JPH097948A - Generating method for molecular beam and molecular beam cell - Google Patents

Generating method for molecular beam and molecular beam cell

Info

Publication number
JPH097948A
JPH097948A JP15483195A JP15483195A JPH097948A JP H097948 A JPH097948 A JP H097948A JP 15483195 A JP15483195 A JP 15483195A JP 15483195 A JP15483195 A JP 15483195A JP H097948 A JPH097948 A JP H097948A
Authority
JP
Japan
Prior art keywords
crucible
molecular beam
heating
temperature distribution
evaporation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15483195A
Other languages
Japanese (ja)
Inventor
Hidehiro Ogata
英洋 小片
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP15483195A priority Critical patent/JPH097948A/en
Publication of JPH097948A publication Critical patent/JPH097948A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE: To provide a method for generating a molecular beam capable of solving the problem of a droplet and obtaining a stable evaporation rate. CONSTITUTION: In a molecular beam cell having a crucible 11 to be filled with an evaporation source material and heating means 41 for heating the material, the means 41 comprises a first heater 41a, provided at least at the sidewall of the part of the bottom side of the crucible 11, and a second heater 41b provided at the sidewall of the part of the opening side of the crucible 11. The part of the bottom side of the crucible is heated under such a heating condition that a first temperature distribution develops, and a molecular beam is generated while heating the part of the opening side of the crucible under such a heating condition that a second temperature distribution develops.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はMBE(分子線エピタ
キシ)装置等における分子線の生成方法およびその実施
に好適な分子線セルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a molecular beam in an MBE (molecular beam epitaxy) apparatus and the like, and a molecular beam cell suitable for carrying out the method.

【0002】[0002]

【従来の技術】MBE装置において分子線を生成する場
合分子線セルが用いられる。従来の典型的な分子線セル
は以下に図3を参照して説明するようなものであった。
ただしこの図3では、従来の分子線セル10と、これに
より薄膜が形成される試料側部分30とを併せて示して
ある。この従来の分子線セル10は、ルツボ11と、こ
のルツボ11の側壁全周および底面に設けられたヒータ
13と、このヒータ13の熱が外部に逃げるのを防止す
るための断熱材15と、ルツボ11の温度を検出するた
めの熱電対17と、これらルツボ11、ヒータ13、断
熱材15および熱電対17を支持する支持体19と、ル
ツボ11の開口部11aに対し着脱されるシャッタ21
とを具えたものであった。ルツボ11は蒸着材料と反応
せずかつ高融点の材料例えばPBN(熱分解窒化ホウ
素)で構成される。ヒータ13はルツボ11を千数百度
程度の温度まで加熱することが出来る発熱体例えばタン
グステンで構成される。このヒータ13は典型的にはワ
イヤー状のものが使用される。その場合はワイヤー状の
ヒータ同士が接触することがないよう絶縁物による適当
な処理がなされる。断熱材15は通常は板状の高融点金
属をヒータの周囲に何層にも巻くことで構成される。
2. Description of the Related Art A molecular beam cell is used to generate a molecular beam in an MBE apparatus. A typical conventional molecular beam cell was as described below with reference to FIG.
However, in FIG. 3, the conventional molecular beam cell 10 and the sample side portion 30 on which a thin film is formed are shown together. This conventional molecular beam cell 10 includes a crucible 11, a heater 13 provided on the entire circumference and bottom surface of a side wall of the crucible 11, a heat insulating material 15 for preventing heat of the heater 13 from escaping to the outside, A thermocouple 17 for detecting the temperature of the crucible 11, a support 19 for supporting the crucible 11, the heater 13, the heat insulating material 15 and the thermocouple 17, and a shutter 21 attached to and detached from the opening 11 a of the crucible 11.
It was equipped with. The crucible 11 is made of a material that does not react with the vapor deposition material and has a high melting point, such as PBN (pyrolytic boron nitride). The heater 13 is composed of a heating element such as tungsten that can heat the crucible 11 to a temperature of about one thousand and several hundred degrees. The heater 13 typically has a wire shape. In that case, appropriate treatment with an insulator is performed so that the wire-shaped heaters do not come into contact with each other. The heat insulating material 15 is usually formed by winding a plate-shaped high melting point metal around the heater in multiple layers.

