒸着材2と混交して保温材
10が収容されているので、蒸着材2と保温材10とは
電子ビーム7により加熱され、それぞれの物性値(例え
ば比熱値、熱伝導率値等。)に応じてそれぞれ相互に熱
の伝達授受を行いながら温度上昇する。
When the filament 8 is energized from the power source 3,
Filament 8 directs electron beam 7 toward crucible 6 . Here, since the heat insulating material 10 is housed in the crucible 6 mixed with the vapor deposition material 2, the vapor deposition material 2 and the heat insulating material 10 are heated by the electron beam 7, and their respective physical properties (for example, specific heat value, heat (conductivity value, etc.), the temperature rises while transferring heat to and from each other.

このとき、例えば保温材10の熱容量が蒸着材2の熱容
量より小さい場合には、保温材10は蒸着材2とともに
電子ビーム7のエネルギーを吸収しながら、蒸着材2よ
り早く高温に加熱される。
At this time, for example, if the heat capacity of the heat insulating material 10 is smaller than that of the vapor deposition material 2, the heat insulating material 10 absorbs the energy of the electron beam 7 together with the vapor deposition material 2, and is heated to a high temperature faster than the vapor deposition material 2.

その結果、保温材10と蒸着材2との間には温度勾配が
生じ、保温材10から蒸着材2へ熱の伝達が生じること
となる。即ち上記の場合には、保温II 10が有効な
熱のコレクターとして作用することになる。
As a result, a temperature gradient occurs between the heat insulating material 10 and the vapor deposition material 2, and heat is transferred from the heat insulating material 10 to the vapor deposition material 2. That is, in the above case, the insulation II 10 acts as an effective heat collector.

次に、例えば保温材10の熱伝導率値が蒸着材2の熱伝
導率値より大きい場合には、保温材10は蒸着材2とと
もに電子ビーム7のエネルギーを吸収して温度上昇する
と共に、るつぼ6内で部分的に強弱がついて照射される
電子ビーム7のエネルギーを熱伝導率の形で平坦させる
こととなる。
Next, for example, if the thermal conductivity value of the heat insulating material 10 is larger than that of the vapor deposition material 2, the heat insulating material 10 absorbs the energy of the electron beam 7 together with the vapor deposition material 2, and the temperature rises, and the crucible is heated. The energy of the electron beam 7 that is irradiated with a partial intensity variation within the electron beam 6 is flattened in the form of thermal conductivity.

即ち上記の場合には、保温材10は電子ビーム7のエネ
ルギーを蒸着材2に周ねく分散させて注入させ、加熱を
均等化させる作用をすることになる。
That is, in the above case, the heat insulating material 10 has the effect of dispersing the energy of the electron beam 7 all around the vapor deposition material 2 and injecting it into the vapor deposition material 2, thereby making the heating uniform.

なお、保温材10の材料は蒸着材2の沸点よりも高い沸
点をもつ材料に選定できるので、蒸着材2を加熱してそ
の蒸着膜を形成する際に保温材10による汚染を生じる
ことはない・ また、上記実施例の作用の説明では、2つの異なる作用
を別個なものとして、それぞれが単独に作用する如くに
して説明したが、実際には複合的に作用する場合が多い
。これらの複合の度合いは、蒸着材2と保温材10との
それぞれの物性値の差異を適宜設定することにより、目
的にそったものにすることが可能でおる。
Note that since the material of the heat insulating material 10 can be selected to have a boiling point higher than that of the vapor deposition material 2, contamination by the heat insulating material 10 will not occur when the vapor deposition material 2 is heated to form a vapor deposited film thereof. -Also, in the explanation of the effects of the above embodiments, two different effects were described as being independent, but in reality they often act in combination. The degree of these combinations can be adjusted to suit the purpose by appropriately setting the difference in physical property values between the vapor deposition material 2 and the heat insulating material 10.

