JPS6369708A - Apparatus for producing silicon - Google Patents

Apparatus for producing silicon

Info

Publication number
JPS6369708A
JPS6369708A JP21611086A JP21611086A JPS6369708A JP S6369708 A JPS6369708 A JP S6369708A JP 21611086 A JP21611086 A JP 21611086A JP 21611086 A JP21611086 A JP 21611086A JP S6369708 A JPS6369708 A JP S6369708A
Authority
JP
Japan
Prior art keywords
silicon
fluidized bed
reactor
bed reactor
reactant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21611086A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shimizu
保弘 清水
Shuichi Yo
揚 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP21611086A priority Critical patent/JPS6369708A/en
Publication of JPS6369708A publication Critical patent/JPS6369708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To improve the yield of silicon while retarding the deposition of silicon on the surface of an inside wall in the process for prepg. silicon in a fluidized reactor, by specifying the distance between the inside wall surface of the reactor and a blowing inlet of gaseous chlorosilane, etc. CONSTITUTION:Silicon particles are held in a fluidized reactor 1 to form a fluidized bed, and gaseous chlorosilane or gaseous silane is blown through a blowing inlet 2 to form silicon and formed silicon is deposited on the silicon particles. In this stage, the distance (s) from the blowing inlet 2 of the reactant gas provided to the center of the bottom the reactor 1 to the inside wall surface 3 of the reactor 1 is regulated to such distance that the reactant gas may contact with the inside wall surface 3 after the reactant gas has reacted under thermodynamically equilibrium condition calculating from the flow rate of the blown reactant gas toward the inside wall direction and necessary reaction time until the reactant gas reaches the equilibrium composition. In this case, the preferred particle size of the silicon particle constituting the fluidized bed 4 is ca. 0.3-2mm, and the preferred flow rate of the reactant gas passing through the fluidized bed 4 is ca. 200-2,000mm/sec.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はシリコンの製造装置、詳しくは、流動床反応器
を用い、吹込まれたクロロシランガスまたはシランガス
を熱分解または水素還元して得られるシリコンを流動層
を形成するシリコン粒子上に析出させるように構成され
たシリコンの製造装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a silicon manufacturing apparatus, specifically, silicon obtained by thermally decomposing or hydrogen reducing chlorosilane gas or silane gas injected using a fluidized bed reactor. The present invention relates to a silicon manufacturing apparatus configured to deposit silicon particles on silicon particles forming a fluidized bed.

〈従来の技術〉 多結晶シリコンの製造方法の1つにシーメンス法がある
。この方法はへルジャー内に配置したシリコン細棒を通
電加熱しておき、クロロシランと水素の混合ガスを供給
して反応させ、前記シリコン細棒表面にシリコンを析出
させ、ロンド状のシリコンを製造する方法である。しか
しこの方法は反応表面積が小さいので生産性が低く、ま
たへルジャー表面からの熱放散が大きく、このため電力
消費量が大きくなり、製造コストが非常に高くなるとい
う欠点を有している。
<Prior Art> One of the methods for manufacturing polycrystalline silicon is the Siemens method. In this method, a thin silicon rod placed in a health jar is heated with electricity, and a mixed gas of chlorosilane and hydrogen is supplied to cause a reaction, and silicon is deposited on the surface of the thin silicon rod to produce rond-shaped silicon. It's a method. However, this method has the disadvantages of low productivity due to the small reaction surface area, and high heat dissipation from the Herger surface, which results in high power consumption and very high production costs.

一方、シーメンス法の欠点を改良すべく、最近、流動床
反応器を用いた多結晶シリコンの製造方法ないし製造装
置が、特開昭57−135708号公報に記載された発
明をはじめとしていくつか提案されている。
On the other hand, in order to improve the drawbacks of the Siemens method, several methods and apparatus for producing polycrystalline silicon using a fluidized bed reactor have recently been proposed, including the invention described in JP-A-57-135708. has been done.