【0003】高真空にされた成膜室(図示せず)内で、
ルツボ11をヒータ13により加熱する。ルツボ11内
に入れられている蒸発源材料(例えばGa)23はこの
加熱により蒸発するので蒸発源材料に対応する分子線が
生成される。この分子線は試料側部分30における基板
30aに至るので、この基板30a上に蒸発源材料23
に対応する薄膜が形成される。
In a high-vacuum deposition chamber (not shown),
The crucible 11 is heated by the heater 13. Since the evaporation source material (for example, Ga) 23 contained in the crucible 11 is evaporated by this heating, a molecular beam corresponding to the evaporation source material is generated. Since this molecular beam reaches the substrate 30a in the sample side portion 30, the evaporation source material 23 is formed on the substrate 30a.
A thin film corresponding to is formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
分子線の生成方法および分子線セルでは、ルツボ11を
その側壁および底面に一様に設けられたヒーター13に
よって加熱していたためルツボ11の開口部11aに近
い部分の温度は開口部における放熱の影響で他の部分よ
り低くなってしまう。このため、ルツボ11の内壁のう
ちの開口部11aに近い部分に蒸発源材料の粒25(こ
れはドロップレットと称される。)が多数付着する現象
が生じる。そして、ドロップレットの一部は塊のまま
(分子線状態ではない状態で)基板に飛んで行くので、
形成する薄膜に欠陥を発生させる原因になるという問題
があった。
However, in the conventional method for producing a molecular beam and the conventional molecular beam cell, since the crucible 11 is heated by the heaters 13 uniformly provided on the side wall and the bottom surface of the crucible 11, the opening portion of the crucible 11 is heated. The temperature of the portion close to 11a becomes lower than the other portions due to the effect of heat radiation in the opening. For this reason, a phenomenon occurs in which a large number of evaporation source material particles 25 (which are referred to as droplets) adhere to the portion of the inner wall of the crucible 11 near the opening 11a. Then, some of the droplets fly to the substrate as lumps (not in the molecular beam state),
There is a problem that it causes defects in the thin film to be formed.

【0005】これを防止するためこの出願に係る発明者
は、図4に示した様に、ルツボ11の開口部11a側の
部分(ルツボ11の上部部分)の側壁周囲のみにヒータ
13を設けたドロップレット対策の分子線セル10aを
作製し実験を試みた。この分子線セル10aによれば、
ドロップレットの発生を防止出来たが、以下の様な新た
な問題が生じた。すなわち、ルツボ11の開口部11a
側の部分(ルツボ11の上部部分)の側壁周囲のみにヒ
ータ13を設けた分子線セル10aの場合は、ルツボ1
1の上部と下部との温度勾配が大きくなるので、(a)
成膜が進んで蒸発源材料23の液面23aが低下するに
従い単位時間当たりの蒸発量が低下するという問題およ
び、(b)これを防止するためにヒータ13に投入する
パワーを変化させようとした場合の制御が難しいという
問題が生じる。これについて、模式的なモデルである図
5を参照していま少し詳細に説明する。ここで、図5は
図4に示した分子線セル10aにおけるルツボ11の開
口部と底面とを結ぶ線上での温度分布を、模式的に示し
た図である。
In order to prevent this, the inventor of the present application, as shown in FIG. 4, provided the heater 13 only around the side wall of the opening 11a side of the crucible 11 (the upper part of the crucible 11). A molecular beam cell 10a against droplets was produced and an experiment was tried. According to this molecular beam cell 10a,
I was able to prevent the generation of droplets, but the following new problems arose. That is, the opening 11a of the crucible 11
In the case of the molecular beam cell 10a in which the heater 13 is provided only around the side wall of the side portion (the upper portion of the crucible 11), the crucible 1
Since the temperature gradient between the upper part and the lower part of 1 becomes large, (a)
As the film formation progresses and the liquid level 23a of the evaporation source material 23 decreases, the evaporation amount per unit time decreases, and (b) to prevent this, the power supplied to the heater 13 is changed. When it does, the problem that control is difficult arises. This will now be described in some detail with reference to the schematic model of FIG. Here, FIG. 5 is a diagram schematically showing the temperature distribution on the line connecting the opening and the bottom of the crucible 11 in the molecular beam cell 10a shown in FIG.

【0006】ルツボ11の開口部11a側の部分(ルツ
ボ11の上部部分)の側壁周囲のみにヒータ13を設け
た分子線セル10aの場合は、当然に、ルツボ11の上
部部分の方が温度が高く、そしてヒータ13が無くなる
辺たり(図5中のP点辺たり)からルツボの底面に向か
う間は温度は低下するのみとなる。このため、蒸発源材
料の液面が上記P点より上であった状態からP点を通過
しルツボの底部側となった場合は蒸発量は減少する。従
って、蒸発源材料を多量に用いかつ成膜を長時間行なう
程、上記(a)、(b)の問題は生じやすいのである。
In the case of the molecular beam cell 10a in which the heater 13 is provided only around the side wall of the opening 11a side of the crucible 11 (upper part of the crucible 11), the upper part of the crucible 11 naturally has a higher temperature. The temperature is only high when the temperature is high, and while the heater 13 is not present (at the point P in FIG. 5) toward the bottom surface of the crucible, the temperature only decreases. For this reason, when the liquid level of the evaporation source material passes from point P above the point P to the bottom side of the crucible, the amount of evaporation decreases. Therefore, the problems (a) and (b) above tend to occur as the evaporation source material is used in a large amount and the film formation is performed for a long time.

