JP2867306B2 - Method and apparatus for producing semiconductor grade polycrystalline silicon - Google Patents

Method and apparatus for producing semiconductor grade polycrystalline silicon

Info

Publication number
JP2867306B2
JP2867306B2 JP32697691A JP32697691A JP2867306B2 JP 2867306 B2 JP2867306 B2 JP 2867306B2 JP 32697691 A JP32697691 A JP 32697691A JP 32697691 A JP32697691 A JP 32697691A JP 2867306 B2 JP2867306 B2 JP 2867306B2
Authority
JP
Japan
Prior art keywords
nozzle
flow rate
raw material
polycrystalline silicon
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32697691A
Other languages
Japanese (ja)
Other versions
JPH05139891A (en
Inventor
秀男 伊藤
輝久 北川
和人 井垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Polycrystalline Silicon Corp
Original Assignee
Mitsubishi Materials Polycrystalline Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Polycrystalline Silicon Corp filed Critical Mitsubishi Materials Polycrystalline Silicon Corp
Priority to JP32697691A priority Critical patent/JP2867306B2/en
Publication of JPH05139891A publication Critical patent/JPH05139891A/en
Application granted granted Critical
Publication of JP2867306B2 publication Critical patent/JP2867306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、形状不良が少なく表面
が平滑な多結晶シリコンロッドを製造する方法と装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a polycrystalline silicon rod having a small shape defect and a smooth surface.

【従来技術】一般に、半導体級多結晶シリコンは密閉反
応炉の底部に設けたノズルから原料ガスを高温下の反応
炉内に供給し、炉内に設けた赤熱したシリコンロッド表
面で原料ガスを熱分解ないし水素還元させ、ロッド表面
に多結晶シリコンを析出し成長させることにより製造さ
れている。最近、半導体多結晶シリコンの需要が増大す
るのに伴い、生産量を高める必要から大型のシリコンロ
ッドが用いられる傾向にある。一例として、ロッドの長
さは従来1m程度であったが、最近では2m近い長さの
ロッドが用いられており、このため必然的に製造装置の
大型化を招いている。ところが、反応炉が大型化する
と、反応炉上部に至る間に原料ガスの流速が低下し、炉
の上部と下部において原料ガスの流速が異なり濃度が不
均一になり易くなる。このためロッド表面に凹凸(ポッ
プコーン)が発生し、またロッドの太さが不均一なり形
状不良を生じる。ロッド表面に凹凸が発生すると表面積
が増し不純物によって汚染され易くなる。ロッド表面の
凹凸を無くすにはロッドの表面温度を低くし析出反応を
穏やかにすればよいが、この場合にはロッドの成長が遅
くなり生産性とエネルギー効率を著しく低下させること
になる。
2. Description of the Related Art In general, semiconductor-grade polycrystalline silicon supplies a raw material gas into a high-temperature reactor through a nozzle provided at the bottom of a closed reactor, and heats the raw material gas on the surface of a red-heated silicon rod provided in the furnace. It is produced by decomposing or reducing with hydrogen to deposit and grow polycrystalline silicon on the rod surface. Recently, as the demand for semiconductor polycrystalline silicon has increased, large silicon rods have tended to be used because of the need to increase the production volume. As an example, the length of the rod has conventionally been about 1 m, but recently a rod having a length of about 2 m has been used, which inevitably leads to an increase in the size of the manufacturing apparatus. However, when the size of the reactor is increased, the flow rate of the source gas is reduced before reaching the upper part of the reactor, and the flow rate of the source gas is different between the upper part and the lower part of the furnace, so that the concentration tends to be uneven. For this reason, unevenness (popcorn) occurs on the rod surface, and the thickness of the rod becomes uneven, resulting in a shape defect. When irregularities occur on the rod surface, the surface area increases, and the rod is easily contaminated by impurities. In order to eliminate irregularities on the rod surface, the surface temperature of the rod may be lowered and the precipitation reaction may be moderated. However, in this case, the growth of the rod is slowed, and productivity and energy efficiency are remarkably reduced.

【0002】[0002]

【発明の解決課題】このように、従来はロッドの大型化
に伴い、表面が滑らかで凹凸がなく均一な太さのロッド
を効率よく製造できない問題がある。本発明は、このよ
うな従来の課題を解決するものであり、ロッド表面が滑
らかで形状不良のない大型の多結晶シリコンロッドを高
い生産性を維持して製造する方法とその装置を提供する
ことを目的とする。
As described above, conventionally, as the size of a rod is increased, there is a problem that a rod having a smooth surface, no irregularities, and a uniform thickness cannot be efficiently manufactured. The present invention solves such a conventional problem, and provides a method and apparatus for manufacturing a large-sized polycrystalline silicon rod having a smooth rod surface and no shape defect while maintaining high productivity. With the goal.