その結果、低い電子ビームのエネルギーで効率よく蒸着
材2を蒸発させることができるだけでなく、蒸着膜の成
長速度を飛躍的に高めることができる。また、電子ビー
ムのエネルギーは保温材10によって分散されて蒸着材
2に注入されるので、電子ビームの加熱電力を高電力化
した場合にも、従来技術の如く蒸着材2の飛散を生じる
ようなことがない。また、高速蒸着による短時間の膜形
成によって電子ビームによる蒸着時の基板温度の上昇を
押えることが可能となるので、基板にいわゆる「曇り」
を生じることがない。
As a result, not only can the deposition material 2 be efficiently evaporated with low energy of the electron beam, but also the growth rate of the deposited film can be dramatically increased. Furthermore, since the energy of the electron beam is dispersed by the heat insulating material 10 and injected into the evaporation material 2, even if the heating power of the electron beam is increased, the evaporation material 2 will not be scattered as in the prior art. Never. In addition, by forming a film in a short time using high-speed evaporation, it is possible to suppress the rise in substrate temperature during evaporation using an electron beam, so that the substrate does not become cloudy.
will not occur.

同時に、るつぼ6には保温材10に混交して比較的多用
の蒸着材2を容れることができるので、1回当りの蒸着
量を多くすることができ、従って蒸着膜の形成において
膜の厚いものを高速に得ることができる。
At the same time, since the crucible 6 can contain a relatively large amount of vapor deposition material 2 mixed with the heat insulating material 10, it is possible to increase the amount of vapor deposition per one time, and therefore, it is possible to increase the amount of vapor deposition per time. can be obtained quickly.

第2図は本発明に係る保温材10のいくつかの例を示す
ためのもので、るつぼ6の一部を切り欠いた斜視図でお
る。同図(a>に示す例では、保温材10aは形状が球
形となっている。保温(A10aを球形としたことによ
り、保温1410 aの体積当りの比表面積は最小とな
る。このため、るつぼ6の凹部内で蒸着材2が溶融して
保温材10aが浮んだ場合にも、液面に占める保温材1
0aの面積を最小にすることができる。その結果、液面
での蒸着材2が占める面積を大きくとれるので液面から
の蒸着材2の有効蒸発面積を大きくでき、従って大きな
膜成長速度を1昇ることができる。また、保温材10a
を球形とすることにより、保温材10aがるつぼ6の内
壁に接触する面積を小ざくすることができ、林って保温
材10aからるつぼ6に逃げる熱損失を小さくすること
ができる。更に、保温材10aは曲面で覆われているの
で、るつぼ6内で蒸着材2の流動を妨げないなどの格別
の効果を有する。
FIG. 2 is a perspective view with a part of the crucible 6 cut away to show some examples of the heat insulating material 10 according to the present invention. In the example shown in FIG. Even when the vapor deposition material 2 melts and the heat insulating material 10a floats in the recessed part 6, the heat insulating material 1 occupies the liquid surface.
The area of 0a can be minimized. As a result, since the area occupied by the vapor deposition material 2 on the liquid surface can be increased, the effective evaporation area of the vapor deposition material 2 from the liquid surface can be increased, and therefore the film growth rate can be increased by one. In addition, the heat insulating material 10a
By making it spherical, the area in which the heat insulating material 10a contacts the inner wall of the crucible 6 can be made small, and the heat loss escaping from the heat insulating material 10a to the crucible 6 can be reduced. Furthermore, since the heat insulating material 10a is covered with a curved surface, it has special effects such as not interfering with the flow of the vapor deposition material 2 within the crucible 6.

第2図(b)に示す例では、保温材10bは形状が六面
体形状になっている。従って製造が容易であり、るつぼ
6内に保温材10bを配設する場合の位置を安定して設
定することができる。なお、保温材10bのるつぼ6の
内壁に当接する而を、るつぼ6の曲率に合わゼて円弧状
とすることもできる。
In the example shown in FIG. 2(b), the heat insulating material 10b has a hexahedral shape. Therefore, manufacturing is easy, and the position of the heat insulating material 10b in the crucible 6 can be stably set. Note that the portion of the heat insulating material 10b that contacts the inner wall of the crucible 6 may be shaped into an arc to match the curvature of the crucible 6.

なお、第2図(a)、(b)の例では保温材10aは一
個だけとして示されているが、複数個の保温材10aを
るつぼ6に容れることもできる。
Although only one heat insulating material 10a is shown in the examples of FIGS. 2(a) and 2(b), a plurality of heat insulating materials 10a may be placed in the crucible 6.