【0007】ドロップレットの問題を解決出来かつ安定
な蒸着レートを確保出来る分子線の生成方法および分子
線セルが望まれる。
There is a demand for a molecular beam generation method and a molecular beam cell which can solve the problem of droplets and can secure a stable vapor deposition rate.

【0008】[0008]

【課題を解決するための手段】そこで、この出願の第一
発明によれば、蒸発源材料が入れられたルツボを加熱手
段により加熱して前記蒸発源材料に対応する分子線を生
成するに当たり、ルツボの底部側の部分を第1の温度分
布となるような加熱条件で加熱し、かつ、該ルツボの開
口部側の部分を第2の温度分布となるような加熱条件で
加熱しながら分子線を生成することを特徴とする。
Therefore, according to the first invention of this application, in heating the crucible containing the evaporation source material by the heating means to generate the molecular beam corresponding to the evaporation source material, The molecular beam is heated while heating the portion on the bottom side of the crucible under the heating condition that provides the first temperature distribution, and the portion on the opening side of the crucible under the heating condition that provides the second temperature distribution. Is generated.

【0009】ここで、前記第1の温度分布を蒸発源材料
の単位時間あたりの蒸発量を所定量とし得る分布とし、
前記第2の温度分布をドロップレットの発生を防止し得
る分布とするのが好適である。このような第1および第
2の温度分布のそれぞれの具体的なプロファイルは、ル
ツボの形状および大きさ、蒸発源材料の種類などを考慮
して例えば実験的に決めるのが良い(第二発明において
同じ。)。これに限られないが、加熱条件は、ルツボの
開口部側の部分での温度分布すなわち第2の温度分布の
方がルツボの底部側の温度分布すなわち第1の温度分布
に比べ高い温度を示す分布となるように設定する(第二
発明において同じ。)。また、蒸発源材料の使用量は蒸
発源材料の液面が第1の温度分布内に位置する様な量と
するのが好ましいと考える(第二発明において同
じ。)。
Here, the first temperature distribution is a distribution in which the evaporation amount of the evaporation source material per unit time can be a predetermined amount,
It is preferable that the second temperature distribution is a distribution that can prevent the generation of droplets. The respective specific profiles of the first and second temperature distributions may be determined, for example, experimentally in consideration of the shape and size of the crucible, the type of evaporation source material, etc. (in the second invention. the same.). Although not limited to this, as for the heating condition, the temperature distribution on the opening side of the crucible, that is, the second temperature distribution, is higher than the temperature distribution on the bottom side of the crucible, that is, the first temperature distribution. The distribution is set (same in the second invention). Further, it is considered that the amount of the evaporation source material used is preferably such that the liquid surface of the evaporation source material is located within the first temperature distribution (the same applies to the second invention).

【0010】また、この出願の第二発明によれば、蒸発
源材料を入れるルツボとこれを加熱する加熱手段とを具
える分子線セルにおいて、前記加熱手段を、ルツボの底
部側の部分の少なくとも側壁に設けられ第1の温度分布
を形成するための第1の加熱部と、該ルツボの開口部側
の部分の側壁に設けられ第2の温度分布を形成するため
の第2の加熱部とを含むものとしたことを特徴とする。
なお、この第二発明においてルツボの底部側の部分の少
なくとも側壁にの「少なくとも」の意味は、ルツボの底
面に第2の加熱部を延長して設ける場合と、設けない場
合の何れをもこの発明は含む意味である。
Further, according to the second invention of this application, in a molecular beam cell comprising a crucible for containing an evaporation source material and a heating means for heating the crucible, the heating means is provided at least on a bottom side portion of the crucible. A first heating part provided on the side wall for forming a first temperature distribution; and a second heating part provided on the side wall on the opening side of the crucible for forming a second temperature distribution. It is characterized by including.
In addition, in this second invention, the meaning of "at least" at least on the side wall of the bottom side portion of the crucible is whether the second heating portion is provided on the bottom surface of the crucible as an extension or not. Invention is meant to include.

【0011】また、この第二発明の実施に当たり、前記
ルツボの側壁のうちの、前記第1の加熱部と前記第2の
加熱部との境界に当たる部分に、両加熱部で発せられる
熱の輻射による相互干渉を抑制するための熱遮蔽部を具
えるのが好適である。
Further, in carrying out the second aspect of the invention, radiation of heat emitted from both heating portions is applied to a portion of the side wall of the crucible which is a boundary between the first heating portion and the second heating portion. It is preferable to provide a heat shield for suppressing mutual interference due to.