【0003】[0003]

【課題の解決手段:発明の構成】本発明によれば、 (イ)
密閉反応炉の底部に設けたノズルから原料ガスを高温下
の反応炉内に供給し、炉内に設けたシリコン棒に多結晶
シリコンを析出させる半導体級多結晶シリコンの製造に
おいて、シリコン棒上部に向かって原料ガスを供給する
上部用ノズルと、シリコン棒下部に向かって原料ガスを
供給する下部用ノズルとを用いることにより、シリコン
棒の上部および下部に供給される原料ガスの供給量を調
整すると共にそのガス濃度の変化を抑え、表面が平滑で
均一な太さの多結晶シリコン棒を製造することを特徴と
する半導体級多結晶シリコンの製造方法が用いられる。
また本発明によれば、(ロ)上部用ノズルとしてガス流速の
大きなノズルを用い、下部用ノズルとしてガス流速の小
さなノズルを用いる上記製造方法、 (ハ)上部用ノズルと
して噴射口の位置の高いノズルを用い、下部用ノズルと
して噴射口の位置の低いノズルを用いる上記製造方法、
(ニ)反応初期に上部用ノズルの流速と下部用ノズルの流
速を高める際に、上部用ノズルの流速を下部用ノズルの
流速よりも大きくし、反応の進行に伴い両ノズルの流速
比を小さくする上記製造方法が提供される。更に本発明
によれば、 (ホ)密閉反応炉の底部に原料供給ノズルを有
する半導体級多結晶シリコンの製造装置において、シリ
コン棒上部に向かって原料ガスを供給する上部用ノズル
と、シリコン棒下部に原料ガスを供給する下部用ノズル
が各々に設けられていることを特徴とする半導体級多結
晶シリコンの製造装置が提供される。
According to the present invention, there is provided:
In the production of semiconductor-grade polycrystalline silicon, a source gas is supplied from a nozzle provided at the bottom of a closed reactor into a high-temperature reactor, and polycrystalline silicon is deposited on a silicon rod provided in the furnace. By using the upper nozzle for supplying the raw material gas toward the bottom and the lower nozzle for supplying the raw material gas toward the bottom of the silicon rod, the supply amount of the raw gas supplied to the upper and lower parts of the silicon rod is adjusted. At the same time, a semiconductor grade polycrystalline silicon manufacturing method characterized by suppressing a change in the gas concentration and manufacturing a polycrystalline silicon rod having a smooth surface and a uniform thickness is used.
Further, according to the present invention, (b) the above production method using a nozzle with a high gas flow rate as the upper nozzle and using a nozzle with a lower gas flow rate as the lower nozzle, (c) a high position of the injection port as the upper nozzle Using a nozzle, the above manufacturing method using a nozzle having a low position of the injection port as a lower nozzle,
(D) When increasing the flow rate of the upper nozzle and the flow rate of the lower nozzle at the beginning of the reaction, make the flow rate of the upper nozzle larger than the flow rate of the lower nozzle, and reduce the flow rate ratio of both nozzles as the reaction proceeds. Is provided. Further, according to the present invention, (e) in a semiconductor-grade polycrystalline silicon manufacturing apparatus having a raw material supply nozzle at the bottom of a sealed reactor, an upper nozzle for supplying a raw material gas toward the upper part of the silicon rod, and a lower part of the silicon rod And a lower-level nozzle for supplying a source gas to the semiconductor-grade polycrystalline silicon.