流動床反応器を用いた多結晶シリコンの製造方法ないし
製造装置は、シリコン粒子を流動層状態に保持した反応
器内にクロロシランガス、シランガスを吹込み、クロロ
シランの熱分解または水素還元によって生成されたシリ
コンを前記シリコン粒子表面に析出させて、顆粒状のシ
リコン粒子を製造する方法ないし製造装置である。
A method or apparatus for producing polycrystalline silicon using a fluidized bed reactor is a method or apparatus for producing polycrystalline silicon by blowing chlorosilane gas or silane gas into a reactor that holds silicon particles in a fluidized bed state, and producing polycrystalline silicon by thermal decomposition or hydrogen reduction of chlorosilane. This is a method or a manufacturing apparatus for manufacturing granular silicon particles by depositing silicon on the surface of the silicon particles.

〈発明が解決しようとする問題点〉 しかしながら、従来の流動床反応器を用いたシリコンの
製造方法ないし製造装置は、前記特開昭57−1357
08号公報にも記載のように、反応器の外部に加熱ヒー
ターを設け、この加熱ヒーターにより流動床の温度を制
御しているねりであるが、反応器或いは反応管の内壁面
にも多数シリコンが析出し、反応器或いは反応管内が狭
くなったり、時には反応管を破壊する等の欠点があった
<Problems to be Solved by the Invention> However, the conventional method or apparatus for producing silicon using a fluidized bed reactor is not disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 57-1357.
As described in Publication No. 08, a heating heater is installed outside the reactor, and the temperature of the fluidized bed is controlled by this heating heater. There were drawbacks such as precipitation of the reactor, narrowing the inside of the reactor or reaction tube, and sometimes destruction of the reaction tube.

〈目的〉 そこで本発明は上記従来技術の欠点を解消し、反応器内
壁面へのシリコンの析出が抑制され、シリコンの収率が
よいシリコンの製造装置の提供を目的とする。
<Objective> The present invention aims to eliminate the drawbacks of the above-mentioned conventional techniques, and to provide a silicon manufacturing apparatus in which precipitation of silicon on the inner wall surface of a reactor is suppressed and a high yield of silicon is obtained.

く問題点を解決するための手段〉 本発明のシリコンの製造装置は、流動床反応器を用い、
該流動床反応器内にシリコン粒子を流動層状に保持し、
流動床反応器内に吹込まれたクロロシランガスまたはシ
ランガスを熱分解または水素還元することによって生成
されるシリコンを、前記流動層を形成するシリコン粒子
上に析出させるようにしたシリコンの製造装置であって
、前記流動床反応器の内壁面を、吹込口から流動床反応
器内へ一定の速度で吹込まれるクロロシランガスまたは
シランガスが流動床反応器内雰囲気温度に対して熱力学
的平衡濃度にほぼ達す名までに要する時間に相当する距
離以上、前記吹込口より離して設けることを特徴として
いる。
Means for Solving the Problems> The silicon production apparatus of the present invention uses a fluidized bed reactor,
Holding silicon particles in a fluidized bed in the fluidized bed reactor,
A silicon production apparatus, which is configured to deposit silicon produced by thermal decomposition or hydrogen reduction of chlorosilane gas or silane gas blown into a fluidized bed reactor onto silicon particles forming the fluidized bed. , the chlorosilane gas or silane gas that is blown into the fluidized bed reactor from the inlet at a constant rate through the inner wall surface of the fluidized bed reactor almost reaches a thermodynamic equilibrium concentration with respect to the ambient temperature inside the fluidized bed reactor. It is characterized in that it is provided at a distance from the air inlet at least a distance corresponding to the time required to reach the air.

本発明者は以上の解決手段を完成するに当って、流動床
反応器に送込まれたクロロシランガス等の析出挙動を種
々検討した結果、クロロシランガスやシランガスの熱分
解或いは水素還元反応は高温において急激に進み、ごく
短時間のうちに平衡組成に到達することを見出した。す
なわち、5ick。
In completing the above solution, the present inventor conducted various studies on the precipitation behavior of chlorosilane gas, etc. sent to a fluidized bed reactor, and found that the thermal decomposition or hydrogen reduction reaction of chlorosilane gas and silane gas occurs at high temperatures. It was found that the process progresses rapidly and reaches an equilibrium composition within a very short time. That is, 5ick.