【0012】[0012]

【作用】第一発明の構成によれば、ルツボの底部側の部
分と開口部側の部分とを積極的にそれぞれの目的にあう
温度分布となるように加熱しながら分子線の生成がなさ
れる。図5の構成の場合では、ルツボの底部側の部分は
従属的に加熱されるのみで積極的な加熱ではなかった点
と比べると、本発明と図5を用いた技術とは相違する。
According to the structure of the first aspect of the present invention, the molecular beam is generated while actively heating the bottom side portion and the opening side portion of the crucible so that the temperature distributions meet the respective purposes. . In the case of the configuration of FIG. 5, the present invention and the technique using FIG. 5 are different from the point that the bottom side portion of the crucible is heated only subordinately and is not actively heated.

【0013】また、第二発明の構成によれば、所定の第
1の加熱部および第2の加熱部を具えたので、ルツボの
底部側の部分と開口部側の部分とを積極的にそれぞれの
目的にあう温度分布となるように加熱することを、容易
に行なえる。
Further, according to the structure of the second invention, since the predetermined first heating portion and the predetermined second heating portion are provided, the bottom side portion and the opening side portion of the crucible are positively provided respectively. The heating can be easily performed so that the temperature distribution has a purpose.

【0014】また、第二発明であって熱遮蔽部を具える
構成では、第1の加熱部および第2の加熱部の独立性が
より高まるので、目的に一層即した第1の温度分布およ
び第2の温度分布が形成出来る。
In the second aspect of the present invention, which is provided with the heat shield, the independence of the first heating section and the second heating section is further increased. A second temperature distribution can be formed.

【0015】[0015]

【実施例】以下、図面を参照してこの出願の各発明の実
施例について併せて説明する。ただし、説明に用いる各
図はこの発明を理解出来る程度に各構成成分の寸法、形
状および配置関係を概略的に示してある。また、説明に
用いる各図において同様な構成成分および従来と同様な
構成成分についてはそれぞれ同一の番号および図3,図
4で用いた番号と同一の番号を付して示してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the inventions of this application will be described below with reference to the drawings. However, the drawings used for the description schematically show the dimensions, shapes, and arrangement relationships of the respective constituents to the extent that the present invention can be understood. Further, in each of the drawings used for description, the same constituents and the same constituents as those in the related art are denoted by the same reference numerals and the same reference numerals as those used in FIGS. 3 and 4.

【0016】図1は、第一発明および第二発明の説明図
である、特に第二発明の実施例の分子線セル40をその
一部を切り欠いて示した側面図である。
FIG. 1 is an explanatory view of the first invention and the second invention, and is a side view showing a molecular beam cell 40 of an embodiment of the second invention, in which a part thereof is cut away.

【0017】この実施例の分子線セル40は、ルツボ1
1と、このルツボ11の底部側の部分の少なくとも側壁
(この図示例では側壁のみ)に設けられ第1の温度分布
を形成するための第1の加熱部41aおよび該ルツボ1
1の開口部11a側の部分の側壁に設けられ第2の温度
分布を形成するための第2の加熱部41bで構成される
加熱手段41と、この加熱手段41の熱が外部に逃げる
のを防止するための断熱材15と、ルツボ11の底部側
の部分の温度を検出するための第1の熱電対17aと、
ルツボ11の開口部11a側の部分の温度を検出するた
めの第2の熱電対17bと、これらルツボ11、加熱手
段41、断熱材15および熱電対17a,17bを支持
するための支持体19と、ルツボ11の開口部11aに
対し着脱されるシャッタ21と、ルツボ11の側壁のう
ちの、前記第1の加熱部41aと前記第2の加熱部41
bとの境界に当たる部分に、両加熱部41a,41bで
発せられる熱の輻射による相互干渉を抑制するための熱
遮蔽部43とを具えたものとしてある。
The molecular beam cell 40 of this embodiment is a crucible 1
1, a first heating portion 41a provided on at least a side wall (only a side wall in the illustrated example) of a bottom side portion of the crucible 11 and the crucible 1
The heating means 41, which is provided on the side wall of the opening 11a side of the first heating portion 41b for forming the second temperature distribution, and the heat of the heating means 41 escape to the outside. A heat insulating material 15 for preventing, and a first thermocouple 17a for detecting the temperature of the bottom side portion of the crucible 11,
A second thermocouple 17b for detecting the temperature of the portion of the crucible 11 on the side of the opening 11a, and a support 19 for supporting the crucible 11, the heating means 41, the heat insulating material 15 and the thermocouples 17a, 17b. , The shutter 21 that is attached to and detached from the opening 11 a of the crucible 11, and the first heating unit 41 a and the second heating unit 41 of the side wall of the crucible 11.
A heat shield portion 43 for suppressing mutual interference due to radiation of heat generated by both heating portions 41a and 41b is provided at a portion corresponding to the boundary with b.