【0004】半導体級多結晶シリコンは、一般に、分解
してシリコンを析出する気体材料、例えばモノシラン、
ジシラン、トリクロルシラン、四塩化珪素およびこれら
と水素の混合物などを高純度に精製した原料ガスを、高
純度のシリコン基体に高温下で接触させて熱分解ないし
水素還元させ、基体表面にシリコン結晶を析出させて製
造する。具体的な装置例としては、内部が密閉されたベ
ルジャ型の反応炉を用いている。反応炉の内部には、複
数本のシリコンロッドが立設されており、該ロッドの下
端は電極ホルダーによって支えられており、製造時に該
ロッドが赤熱するように通電される。また反応炉の底部
には多数のノズルが均一に配設されており、原料ガスが
該ノズルを通じて炉内に供給される。ノズルから供給さ
れた原料ガスは赤熱したシリコンロッドに接触して分解
還元され、ロッド表面にシリコンを析出する。この析出
反応によりシリコンロッド表面に多結晶シリコンが次第
に堆積しロッドの径が太くなりロッド表面積が増大す
る。
Semiconductor-grade polycrystalline silicon is generally a gaseous material that decomposes to deposit silicon, for example, monosilane,
Disilane, trichlorosilane, silicon tetrachloride and a mixture of these and hydrogen are purified to a high purity, and a raw material gas is brought into contact with a high-purity silicon substrate at a high temperature to be thermally decomposed or hydrogen reduced to form silicon crystals on the surface of the substrate. It is produced by precipitation. As a specific example of the apparatus, a bell jar type reaction furnace whose inside is sealed is used. Inside the reaction furnace, a plurality of silicon rods are erected, and the lower ends of the rods are supported by an electrode holder, and are supplied with electricity so that the rods glow red during manufacturing. Also, a number of nozzles are uniformly arranged at the bottom of the reaction furnace, and a raw material gas is supplied into the furnace through the nozzles. The raw material gas supplied from the nozzle comes into contact with the red-heated silicon rod, is decomposed and reduced, and deposits silicon on the rod surface. This deposition reaction causes polycrystalline silicon to gradually accumulate on the silicon rod surface, increasing the diameter of the rod and increasing the rod surface area.

【0005】この場合、炉底に設けたノズルから供給さ
れた原料ガスはシリコンロッド表面に接触して上方に流
れるにつれて原料ガス、例えばトリクロルシラン(TCS)
の分解析出反応が進むためTCSの濃度が低下し、シリコ
ンロッドの下部と上部で原料ガスの濃度が変化する。ま
た原料ガスが炉底からシリコンロッドに沿って上方に流
れるにつれて流速が低下するためにシリコンロッド上部
への原料ガスの供給量が不足し、原料ガスと反応生成ガ
スとの入替えが不十分になる虞がある。
[0005] In this case, the raw material gas supplied from the nozzle provided at the furnace bottom contacts the silicon rod surface and flows upward as the raw material gas, for example, trichlorosilane (TCS)
The concentration of TCS decreases due to the progress of the decomposition and precipitation reaction, and the concentration of the source gas changes at the lower and upper portions of the silicon rod. Further, the flow rate decreases as the raw material gas flows upward along the silicon rod from the furnace bottom, so that the supply amount of the raw material gas to the upper part of the silicon rod is insufficient, and the exchange of the raw material gas and the reaction product gas becomes insufficient. There is a fear.

【0006】そこで本発明では、シリコンロッドの上部
に向って原料ガスを供給する上部用ノズルと、シリコン
ロッドの下部に向って原料ガスを供給する下部用ノズル
を用い、ロッドの上部と下部に向って各々独立に原料ガ
スを供給する。上部用ノズルとして噴射口の位置を高く
したノズルを用い、下部用ノズルとして噴射口の位置を
低くしたノズルを用いることができる。この他に、噴射
する原料ガスの流速の異なるノズルを用いてもよく、ガ
ス流速の大きなノズルを上部用ノズルとし、ガス流速の
小さなノズルを下部用ノズルとして用いることができ
る。
Therefore, in the present invention, an upper nozzle for supplying a source gas toward the upper portion of the silicon rod and a lower nozzle for supplying a source gas toward the lower portion of the silicon rod are used. To supply the source gas independently. As the upper nozzle, a nozzle with a higher injection port can be used, and as the lower nozzle, a nozzle with a lower injection port can be used. In addition, nozzles having different flow rates of the source gas to be injected may be used. A nozzle having a high gas flow rate can be used as an upper nozzle, and a nozzle having a lower gas flow rate can be used as a lower nozzle.

【0007】本発明では、シリコンロッドの上部と下部
に上部用ノズルと下部用ノズルから原料ガスが独立に供
給されるので、シリコンロッドの上部表面と下部表面に
新鮮な原料ガスが供給され、かつ原料ガスと副生ガスの
入替えも十分に行なわれ、更に炉内のガスの流れも円滑
になるのでシリコンロッド表面での析出反応が良好に進
行する。
In the present invention, the raw material gas is independently supplied to the upper and lower parts of the silicon rod from the upper nozzle and the lower nozzle, so that the raw material gas is supplied to the upper and lower surfaces of the silicon rod, and The source gas and the by-product gas are sufficiently exchanged, and the gas flow in the furnace becomes smooth, so that the deposition reaction on the silicon rod surface proceeds favorably.