とHzの混合ガスで1000°C以上において、同様に
5iHC13で950°C以上において、同様に5iH
zC]□で800℃以上において、またSiH4ガスで
600℃以上において、これらの場合、所要反応時間は
何れも0.5秒以下であった。
Hz mixed gas at 1000°C or higher, 5iHC13 at 950°C or higher, 5iH
zC]□ at 800° C. or higher, and SiH4 gas at 600° C. or higher, the required reaction time was 0.5 seconds or less in both cases.

この様な、知見に基づいて、本発明者はさらに流動床反
応器へのガス吹込口と流動床反応器の内壁面との距離を
種々変更して、シリコンの析出挙動を調査したところ、
流動床反応器の内壁面を、前記所要反応時間すなわち平
衡組成に達するまでの時間に相当する距離以上、前記ガ
ス吹込口より離した場合には、内壁面へのシリコン析出
が激減することを見出した。本発明は正にこの様な知見
に基づき完成されたものである。
Based on such knowledge, the present inventor further investigated the precipitation behavior of silicon by variously changing the distance between the gas inlet to the fluidized bed reactor and the inner wall surface of the fluidized bed reactor.
It has been found that when the inner wall surface of the fluidized bed reactor is separated from the gas inlet by a distance corresponding to the required reaction time, that is, the time to reach equilibrium composition, silicon precipitation on the inner wall surface is drastically reduced. Ta. The present invention was completed based on this knowledge.

第1図に本発明装置の原理図を示す。流動床反応器1の
底部中央に反応ガスの吹込口2が設けられている。この
吹込口2から流動床反応器1の内壁面3までの距離Sは
、吹込まれた反応ガスの内壁面3方向への流速と、反応
ガスの平衡組成に達するまでの所要反応時間とから、反
応ガスが熱力学的平衡状態に到達した後に内壁面3に接
触するような距離に計算される。逆に言えば、前記距離
Sと反応ガスの組成及び反応温度が予め定められれば、
その条件に応じて、吹込まれる反応ガスの流速の許容範
囲を計算すればよいということである。
FIG. 1 shows a diagram of the principle of the device of the present invention. A reaction gas inlet 2 is provided at the center of the bottom of the fluidized bed reactor 1 . The distance S from the injection port 2 to the inner wall surface 3 of the fluidized bed reactor 1 is calculated from the flow rate of the injected reaction gas in the direction of the inner wall surface 3 and the reaction time required to reach the equilibrium composition of the reaction gas. The distance is calculated such that the reaction gas contacts the inner wall surface 3 after reaching a thermodynamic equilibrium state. Conversely, if the distance S, the composition of the reaction gas, and the reaction temperature are determined in advance,
This means that it is only necessary to calculate the allowable range of the flow rate of the reactant gas blown in according to the conditions.

一般にこの種流動床反応を用いてシリコンを生成する場
合、反応器1内に形成される流動層4の構成要素である
シリコン粒子の粒子径は0.3mm〜2mm程度が好ま
しく、その場合流動層4を通る反応ガス流速は、本発明
者の調査によれば200〜2000mm 7秒が好まし
く、より好ましくは800〜1500mm/秒の流速に
なるのがよい。
Generally, when silicon is produced using this type of fluidized bed reaction, the particle diameter of the silicon particles that are the constituent elements of the fluidized bed 4 formed in the reactor 1 is preferably about 0.3 mm to 2 mm; According to research conducted by the present inventors, the flow rate of the reaction gas passing through the tube 4 is preferably 200 to 2000 mm/sec, and more preferably 800 to 1500 mm/sec.