また、保温材10の形状は第2図のものに限られず、例
えば四面体状やペレット状にするなどしてもよい。更に
、保温材10a、’Jobの材料は窒化ホウ素に限られ
ず、酸化アルミニウム、窒化ケイ素、炭化ケイ素などの
高沸点無機化合物、あるいは、炭素、タングステン、タ
ンタル、モリブデン、白金などの高沸点無機材料を用い
ることができる。
Further, the shape of the heat insulating material 10 is not limited to that shown in FIG. 2, and may be, for example, tetrahedral or pellet-shaped. Further, the material of the heat insulating material 10a, 'Job is not limited to boron nitride, but may also be a high boiling point inorganic compound such as aluminum oxide, silicon nitride, silicon carbide, or a high boiling point inorganic material such as carbon, tungsten, tantalum, molybdenum, or platinum. Can be used.

また、図には示されていないが、るつぼ6の凹部に保温
部材を内股し、この保温部材の内面を凹部となし、該保
温部材の内面凹部に蒸着材2に混交した保温材10を収
容することもできる。これによると、蒸着材2と保温材
10とは直接にるつぼ6に接触しないので、るつぼ6の
水冷却による熱損失が少なくなり、従って電子ビームに
よる蒸着材2と保温材10との加熱を効果的に行うこと
ができる。
Although not shown in the figure, a heat insulating member is placed inside the recess of the crucible 6, the inner surface of the heat insulating member is formed into a recess, and the heat insulating material 10 mixed with the vapor deposition material 2 is housed in the inner recess of the heat insulating member. You can also. According to this, since the vapor deposition material 2 and the heat insulating material 10 do not directly contact the crucible 6, heat loss due to water cooling of the crucible 6 is reduced, and therefore heating of the vapor deposition material 2 and the heat insulating material 10 by the electron beam is effective. This can be done in a specific manner.

本発明者は以上説明した本発明の効果を確認するため、
下記の実験を行なった。まず、窒化ホウ素を用いて第2
図(a)に示す形状の保温材を製作した。ここで、保温
材の直径は5#とじ、るつぼは内径を25m、深さを1
0mとした。蒸着材としてはアルミニウムを用い、径が
数層の粒状アルミニウムを1CCだけ保温材とともにる
つぼに容れた。そして、3KWの電力で電子ビームを照
射し、20cm離れた位置のシリコン基板にアルミニウ
ムを蒸着した。
In order to confirm the effects of the present invention explained above, the present inventors
The following experiment was conducted. First, use boron nitride to
A heat insulating material having the shape shown in Figure (a) was manufactured. Here, the diameter of the insulation material is 5mm, the inner diameter of the crucible is 25m, and the depth is 1mm.
It was set to 0m. Aluminum was used as the vapor deposition material, and 1 CC of granular aluminum with several layers in diameter was placed in a crucible together with a heat insulating material. Then, an electron beam was irradiated with a power of 3 KW, and aluminum was vapor-deposited on the silicon substrate at a distance of 20 cm.

その結果、シリコン基板の表面には3μTrL/分の速
度で膜厚10μmのアルミニウム膜を形成することがで
きた。
As a result, an aluminum film with a thickness of 10 μm could be formed on the surface of the silicon substrate at a rate of 3 μTrL/min.

さらに本発明者は、第4図に示す従来の抵抗加熱法によ
る蒸着膜形成装置と、第5図に示す保温材を用いない従
来の電子ビーム加熱法による蒸着膜形成装置とについて
アルミニ1クム膜の形成実験を行ない、本発明に係る保
温材を用いた蒸着膜形成装置によって得られた結果との
比較を行なった。
Furthermore, the present inventor has developed an aluminum 1 cum film forming apparatus using a conventional resistance heating method shown in FIG. 4 and a conventional electron beam heating method using no heat insulating material shown in FIG. A formation experiment was conducted and the results were compared with those obtained by a vapor deposition film forming apparatus using the heat insulating material according to the present invention.