【0008】析出反応が進行するとロッドの径が増大す
るので原料ガスの供給量を増加しなければならない。従
って、ガス流速の異なる上部用ノズルと下部用ノズルを
用いた場合には、この供給量の増加と共に上部用ノズル
と下部用ノズルの流速を調節するとよい。具体的には、
反応初期においては上部用ノズルの流速(V1)を下部用ノ
ズルの流速(V2)よりも大きくし、反応が進むにつれて上
部用ノズルと下部用ノズルの流速比率(V1/V2) を小さく
する。一例として反応初期において、上部用ノズルの流
速(V1)を30m/s〜150m/sとし、一方下部用ノズルの流速
(V2)を20m/s〜50m/sとして反応を進め、ロッド径がある
程度太くなったときに上部用ノズルの流速を一定にし、
下部用ノズルの流速を上部用ノズルの流速よりもやや低
く保つ。
As the precipitation reaction progresses, the diameter of the rod increases, so the supply amount of the raw material gas must be increased. Therefore, when the upper nozzle and the lower nozzle having different gas velocities are used, the flow rate of the upper nozzle and the lower nozzle may be adjusted together with the increase in the supply amount. In particular,
In the initial stage of the reaction, the flow rate (V1) of the upper nozzle is set higher than the flow rate (V2) of the lower nozzle, and as the reaction proceeds, the flow rate ratio (V1 / V2) between the upper nozzle and the lower nozzle is reduced. As an example, in the initial stage of the reaction, the flow rate (V1) of the upper nozzle is 30 m / s to 150 m / s, while the flow rate of the lower nozzle is
(V2) 20m / s ~ 50m / s to advance the reaction, when the rod diameter becomes somewhat thicker, the flow rate of the upper nozzle is constant,
The flow rate of the lower nozzle is kept slightly lower than the flow rate of the upper nozzle.

【0009】反応初期に上部用ノズルの流速が大きいの
で、シリコンロッド上部まで原料ガスが十分に供給さ
れ、ロッド表面での原料ガスと反応生成ガスとの入替え
が促進される。一方、ロッド下部は原料ガスの供給ノズ
ルに近いのでガス流速が小さくても原料ガスと反応生成
ガスの入替えは比較的良好であり、その結果、シリコン
ロッド全体として反応が均一に進み、凹凸のない平滑な
表面を有し均一な太さのシリコンロッドが成長する。な
お、反応が進みロッド径がある程度太くなると表面の凹
凸が生じ難くなるので、上部用ノズルの流速を大きくす
る必要はない。
Since the flow rate of the upper nozzle is large at the beginning of the reaction, the source gas is sufficiently supplied to the upper portion of the silicon rod, and the exchange of the source gas and the reaction product gas on the rod surface is promoted. On the other hand, since the lower part of the rod is close to the source gas supply nozzle, the exchange of the source gas and the reaction product gas is relatively good even if the gas flow rate is small. As a result, the reaction progresses uniformly as a whole silicon rod without any irregularities. A silicon rod having a smooth surface and a uniform thickness grows. When the reaction proceeds and the rod diameter is increased to some extent, surface irregularities are less likely to occur, so it is not necessary to increase the flow rate of the upper nozzle.

【0010】以上のような流速の異なるノズルを用いた
2流速フィードの場合の他に噴出口の位置を変えた2段
フィードの場合も同様の効果を得ることができる。
Similar effects can be obtained in the case of a two-stage feed in which the position of the ejection port is changed, in addition to the case of the two-flow feed using nozzles having different flow rates as described above.

【0011】[0011]