一方、本発明者の調査によれば、例えばトリクロロシラ
ンガス30〜50%、残水素ガスの反応ガス組成の場合
、常圧において、反応ガスが平衡濃度に達する時間は次
の表1のようになる。
On the other hand, according to the research conducted by the present inventor, for example, in the case of a reaction gas composition of 30 to 50% trichlorosilane gas and residual hydrogen gas, the time required for the reaction gas to reach equilibrium concentration at normal pressure is as shown in Table 1 below. .

表1 以上のことから、今、トリクロロシランガス30%濃度
の反応ガスを用い、反応ガス流速を1000mm/秒、
反応器内雰囲気を1000°Cに調整すれば、反応ガス
の平衡濃度に達するまでの時間が0.05〜0.1秒で
あるから、前記吹込口2から流動床反応器の内壁面まで
の距離Sは、1000 X 0.1−100 (mm)
程度以上あればよいことになる。
Table 1 From the above, we now use a reaction gas with a trichlorosilane gas concentration of 30%, and set the reaction gas flow rate to 1000 mm/sec.
If the atmosphere inside the reactor is adjusted to 1000°C, it takes 0.05 to 0.1 seconds to reach the equilibrium concentration of the reaction gas. Distance S is 1000 x 0.1-100 (mm)
It would be good if it was above that level.

同様にして、反応ガスの種類、濃度、反応温度等に応し
て、それぞれ適当な距離sを算出することができる。ま
た距離Sを予め定める場合には、それに応じて反応ガス
流速を調整することができる。
Similarly, an appropriate distance s can be calculated depending on the type, concentration, reaction temperature, etc. of the reaction gas. Furthermore, when the distance S is determined in advance, the flow rate of the reactant gas can be adjusted accordingly.

従来は、反応ガスの流速や平衡濃度に達するまでの時間
と反応ガス吹込口から流動床反応器の内壁面までの距離
Sとの関係について何ら考慮されていなかったため、結
果として反応器内壁面への多量のシリコン析出を招いて
いたわけである。
Conventionally, no consideration was given to the relationship between the flow rate of the reaction gas, the time it takes to reach equilibrium concentration, and the distance S from the reaction gas inlet to the inner wall of the fluidized bed reactor. This resulted in the precipitation of a large amount of silicon.

〈作用効果〉 流動床反応器の内壁面を、吹込口から流動床反応器内へ
一定の速度で吹込まれるクロロシランガスまたはシラン
ガスが流動床反応器内雰囲気温度に対して熱力学的平衡
濃度にほぼ達するまでに要する時間に相当する距離以上
、前記吹込口より離して設けるようにしているので、吹
込まれた反応ガスが反応器の内壁面に到達する時には既
に過剰濃度骨の反応ガスは分解反応或いは還元反応を終
了しており、従って壁面付近での析出は僅かに抑えられ
る。よって本発明の装置によれば、流動床反応器内壁面
へのシリコン析出が少なく、その結果、装置の1−ラブ
ルやメンテナンスの必要性が少なくなり、長時間に亘っ
ての連続運転が可能となり、シリコン生成の収率、生産
性を大いに向上させることができる。
<Effect> Chlorosilane gas or silane gas, which is blown into the fluidized bed reactor from the inlet at a constant rate, reaches a thermodynamic equilibrium concentration with respect to the ambient temperature inside the fluidized bed reactor. Since the inlet is placed at least a distance corresponding to the time required for the inlet to arrive, by the time the injected reactant gas reaches the inner wall surface of the reactor, the reactant gas in the excessively concentrated bone has already undergone a decomposition reaction. Alternatively, the reduction reaction has been completed, and therefore precipitation near the wall surface is slightly suppressed. Therefore, according to the device of the present invention, there is less silicon precipitation on the inner wall surface of the fluidized bed reactor, and as a result, the troubles and maintenance of the device are reduced, and continuous operation for a long time is possible. , the yield and productivity of silicon production can be greatly improved.