【0018】ここで、ルツボ11、断熱材15、第1の
熱電対17a、第2の熱電対17b、支持体19および
シャッタ21は、図3を用いて説明した従来の分子線セ
ルに具わるものと同様なもので構成出来る。ただし、熱
電対17a,17bに関しては、第1の熱電対17a
は、ルツボ11の底部側の部分の温度検出に好適な位置
(ここではルツボ底面と接する位置)に、一方、第2の
熱電対17bは、ルツボ11の開口部11a側の部分の
温度検出に好適な位置に、それぞれの先端部が接するよ
うに配置してある。しかし、熱電対は場合によっては、
第1および第2のうちの何れか一方のみ、好ましくは底
部側用の第1の熱電対17aのみでも良い。そうした場
合でも両加熱部41a,41bを実用上所望の温度分布
が得られるよう制御できるからである(詳細は後に図2
(A)を参照して説明する。)。
Here, the crucible 11, the heat insulating material 15, the first thermocouple 17a, the second thermocouple 17b, the support 19 and the shutter 21 are included in the conventional molecular beam cell described with reference to FIG. It can be composed of the same ones. However, regarding the thermocouples 17a and 17b, the first thermocouple 17a
Is a position suitable for detecting the temperature of the bottom side portion of the crucible 11 (here, a position in contact with the bottom surface of the crucible), while the second thermocouple 17b is for detecting the temperature of the opening portion 11a side of the crucible 11. It is arranged at a suitable position so that the respective tip portions are in contact with each other. But in some cases, thermocouples
Only one of the first and second, and preferably only the first thermocouple 17a for the bottom side may be used. Even in such a case, both heating parts 41a and 41b can be controlled so as to obtain a temperature distribution practically desired (details will be described later with reference to FIG. 2).
This will be described with reference to FIG. ).

【0019】また、第1の加熱部41a、41bは、上
記第1の温度分布および第2の温度分布がそれぞれ形成
できるものであれば特に限定されないが、この実施例で
は以下に図2(A)、(B)を参照して説明する2つの
態様を挙げる。なお、図2はそれぞれの態様における、
ルツボ11と、第1および第2の加熱部41a,41b
と、加熱手段41の他の構成成分である温度制御装置4
1cおよび温度計41dと、熱遮蔽部43との関係を示
した図である。
The first heating portions 41a and 41b are not particularly limited as long as they can form the first temperature distribution and the second temperature distribution, respectively. In this embodiment, however, as shown in FIG. ) And (B) will be described. In addition, in FIG. 2, in each aspect,
Crucible 11 and first and second heating units 41a and 41b
And a temperature control device 4 which is another component of the heating means 41.
It is a figure showing the relation between 1c and thermometer 41d, and heat shield part 43.

【0020】先ず、図2(A)に示した第1の態様で
は、線状の一連のヒータをルツボ11の側壁に巻いて加
熱手段41を構成している。ただし、線状の一連のヒー
タをルツボ11の側壁に巻く際に、ルツボ11の底部側
の部分の側壁での線状のヒータを巻く密度と、ルツボ1
1の開口部11a側の部分の側壁での線状のヒータを巻
く密度とをそれぞれ所定条件で違えてあり、このように
密度を違えたヒータ部分の一方で第1の加熱部41aを
構成し他方で第2の加熱部41bを構成している。な
お、ルツボ11の全高さに対し第1の加熱部41aの部
分と第2の加熱部41bとの比率をどの程度とするか
は、ルツボ11の開口部11aに起因する冷却のされ具
合や、蒸発源材料をルツボ11のどの程度まで入れるか
等を主に考慮し決める(以下の第二の態様において同
じ。)。また、ルツボ11の底部側の部分での温度分布
を開口部側の部分の温度分布より低くする場合は、底部
側でのヒータを巻く密度を、開口部側でのそれより低く
なる様にする。また、この第1の態様の場合の温度制御
は、この実施例の場合、温度計41dに第1および第2
の熱電対17a,17bのいずれか一方のみ(好ましく
は底部側用である第1の熱電対17a)を接続してこの
接続した熱電対の出力を温度計41dが温度制御装置4
1cに入力し、これに基づき温度制御装置41cが温度
制御をする構成としている。
First, in the first mode shown in FIG. 2A, a heating means 41 is constructed by winding a series of linear heaters on the side wall of the crucible 11. However, when winding a series of linear heaters on the side wall of the crucible 11, the density of winding the linear heater on the side wall on the bottom side of the crucible 11 and the crucible 1
The density of winding the linear heater on the side wall on the side of the opening 11a of No. 1 differs depending on the predetermined conditions, and the first heating unit 41a is formed on one side of the heaters having the different densities. On the other hand, the 2nd heating part 41b is comprised. The ratio of the first heating portion 41a to the second heating portion 41b with respect to the entire height of the crucible 11 is determined by the degree of cooling due to the opening 11a of the crucible 11, The amount of evaporation source material to be placed in the crucible 11 and the like are mainly considered and determined (the same applies in the second embodiment below). When the temperature distribution on the bottom side portion of the crucible 11 is made lower than the temperature distribution on the opening side portion, the heater winding density on the bottom side is set to be lower than that on the opening side. . Further, in the case of this embodiment, the temperature control in the case of this first mode is performed by the first and second thermometers 41d.
Of either of the thermocouples 17a and 17b (preferably the first thermocouple 17a for the bottom side) is connected, and the thermometer 41d outputs the output of the connected thermocouple to the temperature control device 4
1c, and the temperature control device 41c controls the temperature based on the input.