【製造装置例】本発明に係る製造装置の一例を図に示
す。図1に示すように、反応炉10の基盤20の上側にはベ
ルジャ30が設けられ、内部が密閉されている。炉内には
種棒となる逆U字型のシリコンロッド50が複数本立設さ
れており、該ロッド50の両下端は炉底部の電極ホルダー
60によって支えられている。該ロッド50は電極ホルダー
60を通じて通電され赤熱される。炉底部には、ロッド上
部に向かって原料ガスを供給する上部用ノルズ70と、ロ
ッド下部に原料ガスを供給する下部用ノルズ80が設けら
てれいる。これら上部用ノズル70と下部用ノズル80の個
数はシリコンロッド50の本数に応じて適宜定められる。
これらノズル70、80は炉底に均一に配置されていればよ
く、互いに接近し又は離れていてもよい。図2(A)(B)に
示すように、上部用ノズル70は原料ガスが炉上部に向か
って流れ易いようにノズル口が下部ノズル80よりも高く
設けられている。また下部用ノズル80は、図2(B)に示
すように、原料ガスが周囲に拡散し易いようにノズル口
81の付近が肉薄に形成されている。なお下部用ノズル80
は図2(C)(D)に示すように、ノズル口81が上方に向って
広がる形状としてもよい。上部用ノズル70と下部用ノズ
ル80は、図3(A)(B)に示すように、一体に形成してもよ
い。図3において、ノズルは二重管によって構成されて
おり、内側に上部用ノズル70が形成され、外側に下部用
ノズル80が形成されている。下部用ノズル80のノズル口
81は原料ガスが周囲に拡散し易いように斜め上方に向か
って開口している。これら上部用ノズル70と下部用ノズ
ル80には原料ガスの供給管路90が各々接続している。供
給管路90は流量調整弁92を介して原料ガスの供給源に通
じている。原料ガスは供給管路90を経て上部用ノズル70
および下部用ノズル80に送られこれらノズル70、80から
炉内に供給される。原料ガスの流速は弁92によって調整
される。また反応後の排ガスは排出口93および排出管路
94を経て炉外に排出される。
[Example of manufacturing apparatus] An example of a manufacturing apparatus according to the present invention is shown in the figure. As shown in FIG. 1, a bell jar 30 is provided above the base 20 of the reaction furnace 10, and the inside is sealed. A plurality of inverted U-shaped silicon rods 50 serving as seed rods are erected in the furnace, and both lower ends of the rods 50 are electrode holders at the bottom of the furnace.
Supported by 60. The rod 50 is an electrode holder
It is energized through 60 and glows red. An upper nose 70 for supplying a source gas toward the upper part of the rod and a lower nose 80 for supplying a source gas to the lower part of the rod are provided at the furnace bottom. The number of these upper nozzles 70 and lower nozzles 80 is appropriately determined according to the number of silicon rods 50.
The nozzles 70 and 80 need only be uniformly arranged on the furnace bottom, and may be close to or apart from each other. As shown in FIGS. 2A and 2B, the upper nozzle 70 is provided with a nozzle port higher than the lower nozzle 80 so that the source gas can easily flow toward the upper part of the furnace. Also, as shown in FIG. 2 (B), the lower nozzle 80 has a nozzle opening so that the raw material gas can be easily diffused around.
The vicinity of 81 is formed thin. The lower nozzle 80
As shown in FIGS. 2 (C) and 2 (D), the nozzle opening 81 may have a shape expanding upward. The upper nozzle 70 and the lower nozzle 80 may be integrally formed as shown in FIGS. In FIG. 3, the nozzle is constituted by a double tube, in which an upper nozzle 70 is formed inside and a lower nozzle 80 is formed outside. Nozzle port of lower nozzle 80
Numeral 81 is open obliquely upward so that the source gas can easily diffuse to the surroundings. The upper nozzle 70 and the lower nozzle 80 are connected to a raw gas supply pipe 90, respectively. The supply line 90 communicates with a source gas supply source via a flow control valve 92. The raw material gas is supplied to the upper nozzle 70 through the supply line 90.
Then, it is sent to the nozzle 80 for the lower part and supplied from the nozzles 70 and 80 into the furnace. The flow rate of the source gas is adjusted by a valve 92. The exhaust gas after the reaction is discharged to the outlet 93 and the discharge line.
It is discharged outside the furnace through 94.

【0012】[0012]

【実施例および比較例】[Examples and Comparative Examples]

【実施例】図1に示す装置を用い、トリクロルシランと
水素とを原料ガスとして、上部ノズルの流速(V1)と下部
ノズルの流速(V2)を表1に示す範囲に調節して、多結晶
シリコンロッドを製造した。また図2に示すノズルを用
いたほかは同様の条件でロッドを製造した。これらの結
果を表1に纏めて示す。
EXAMPLE Using the apparatus shown in FIG. 1 and using trichlorosilane and hydrogen as raw material gases, the flow rate (V1) of the upper nozzle and the flow rate (V2) of the lower nozzle were adjusted to the ranges shown in Table 1 to obtain a polycrystal. A silicon rod was manufactured. A rod was manufactured under the same conditions except that the nozzle shown in FIG. 2 was used. The results are summarized in Table 1.