〈実施例〉 (実施例1) 第1図に示す流動床反応器を用いて表2の条件で10時
間の反応を行ってシリコンを製造した。反応器の直径り
は5cmとした。比較例として第2図に示す様な従来装
置、すなわち、原料ガスを全面に吹込む装置について同
様に反応を行った。従来装置の直径りも5cmに合せた
<Example> (Example 1) Using the fluidized bed reactor shown in FIG. 1, a reaction was carried out for 10 hours under the conditions shown in Table 2 to produce silicon. The diameter of the reactor was 5 cm. As a comparative example, a similar reaction was carried out using a conventional apparatus as shown in FIG. 2, that is, an apparatus in which raw material gas is blown into the entire surface. The diameter of the conventional device was also adjusted to 5 cm.

表2 *TC3:クロロシランガス ノズル流速:吹込口2からの噴出速度 〔結果〕 10時間の反応後、反応器である炉体を解体し、炉壁に
析出したシリコン量を測定したところ、ガス吹込口と炉
壁の距離がQcmの従来装置では、炉壁析出シリコンは
全体の析出シリコン量の約10%であった。一方、本発
明の装置の場合、炉壁析出シリコン量は全体の3〜5%
であった。すなわち、従来の約172〜I73に減少し
ており、長期連続運転に適していることが解った。
Table 2 *TC3: Chlorosilane gas nozzle flow rate: Ejection rate from the gas inlet 2 [Results] After 10 hours of reaction, the reactor body was disassembled and the amount of silicon deposited on the furnace wall was measured. In the conventional apparatus in which the distance between the furnace wall and the furnace wall is Qcm, the amount of silicon deposited on the furnace wall was about 10% of the total amount of silicon deposited. On the other hand, in the case of the device of the present invention, the amount of silicon deposited on the furnace wall is 3 to 5% of the total.
Met. That is, it has been reduced to about 172 to I73 compared to the conventional value, and it has been found that it is suitable for long-term continuous operation.

(実施例2) 直径が10c+nの反応器を用い、表3の条件で、実施
例1の場合と同様に10時間の反応を従来装置と比較実
施した。
(Example 2) Using a reactor with a diameter of 10c+n, a 10-hour reaction was carried out under the conditions shown in Table 3 in the same manner as in Example 1 in comparison with the conventional apparatus.

表3 〔結果〕 実施例1と同様に炉体を解体して、炉壁に析出するシリ
コン量を比較したところ、従来装置では全体の6〜8%
、本装置では全体の1〜2%となり、本発明装置によれ
ば炉壁へのシリコン析出が非常に少なく、長期運転に適
していることが明白になった。
Table 3 [Results] As in Example 1, the furnace body was dismantled and the amount of silicon deposited on the furnace wall was compared.
In this device, the amount was 1 to 2% of the total, and it became clear that the device of the present invention caused very little silicon precipitation on the furnace wall and was suitable for long-term operation.

(実施例3) 第1図に示す反応器を用い、表4の様な条件で、ノズル
流速(吹込口2からの噴出速度)をA、Bで変更した。
(Example 3) Using the reactor shown in FIG. 1, the nozzle flow rate (the jetting speed from the blowing port 2) was changed at A and B under the conditions shown in Table 4.

10時間の反応後、炉壁へのシリコンの析出量を比較し
た。
After 10 hours of reaction, the amount of silicon deposited on the furnace wall was compared.

表4 〔結果〕 ノズル流速を小さくした已においては、炉壁へのシリコ
ン析出量は全体の1%弱であり、Aの場合の2%弱に比
較して約2まで減少した。すなわちノズル流速の調整に
より、吹込口2から反応器内壁面までの距離Sを調整す
るのと同様の効果を得ることができることが明らかとな
った。
Table 4 [Results] When the nozzle flow velocity was reduced, the amount of silicon deposited on the furnace wall was less than 1% of the total, which was reduced to about 2% compared to less than 2% in case A. That is, it has become clear that by adjusting the nozzle flow rate, the same effect as adjusting the distance S from the blowing port 2 to the inner wall surface of the reactor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施装置の構成図、第2図は従来装置
の構成図である。 1:流動床反応器 2:吹込口 3:内壁面 I S:吹込口から内壁面までの距離 D:流動床反応器の直径
FIG. 1 is a block diagram of an apparatus for implementing the present invention, and FIG. 2 is a block diagram of a conventional apparatus. 1: Fluidized bed reactor 2: Inlet 3: Inner wall surface I S: Distance from inlet to inner wall surface D: Diameter of fluidized bed reactor