【0021】また、図2(B)に示した第2の態様で
は、ルツボ11の底部側の部分の側壁と、ルツボ11の
開口部11a側の部分の側壁とに、線状のヒータをそれ
ぞれ別々に巻き、前者のヒータによって第1の加熱部4
1aを構成し後者のヒータによって第2の加熱部41b
を構成している。なお、この第2の態様の場合の温度制
御は、この実施例の場合、温度制御装置41cおよび温
度計41dそれぞれを2系統設け、一方の系では第1の
加熱部41aを制御し、他方の系では第2の加熱部41
bを制御する。この第2の態様では、第1の加熱部41
a、第2の加熱部41b各々を独立に制御できるという
利点がある。
In the second embodiment shown in FIG. 2B, linear heaters are provided on the side wall of the bottom side of the crucible 11 and the side wall of the crucible 11 on the opening 11a side. The first heating part 4 is wound separately and is heated by the former heater.
1a, and the second heater 41b by the latter heater
Is composed. In the case of this embodiment, the temperature control in the case of the second mode is such that two systems of the temperature control device 41c and the thermometer 41d are provided, one system controls the first heating unit 41a, and the other system controls. In the system, the second heating unit 41
Control b. In the second aspect, the first heating unit 41
There is an advantage that each of the a and the second heating unit 41b can be controlled independently.

【0022】なお、上記第1の態様および第2の態様い
ずれの場合も、線状のヒータの巻数や巻く位置や密度
は、設計に応じた適性条件とする。
In both the first and second aspects, the number of windings, the winding position, and the density of the linear heater are set to be suitable conditions according to the design.

【0023】また、熱遮蔽部43は、両加熱部41a,
41bで発せられる熱の輻射による相互干渉を抑制でき
るものであれば特に限定されない。この実施例の場合
は、タングステンなどの高融点金属から成るリフレクタ
をルツボの上記側壁部分周囲に配置することでこの熱遮
蔽部43を構成している。このリフレクタの枚数は設計
に応じ決める。
Further, the heat shield portion 43 includes both heating portions 41a,
It is not particularly limited as long as it can suppress mutual interference due to radiation of heat generated by 41b. In the case of this embodiment, the heat shield 43 is configured by arranging a reflector made of a refractory metal such as tungsten around the side wall of the crucible. The number of reflectors is determined according to the design.

【0024】この図1および図2を用いて説明した分子
線セル40では、第1の加熱部41aによりルツボ11
の底部側の部分を第1の温度分布となるような加熱条件
で加熱し、かつ、第2の加熱部41bによりルツボ11
の開口部11a側の部分を第2の温度分布となるような
加熱条件で加熱しながら分子線を生成できる。従って、
ルツボの底部側の部分を蒸発源材料の単位時間あたりの
蒸発量を所定量(一定量)とし得る温度分布とし、該ル
ツボの開口部側の部分をドロップレットの発生を防止し
得る温度分布となるような各々の加熱条件で加熱しなが
ら分子線を生成できる。
In the molecular beam cell 40 described with reference to FIGS. 1 and 2, the crucible 11 is heated by the first heating section 41a.
Of the crucible 11 is heated by the second heating portion 41b while heating the bottom side portion of the crucible 11 under the heating condition that the first temperature distribution is obtained.
The molecular beam can be generated while heating the portion on the side of the opening portion 11a under the heating condition that provides the second temperature distribution. Therefore,
The bottom side of the crucible has a temperature distribution that allows the evaporation amount of the evaporation source material per unit time to be a predetermined amount (constant amount), and the opening side of the crucible has a temperature distribution that can prevent generation of droplets. The molecular beam can be generated while heating under each of the heating conditions described below.