【比較例】上部ノズルと下部ノズルの区別がない従来の
装置を用いたほかは同様の条件でロッドを製造した。こ
の結果を表1に示す。
Comparative Example A rod was manufactured under the same conditions except that a conventional apparatus having no distinction between an upper nozzle and a lower nozzle was used. Table 1 shows the results.

【0013】[0013]

【表1】 ───────────────────────────────── V1(m/s) V2(m/s) 凹凸 形状良率(%) 備考 実施例1 170 85 無 85 2流速フィード 2 60 128 無 90 2段フィード 3 220 155 無 95 2重管ノズル 比較例1 100 有 38 1流速フィード 2 80 有 35 同上 ────────────────────────────────[Table 1] ───────────────────────────────── V1 (m / s) V2 (m / s) Good shape ratio (%) Remarks Example 1 170 85 No 85 Two-flow feed 2 60 128 No 90 Two-stage feed 3 220 155 No 95 Double-tube nozzle comparative example 1 100 Yes 38 1 Flow feed 280 Yes 35 Same as above ── ──────────────────────────────

【0014】[0014]

【発明の効果】本発明によれば、ロッド表面が滑らかで
形状不良のない大型の多結晶シリコンロッドを高い生産
性を維持して製造することができる。
According to the present invention, a large-sized polycrystalline silicon rod having a smooth rod surface and no shape defect can be manufactured while maintaining high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る製造装置の概略図。FIG. 1 is a schematic diagram of a manufacturing apparatus according to the present invention.

【図2】 本発明に係る装置に用いるノズルの概略断面
図であり、(A)は上部ノズル、(B)及び(C)は下部ノ
ズルを示す。
FIG. 2 is a schematic sectional view of a nozzle used in the apparatus according to the present invention, wherein (A) shows an upper nozzle, and (B) and (C) show a lower nozzle.

【図3】 本発明に係る装置に用いる他のノズルの概略
断面図。
FIG. 3 is a schematic sectional view of another nozzle used in the apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

10-反応炉、20-基盤、30-ベルジャ、50-シリコンロッ
ド、60-電極ホルダー、70-上部用ノズル、80-下部用ノ
ズル、90-供給管路、 92-調整弁、 93-排出口、 94
-排出管路
10-reactor, 20-base, 30-bell jar, 50-silicon rod, 60-electrode holder, 70-upper nozzle, 80-lower nozzle, 90-supply line, 92-regulating valve, 93-outlet , 94
-Discharge pipeline

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−295297(JP,A) 特開 平1−208312(JP,A) (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 C01B 33/02────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-295297 (JP, A) JP-A-1-2088312 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C30B 1/00-35/00 C01B 33/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 密閉反応炉の底部に設けたノズルから原
料ガスを高温下の反応炉内に供給し、炉内に設けたシリ
コン棒に多結晶シリコンを析出させる半導体級多結晶シ
リコンの製造において、シリコン棒上部に向かって原料
ガスを供給する上部用ノズルと、シリコン棒下部に向か
って原料ガスを供給する下部用ノズルとを用いることに
より、シリコン棒の上部および下部に供給される原料ガ
スの供給量を調整すると共にガス濃度の変化を抑え、表
面が平滑で均一な太さの多結晶シリコン棒を製造するこ
とを特徴とする半導体級多結晶シリコンの製造方法。
1. In the production of semiconductor-grade polycrystalline silicon, a raw material gas is supplied into a reaction furnace at a high temperature from a nozzle provided at the bottom of a closed reaction furnace, and polycrystalline silicon is deposited on a silicon rod provided in the furnace. By using an upper nozzle for supplying the raw material gas toward the upper part of the silicon rod and a lower nozzle for supplying the raw material gas toward the lower part of the silicon rod, the raw material gas supplied to the upper part and the lower part of the silicon rod is A method for producing semiconductor-grade polycrystalline silicon, comprising adjusting a supply amount and suppressing a change in gas concentration to produce a polycrystalline silicon rod having a smooth surface and a uniform thickness.
【請求項2】 上部用ノズルとしてガス流速の大きなノ
ズルを用い、下部用ノズルとしてガス流速の小さなノズ
ルを用いる請求項1の製造方法。
2. The method according to claim 1, wherein a nozzle having a large gas flow rate is used as the upper nozzle, and a nozzle having a small gas flow rate is used as the lower nozzle.
【請求項3】 上部用ノズルとして噴射口の位置の高い
ノズルを用い、下部用ノズルとして噴射口の位置の低い
ノズルを用いる請求項1の製造方法。
3. The method according to claim 1, wherein a nozzle having a high injection port is used as the upper nozzle, and a nozzle having a low injection port is used as the lower nozzle.
【請求項4】 反応初期に上部用ノズルの流速と下部用
ノズルの流速を高める際に、上部用ノズルの流速を下部
用ノズルの流速よりも大きくし、反応の進行に伴い両ノ
ズルの流速比を小さくする請求項1の製造方法。
4. When increasing the flow rate of the upper nozzle and the flow rate of the lower nozzle in the initial stage of the reaction, the flow rate of the upper nozzle is made larger than the flow rate of the lower nozzle. 2. The method according to claim 1, wherein:
【請求項5】 密閉反応炉の底部に原料供給ノズルを有
する半導体級多結晶シリコンの製造装置において、シリ
コン棒上部に向かって原料ガスを供給する上部用ノズル
と、シリコン棒下部に原料ガスを供給する下部用ノズル
が各々に設けられていることを特徴とする半導体級多結
晶シリコンの製造装置。
5. A semiconductor-grade polycrystalline silicon manufacturing apparatus having a raw material supply nozzle at the bottom of a closed reaction furnace, an upper nozzle for supplying a raw material gas toward an upper part of a silicon rod, and a raw material gas for supplying a lower part of a silicon rod. An apparatus for producing semiconductor-grade polycrystalline silicon, wherein each of the lower nozzles is provided.
JP32697691A 1991-11-15 1991-11-15 Method and apparatus for producing semiconductor grade polycrystalline silicon Expired - Lifetime JP2867306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32697691A JP2867306B2 (en) 1991-11-15 1991-11-15 Method and apparatus for producing semiconductor grade polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32697691A JP2867306B2 (en) 1991-11-15 1991-11-15 Method and apparatus for producing semiconductor grade polycrystalline silicon