Claims (1)

【特許請求の範囲】[Claims] 流動床反応器を用い、該流動床反応器内にシリコン粒子
を流動層状に保持し、流動床反応器内に吹込まれたクロ
ロシランガスまたはシランガスを熱分解または水素還元
することによって生成されるシリコンを、前記流動層を
形成するシリコン粒子上に析出させるようにしたシリコ
ンの製造装置であって、前記流動床反応器の内壁面を、
吹込口から流動床反応器内へ一定の速度で吹込まれるク
ロロシランガスまたはシランガスが流動床反応器内雰囲
気温度に対して熱力学的平衡濃度にほぼ達するまでに要
する時間に相当する距離以上、前記吹込口より離して設
けることを特徴とするシリコンの製造装置。
Using a fluidized bed reactor, silicon particles are held in a fluidized bed form in the fluidized bed reactor, and silicon produced by thermal decomposition or hydrogen reduction of chlorosilane gas or silane gas blown into the fluidized bed reactor is used. , an apparatus for producing silicon in which silicon particles are deposited on silicon particles forming the fluidized bed, the inner wall surface of the fluidized bed reactor being
At least a distance corresponding to the time required for chlorosilane gas or silane gas, which is blown into the fluidized bed reactor from the inlet at a constant rate, to almost reach a thermodynamic equilibrium concentration with respect to the ambient temperature in the fluidized bed reactor, as described above. A silicon manufacturing device characterized by being installed away from a blowing port.
JP21611086A 1986-09-12 1986-09-12 Apparatus for producing silicon Pending JPS6369708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21611086A JPS6369708A (en) 1986-09-12 1986-09-12 Apparatus for producing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21611086A JPS6369708A (en) 1986-09-12 1986-09-12 Apparatus for producing silicon

Publications (1)

Publication Number Publication Date
JPS6369708A true JPS6369708A (en) 1988-03-29

Family

ID=16683398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21611086A Pending JPS6369708A (en) 1986-09-12 1986-09-12 Apparatus for producing silicon

Country Status (1)

Country Link
JP (1) JPS6369708A (en)

Similar Documents

Publication Publication Date Title
KR19990023573A (en) Manufacturing method of high pure silicon particle
JP2867306B2 (en) Method and apparatus for producing semiconductor grade polycrystalline silicon
CA2316180A1 (en) Production process and apparatus for high purity silicon
KR20120023678A (en) Processes and an apparatus for manufacturing high purity polysilicon
US4132763A (en) Process for the production of pure, silicon elemental semiconductor material
KR20040025590A (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
JPS61127617A (en) Manufacture of superhigh purity silicon rod
JP2004018370A (en) Apparatus and method of manufacturing silicon
JP2890253B2 (en) Method for producing trichlorosilane
GB1570131A (en) Manufacture of silicon
JPS6369708A (en) Apparatus for producing silicon
JPH0317768B2 (en)
JP2003054933A (en) Reaction apparatus for producing silicon
JPH0694365B2 (en) Silicon manufacturing method and manufacturing apparatus
JPH01197309A (en) Production of granular silicon
EP0385096A1 (en) Process for producing sinterable crystalline aluminum nitride powder
KR910700198A (en) Method of Manufacturing Silicon Carbide
JPH02279513A (en) Production of high-purity polycrystal silicon
EP0045600B1 (en) Improved method for producing semiconductor grade silicon
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
JPS616109A (en) Manufacture of sic
JP2003002627A (en) Method for manufacturing silicon
CA1178180A (en) Method for producing semiconductor grade silicon
JPS63147814A (en) Production of silicon
JPS59121109A (en) Production of high purity silicon