【0025】[0025]

【発明の効果】上述した説明から明らかなように、この
出願の第一発明の分子線の生成方法によれば、ルツボの
底部側の部分と開口部側の部分とを積極的にそれぞれの
目的にあう温度分布となるように加熱しながら分子線の
生成がなされる。このため、ルツボ中の蒸発源材料の温
度は常に一様な温度に保てるので該材料の単位時間当た
りの蒸発量を一定とでき、一方、ルツボの開口部側の温
度はドロップレットの発生を防止できる温度とできる。
したがって、ドロップレットの発生がなくかつ安定な蒸
着レートで蒸着が行える。
As is apparent from the above description, according to the molecular beam producing method of the first invention of the present application, the bottom side portion and the opening side portion of the crucible are positively purposed respectively. The molecular beam is generated while heating so that the temperature distribution matches. For this reason, the temperature of the evaporation source material in the crucible can always be kept at a uniform temperature, so the evaporation amount of the material per unit time can be made constant, while the temperature on the opening side of the crucible prevents the generation of droplets. It can be done at any temperature.
Therefore, vapor deposition can be performed without generating droplets and at a stable vapor deposition rate.

【0026】また、第二発明の構成によれば、所定の第
1の加熱部および第2の加熱部を具えたので、ルツボの
底部側の部分と開口部側の部分とを積極的にそれぞれの
目的にあう温度分布となるように加熱することを、容易
に行なえる。したがって第一発明の実施を容易とする。
Further, according to the structure of the second invention, since the predetermined first heating portion and the predetermined second heating portion are provided, the bottom side portion and the opening side portion of the crucible are positively and respectively provided. The heating can be easily performed so that the temperature distribution has a purpose. Therefore, the implementation of the first invention is facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一及び第二発明の実施例の説明図であり、実
施例の分子線セルの説明図である。
FIG. 1 is an explanatory view of an embodiment of the first and second inventions, and is an explanatory view of a molecular beam cell of the embodiment.

【図2】第一及び第二発明の実施例の説明図であり、特
に加熱手段のいくつかの具体例の説明図である。
FIG. 2 is an explanatory diagram of an embodiment of the first and second inventions, and is an explanatory diagram of some specific examples of heating means.

【図3】従来技術および課題の説明図である。FIG. 3 is an explanatory diagram of conventional technology and problems.

【図4】従来技術および課題の説明図である。FIG. 4 is an explanatory diagram of a conventional technique and a problem.

【図5】課題の説明図である。FIG. 5 is an explanatory diagram of a problem.

【符号の説明】 11:ルツボ 15:断熱材 17a:第1の熱電対 17b:第2の熱電対 19:支持体 21:シャッタ 40:実施例の分子線セル 41:加熱手段 41a:第1の加熱部 41b:第2の加熱部 43:熱遮蔽部[Explanation of Codes] 11: Crucible 15: Heat Insulating Material 17a: First Thermocouple 17b: Second Thermocouple 19: Support 21: Shutter 40: Molecular Beam Cell of Example 41: Heating Means 41a: First Heating unit 41b: Second heating unit 43: Heat shield unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 蒸発源材料が入れられたルツボを加熱手
段により加熱して分子線を生成するに当たり、 ルツボの底部側の部分を第1の温度分布となるような加
熱条件で加熱し、かつ、該ルツボの開口部側の部分を第
2の温度分布となるような加熱条件で加熱しながら分子
線を生成することを特徴とする分子線の生成方法。
1. When a crucible containing an evaporation source material is heated by a heating means to generate a molecular beam, a bottom side portion of the crucible is heated under a heating condition so as to have a first temperature distribution, and A method for producing a molecular beam, wherein the molecular beam is produced while heating a portion of the crucible on the opening side under a heating condition that provides a second temperature distribution.
【請求項2】 請求項1に記載の分子線の生成方法にお
いて、 前記第1の温度分布を蒸発源材料の単位時間あたりの蒸
発量を所定量とし得る分布とし、前記第2の温度分布を
ドロップレットの発生を防止し得る分布とすることを特
徴とする分子線の生成方法。
2. The method for producing a molecular beam according to claim 1, wherein the first temperature distribution is a distribution in which the evaporation amount of the evaporation source material per unit time can be a predetermined amount, and the second temperature distribution is A method for producing a molecular beam, which has a distribution capable of preventing the generation of droplets.
【請求項3】 蒸発源材料を入れるルツボとこれを加熱
する加熱手段とを具える分子線セルにおいて、 前記加熱手段を、 ルツボの底部側の部分の少なくとも側壁に設けられ第1
の温度分布を形成するための第1の加熱部と、 該ルツボの開口部側の部分の側壁に設けられ第2の温度
分布を形成するための第2の加熱部とを含むものとした
ことを特徴とする分子線セル。
3. A molecular beam cell comprising a crucible containing an evaporation source material and a heating means for heating the crucible, wherein the heating means is provided on at least a side wall of a bottom side portion of the crucible.
A first heating part for forming a temperature distribution of the crucible and a second heating part for forming a second temperature distribution provided on the side wall of the opening side of the crucible. Molecular beam cell characterized by.
【請求項4】 請求項3に記載の分子線セルにおいて、 前記第1の温度分布を蒸発源の単位時間あたりの蒸発量
を所定量とし得る分布とし、前記第2の温度分布をドロ
ップレットの発生を防止し得る分布とすることを特徴と
する分子線セル。
4. The molecular beam cell according to claim 3, wherein the first temperature distribution is a distribution that allows a predetermined amount of evaporation of the evaporation source per unit time, and the second temperature distribution is of droplets. A molecular beam cell having a distribution capable of preventing generation.
【請求項5】 請求項3に記載の分子線セルにおいて、 前記ルツボの側壁のうちの、前記第1の加熱部と前記第
2の加熱部との境界に当たる部分に、両加熱部で発せら
れる熱の輻射による相互干渉を抑制するための熱遮蔽部
を具えたことを特徴とする分子線セル。
5. The molecular beam cell according to claim 3, wherein both heating portions emit light to a portion of a side wall of the crucible that is at a boundary between the first heating portion and the second heating portion. A molecular beam cell comprising a heat shield for suppressing mutual interference due to heat radiation.
JP15483195A 1995-06-21 1995-06-21 Generating method for molecular beam and molecular beam cell Withdrawn JPH097948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15483195A JPH097948A (en) 1995-06-21 1995-06-21 Generating method for molecular beam and molecular beam cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15483195A JPH097948A (en) 1995-06-21 1995-06-21 Generating method for molecular beam and molecular beam cell