Publications (2)

Publication Number Publication Date
JPH05139891A JPH05139891A (en) 1993-06-08
JP2867306B2 true JP2867306B2 (en) 1999-03-08

Family

ID=18193911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32697691A Expired - Lifetime JP2867306B2 (en) 1991-11-15 1991-11-15 Method and apparatus for producing semiconductor grade polycrystalline silicon

Country Status (1)

Country Link
JP (1) JP2867306B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013543A1 (en) 2007-03-19 2008-10-02 Chisso Corp. Apparatus and method for producing high purity polycrystalline silicon
EP2039653A2 (en) 2007-09-20 2009-03-25 Mitsubishi Materials Corporation Reactor for polycrystalline silicon and polycrystalline silicon production method
EP2077252A2 (en) 2007-11-28 2009-07-08 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
EP2108619A2 (en) 2008-03-21 2009-10-14 Mitsubishi Materials Corporation Polycrystalline silicon reactor
WO2010029894A1 (en) 2008-09-09 2010-03-18 チッソ株式会社 High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
JP2010195597A (en) * 2009-02-20 2010-09-09 Mitsubishi Materials Corp Apparatus for producing polycrystalline silicon
WO2011027803A1 (en) 2009-09-02 2011-03-10 東洋炭素株式会社 Seed holding member and method for producing polycrystalline silicon using the seed holding member

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123583A1 (en) 2004-06-22 2005-12-29 Shin-Etsu Film Co., Ltd. Method for producing polycrystalline silicon and polycrystalline silicon for solar cell produced by the method
US7922814B2 (en) 2005-11-29 2011-04-12 Chisso Corporation Production process for high purity polycrystal silicon and production apparatus for the same
JP5205776B2 (en) * 2007-03-12 2013-06-05 Jnc株式会社 Method and apparatus for producing solid product
JP5428303B2 (en) * 2007-11-28 2014-02-26 三菱マテリアル株式会社 Polycrystalline silicon manufacturing method
EP2271788A2 (en) * 2008-03-26 2011-01-12 GT Solar Incorporated Systems and methods for distributing gas in a chemical vapor deposition reactor
CN102639438B (en) * 2009-11-25 2016-04-13 戴纳泰克工程有限公司 For the production of reactor and the method for silicon
JP5360147B2 (en) * 2011-07-11 2013-12-04 三菱マテリアル株式会社 Polycrystalline silicon reduction furnace
JP5699060B2 (en) * 2011-09-20 2015-04-08 信越化学工業株式会社 Method for producing polycrystalline silicon
NO334776B1 (en) 2011-09-26 2014-05-26 Dynatec Engineering As Reactor and process for producing silicon by chemical vapor deposition
JP5829547B2 (en) * 2012-02-24 2015-12-09 信越化学工業株式会社 Polycrystalline silicon rod and polycrystalline silicon production equipment
JP5917359B2 (en) * 2012-10-16 2016-05-11 信越化学工業株式会社 Method for supplying raw material gas for producing polycrystalline silicon and polycrystalline silicon
JP5859626B2 (en) * 2014-11-20 2016-02-10 信越化学工業株式会社 Polycrystalline silicon manufacturing apparatus and polycrystalline silicon manufacturing method
JP6216029B2 (en) * 2016-12-14 2017-10-18 信越化学工業株式会社 Method for producing polycrystalline silicon rod
CN114105147B (en) * 2021-12-17 2023-05-23 亚洲硅业(青海)股份有限公司 Polycrystalline silicon reduction furnace