上記比較結果の例を第3図に示す。同図から明らかなよ
うに、本発明の如くに保温材を蒸着材に混交して用いる
ようにすれば、1回当りの蒸1を多くしながら蒸着速度
を大きくすることができる。なお、従来技術によって保
温材を用いずに電子ビーム加熱法で形成した膜は、@肴
膜面に曇りが現れている。これは長時間の蒸着によって
基板が200’C〜250’Cに加熱されてしまい、そ
の為にアルミニウム膜の1部が結晶化したものと考えら
れる。本発明によって形成した膜は、膜の成長速度が格
段に早いので短時間の蒸着によって厚い膜が得られる。
An example of the above comparison results is shown in FIG. As is clear from the figure, by mixing the heat insulating material with the vapor deposition material as in the present invention, it is possible to increase the vapor deposition rate while increasing the amount of vapor 1 per vapor deposition. In addition, in the film formed by the electron beam heating method without using a heat insulating material according to the conventional technology, cloudiness appears on the surface of the film. This is considered to be because the substrate was heated to 200'C to 250'C during the long-time vapor deposition, which caused part of the aluminum film to crystallize. Since the film formed according to the present invention has a much faster growth rate, a thick film can be obtained by vapor deposition in a short time.

その結果、基板がるつぼから受ける輻射熱も激減し、ア
ルミニウム膜の結晶化が生じないので曇りのない優れた
蒸着材を形成することができる。
As a result, the radiant heat that the substrate receives from the crucible is drastically reduced, and the aluminum film does not crystallize, making it possible to form an excellent vapor deposition material without clouding.

(発明の効果〕 以上、詳細に説明したように本発明によれば、るつぼに
は蒸着材に混交して保湿材を収容するようにしたので、
るつぼの中に容れた比較的多量の蒸@材を蒸発させるこ
とができ、従って1回当りの蒸発mを多くすることがで
きる。また、保温材を介して電子ビームのエネルギーが
有効に蒸着材に注入されるので、高速に蒸着を行うこと
ができるという効果がある。
(Effects of the Invention) As described in detail above, according to the present invention, since the crucible contains the moisturizing material mixed with the vapor deposition material,
It is possible to evaporate a relatively large amount of evaporated material contained in the crucible, and therefore the amount of evaporation m per time can be increased. Furthermore, since the energy of the electron beam is effectively injected into the vapor deposition material through the heat insulating material, there is an effect that vapor deposition can be performed at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る蒸着膜形成装置の構成
図、第2図は本発明装置に用いられる保温材のいくつか
の例の斜視断面図、第3図は従来装装置および本発明装
置による実験結果を示す図、第4図は抵抗加熱法による
従来装置の構成図、第5図は電子ビーム加熱法による従
来装置の構成図である。 1・・・ヒータ、2・・・蒸着材、3・・・電源、6・
・・るつぼ、7・・・電子ビーム、8・・・フィラメン
ト、10、108.10b−・・保温材。 特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  刷本発明装置の構
成図 第  l  図 (a) (b)10b 本発明に係る保温部材の斜視図 側2図 第3図
FIG. 1 is a block diagram of a vapor deposition film forming apparatus according to an embodiment of the present invention, FIG. 2 is a perspective sectional view of several examples of heat insulating materials used in the apparatus of the present invention, and FIG. 3 is a diagram of a conventional apparatus and FIG. 4 is a diagram showing the experimental results using the apparatus of the present invention, FIG. 4 is a configuration diagram of a conventional apparatus using a resistance heating method, and FIG. 5 is a configuration diagram of a conventional apparatus using an electron beam heating method. 1... Heater, 2... Vapor deposition material, 3... Power supply, 6...
... Crucible, 7... Electron beam, 8... Filament, 10, 108.10b-... Heat insulating material. Patent Applicant Sumitomo Electric Industries Co., Ltd. Patent Attorney Yoshi Hase Printing Configuration diagram of the device of the present invention Figure 1 (a) (b) 10b Perspective view side 2 Figure 3 of the heat insulating member according to the present invention

Claims (1)