Publications (1)

Publication Number Publication Date
JPH097948A true JPH097948A (en) 1997-01-10

Family

ID=15592838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15483195A Withdrawn JPH097948A (en) 1995-06-21 1995-06-21 Generating method for molecular beam and molecular beam cell

Country Status (1)

Country Link
JP (1) JPH097948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475278B2 (en) 2000-02-02 2002-11-05 Sharp Kabushiki Kaisha Molecular beam source and molecular beam epitaxy apparatus
CN100334760C (en) * 2002-05-23 2007-08-29 阿尔巴尼国际纺织技术有限公司 Carbon fiber reinforced plastic bipolar plates with continuous electrical pathways
JP2007231368A (en) * 2006-03-01 2007-09-13 Fujifilm Corp Vapor deposition material evaporating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475278B2 (en) 2000-02-02 2002-11-05 Sharp Kabushiki Kaisha Molecular beam source and molecular beam epitaxy apparatus
CN100334760C (en) * 2002-05-23 2007-08-29 阿尔巴尼国际纺织技术有限公司 Carbon fiber reinforced plastic bipolar plates with continuous electrical pathways
JP2007231368A (en) * 2006-03-01 2007-09-13 Fujifilm Corp Vapor deposition material evaporating device

Similar Documents

Publication Publication Date Title
US4694143A (en) Zone melting apparatus for monocrystallizing semiconductor layer on insulator layer
US5558720A (en) Rapid response vapor source
US4553022A (en) Effusion cell assembly
EP3927864A2 (en) Source arrangement, deposition apparatus and method for depositing source material
JPH097948A (en) Generating method for molecular beam and molecular beam cell
TW201617486A (en) Apparatus, method and system for controlling thickness of a crystalline sheet grown on a melt
US5944903A (en) Effusion cell crucible with thermocouple
JPS61137314A (en) Semiconductor crystal growth apparatus
JPH0585888A (en) Apparatus for emitting molecular beam
JPH0254426B2 (en)
JPH0313565A (en) Vacuum vapor deposition device
JPH10214787A (en) Molecular beam cell for si and molecular beam epitaxy system
JP3323522B2 (en) Molecular beam cell
JPH02204391A (en) Crucible for molecular beam source
JP6020704B2 (en) Method for producing vapor deposition film using vacuum vapor deposition apparatus
JPH06299336A (en) Crucible of evaporating source for vacuum deposition
JPS6299459A (en) Evaporating source for vacuum deposition
JPS59172715A (en) Molecular beam generating equipment
JPS63155715A (en) Molecular beam cell
JPS59113174A (en) Method and device for forming thin film
JP3253701B2 (en) Vacuum deposition equipment
JP2534341B2 (en) Single crystal growth equipment
JPH09143685A (en) Method for preventing crack of crucible for continuous vacuum vapor deposition apparatus
JPS6255920A (en) Molecular beam evaporation source
JPS61121427A (en) Molecular beam epitaxial crystal growth device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903