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013543A1 (en) 2007-03-19 2008-10-02 Chisso Corp. Apparatus and method for producing high purity polycrystalline silicon
EP2039653A2 (en) 2007-09-20 2009-03-25 Mitsubishi Materials Corporation Reactor for polycrystalline silicon and polycrystalline silicon production method
US8231724B2 (en) 2007-09-20 2012-07-31 Mitsubishi Materials Corporation Reactor for polycrystalline silicon and polycrystalline silicon production method
EP2077252A2 (en) 2007-11-28 2009-07-08 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
JP2009149495A (en) * 2007-11-28 2009-07-09 Mitsubishi Materials Corp Polycrystalline silicon manufacturing apparatus and manufacturing method
US8329132B2 (en) 2007-11-28 2012-12-11 Mitsubishi Materials Corporation Polycrystalline silicon manufacturing apparatus and manufacturing method
EP2108619A2 (en) 2008-03-21 2009-10-14 Mitsubishi Materials Corporation Polycrystalline silicon reactor
US8703248B2 (en) 2008-03-21 2014-04-22 Mitsubishi Materials Corporation Polycrystalline silicon reactor
WO2010029894A1 (en) 2008-09-09 2010-03-18 チッソ株式会社 High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same
US8658118B2 (en) 2008-09-09 2014-02-25 Jnc Corporation High purity crystalline silicon, high purity silicon tetrachloride for processes for producing the same
JP2010195597A (en) * 2009-02-20 2010-09-09 Mitsubishi Materials Corp Apparatus for producing polycrystalline silicon
WO2011027803A1 (en) 2009-09-02 2011-03-10 東洋炭素株式会社 Seed holding member and method for producing polycrystalline silicon using the seed holding member

Also Published As

Publication number Publication date
JPH05139891A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
JP2867306B2 (en) Method and apparatus for producing semiconductor grade polycrystalline silicon
KR101577452B1 (en) Polycrystalline silicon reactor
KR101821851B1 (en) Production method for polycrystalline silicon, and reactor for polycrystalline silicon production
WO1992005577A1 (en) Method and apparatus for growing compound semiconductor crystals
KR19990023573A (en) Manufacturing method of high pure silicon particle
TW201002853A (en) Systems and methods for distributing gas in a chemical vapor deposition reactor
KR850001944B1 (en) Process for increasing silicon thermal decomposition rates from silicon halide-hydrogen reaction gases
JP2010241673A (en) Apparatus and method of manufacturing polysilicon
JP4692324B2 (en) High purity polycrystalline silicon production equipment
CN201232028Y (en) Polycrystalline silicon reducing furnace with adjustable air inlet pipe nozzle
JP3345929B2 (en) Semiconductor grade polycrystalline silicon production reactor
JPS5945917A (en) Continuous preparation of polycrystalline silicon
JPH06191818A (en) Production of polycrystal silicon
GB1570131A (en) Manufacture of silicon
WO2014061212A1 (en) Method for supplying source gas for producing polycrystalline silicon and polycrystalline silicon
JPH05138015A (en) Nozzle for producing semiconductor grade polycrystalline silicon
CN111936420B (en) Method for producing polycrystalline silicon rod and reaction furnace
CA2938453C (en) Method for producing polycrystalline silicon
JPH02279513A (en) Production of high-purity polycrystal silicon
JPH0694367B2 (en) Method for producing polycrystalline silicon
JPS62123009A (en) Production of silicon and production unit therefor
EP0045600B1 (en) Improved method for producing semiconductor grade silicon
JP3143445B2 (en) Manufacturing method of synthetic quartz
JPS6240720A (en) Vapor phase epitaxial growing device
JPH01208311A (en) Production of granular silicon and apparatus therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081225

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091225

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091225

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101225

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20101225

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20111225

EXPY Cancellation because of completion of term