【特許請求の範囲】 1、るつぼに容れた蒸着材を電子ビームで加熱し、基板
表面に蒸着膜を形成する蒸着膜形成装置において、 前記るつぼには前記蒸着材に混交して保温材が収容され
ていることを特徴とする蒸着膜形成装置。 2、前記保温材の沸点が、前記蒸着材の沸点よりも高温
度である特許請求の範囲第1項記載の蒸着膜形成装置。 3、前記保温材の熱容量が、混交する前記蒸着材の熱容
量よりも小である特許請求の範囲第1項記載の蒸着膜形
成装置。 4、前記保温材は、炭素、タングステン、タンタル、モ
リブデン、白金などの高沸点無機材料、又は窒化ホウ素
、酸化アルミニウム、窒化ケイ素、炭化ケイ素などの高
沸点無機化合物からなる特許請求の範囲第1項記載の蒸
着膜形成装置。
[Claims] 1. In a vapor deposition film forming apparatus that heats a vapor deposition material contained in a crucible with an electron beam to form a vapor deposition film on a substrate surface, the crucible contains a heat insulating material mixed with the vapor deposition material. A vapor deposition film forming apparatus characterized in that: 2. The vapor deposited film forming apparatus according to claim 1, wherein the boiling point of the heat insulating material is higher than the boiling point of the vapor deposition material. 3. The vapor deposited film forming apparatus according to claim 1, wherein the heat capacity of the heat insulating material is smaller than the heat capacity of the mixed vapor deposition material. 4. The heat insulating material is made of a high boiling point inorganic material such as carbon, tungsten, tantalum, molybdenum, platinum, or a high boiling point inorganic compound such as boron nitride, aluminum oxide, silicon nitride, silicon carbide, etc. The vapor deposition film forming apparatus described above.
JP21904786A 1986-09-17 1986-09-17 Vapor deposited film forming device Pending JPS6376864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21904786A JPS6376864A (en) 1986-09-17 1986-09-17 Vapor deposited film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21904786A JPS6376864A (en) 1986-09-17 1986-09-17 Vapor deposited film forming device

Publications (1)

Publication Number Publication Date
JPS6376864A true JPS6376864A (en) 1988-04-07

Family

ID=16729425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21904786A Pending JPS6376864A (en) 1986-09-17 1986-09-17 Vapor deposited film forming device

Country Status (1)

Country Link
JP (1) JPS6376864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656091A (en) * 1995-11-02 1997-08-12 Vacuum Plating Technology Corporation Electric arc vapor deposition apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656091A (en) * 1995-11-02 1997-08-12 Vacuum Plating Technology Corporation Electric arc vapor deposition apparatus and method

Similar Documents

Publication Publication Date Title
US3627590A (en) Method for heat treatment of workpieces
CN1924079B (en) Linear type deposition source
KR20040074989A (en) Vaporizer/delivery vessel for volatile/thermally sensitive solid and liquid compounds
US5311931A (en) Mist supercooling of a heated surface
KR100346861B1 (en) Ceramic Cooler
JPH09235665A (en) Evaporator boat for substrate coating device
US3405251A (en) Vacuum evaporation source
JPS6376864A (en) Vapor deposited film forming device
KR100315982B1 (en) Side instantaneous evaporator
JPH01225769A (en) Vapor deposition source for thin vapor-deposited organic compound film
US7025893B2 (en) Structure and method to compensate for thermal edge loss in thin film heaters
JPS6369967A (en) Deposited film forming device
WO2017114367A1 (en) Heater device for heating crucible, operation method therefor and crucible for containing and heating material to be evaporated or sublimated
KR20220053650A (en) Multi-zone crucible device
JP6553089B2 (en) Apparatus for processing melt, system for controlling heat flow in melt, and method for processing melt
TW202042275A (en) Substrate mounting table capable of improving temperature control precision and plasma treatment equipment
US20040014314A1 (en) Evaporative deposition with enhanced film uniformity and stoichiometry
Cline Silicon thin films formed on an insulator by recrystallization
JP2022546072A (en) deposition system
JP2631121B2 (en) Laser melting recrystallization method of semiconductor thin film
GB2124742A (en) Promoting nucleate boiling in heat exchangers
JPS6299459A (en) Evaporating source for vacuum deposition
JPH097948A (en) Generating method for molecular beam and molecular beam cell
TW202104075A (en) System and apparatus for enhanced substrate heating and rapid substrate cooling
JP2004083993A (en) Metal vapor deposition system