JPS6366430B2 - - Google Patents

Info

Publication number
JPS6366430B2
JPS6366430B2 JP56089818A JP8981881A JPS6366430B2 JP S6366430 B2 JPS6366430 B2 JP S6366430B2 JP 56089818 A JP56089818 A JP 56089818A JP 8981881 A JP8981881 A JP 8981881A JP S6366430 B2 JPS6366430 B2 JP S6366430B2
Authority
JP
Japan
Prior art keywords
base
region
semiconductor layer
impurity density
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56089818A
Other languages
Japanese (ja)
Other versions
JPS5743475A (en
Inventor
Junichi Nishizawa
Kentaro Nakamura
Takashi Kiregawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8981881A priority Critical patent/JPS5743475A/en
Publication of JPS5743475A publication Critical patent/JPS5743475A/en
Publication of JPS6366430B2 publication Critical patent/JPS6366430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1004Base region of bipolar transistors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超高速・大電力動作が行え、しか
も高能率な半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a highly efficient semiconductor device that can perform ultra-high-speed, high-power operation.

〔従来の技術〕[Conventional technology]

従来の半導体装置は、制御電極であるベース中
を主電流が通るため、ベースの不純物密度をある
程度以上高くすることができず、ベース横方向抵
抗が大きくなり、ベース抵抗Rとその静電容量C
から決まるR・C時定数が大きくなるので、使用
可能な周波数上限が制限される。すなわち、従来
のトランジスタでは、素子が阻止状態から導通状
態に移行する際(以下この状態をターン・オンと
称す)には、ベースが有するR・C時定数の大き
さのため、オン状態領域の拡がりを速やかに制御
できず、ターン・オフ時間を短くできずにいる。
また、導通状態から阻止状態に移行する際(以下
この状態をターン・オフと称す)には、オン状態
で接合内に注入されている非常に多くの多数キヤ
リア、少数キヤリアが拡散によつて移動し、電極
に吸収され消滅するので、時間が長くかかつてい
る。さらに、オフすべくベース電極端子を介して
ベースに印加された電圧も、ベースの横方向抵抗
が大きいため、ベース端子から離れた遠い領域に
はベース電圧の影響が強くおよばず、わずかにベ
ース電極近傍をオフ状態にするのみで、ベース領
域全部からキヤリアが排出されるターン・オフ時
間が長くなつてしまつている。
In conventional semiconductor devices, since the main current passes through the base, which is the control electrode, it is not possible to increase the impurity density of the base beyond a certain level, and the lateral resistance of the base increases, causing the base resistance R and its capacitance C to increase.
Since the R·C time constant determined by becomes large, the upper limit of usable frequency is limited. In other words, in conventional transistors, when the element transitions from a blocking state to a conducting state (hereinafter this state is referred to as turn-on), the on-state region is The spread cannot be controlled quickly and the turn-off time cannot be shortened.
Furthermore, when transitioning from a conducting state to a blocking state (hereinafter this state is referred to as turn-off), a large number of majority carriers and minority carriers injected into the junction in the on state move by diffusion. However, since it is absorbed by the electrode and disappears, it takes a long time. Furthermore, since the lateral resistance of the base is large, the voltage applied to the base via the base electrode terminal to turn it off does not strongly affect the far region away from the base terminal, and the voltage applied to the base electrode is slightly Simply turning off the vicinity increases the turn-off time during which the carrier is ejected from the entire base region.

また、トランジスタにおいても、ベースの横方
向抵抗が大きくなることにより、ベース電極に加
えた電圧の効果がベース領域のベース電極から離
れた部分には強くおよばず使用周波数が制限され
る。
Furthermore, in transistors as well, as the lateral resistance of the base increases, the effect of the voltage applied to the base electrode is not strong enough to reach parts of the base region away from the base electrode, which limits the usable frequency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

すなわち、従来の半導体装置は、超高速・大電
力動作ができず、能率が悪いという問題点があつ
た。
That is, conventional semiconductor devices have the problem of being incapable of ultra-high-speed, high-power operation and of poor efficiency.

これに対し、サイリスタにおいては、ベース横
方向抵抗を実質的に減少すべく、ベース領域の陰
極との接合側に接してベース領域と同導電型の高
不純物密度領域を設け、それに多数の小穴をあけ
てベース領域がつらぬいて陰極領域に接している
構造(特公昭44−30535号公報)とか、ベース領
域の両側の接合から離れたベース領域中に同様に
多数の小穴をあけたベース領域と同導電型の高不
純物密度層を形成した構造(特開昭49−77585号
公報)が提案されているが、前者はこの高不純物
密度領域が比較的密度の高い陰極側の層に接合し
ているため、空乏層ののびが少なく、分布容量が
大きく、スイツチング時間が長くなるという欠点
があつた。また、後者では高不純物密度領域がベ
ースの中程にあるため、前記の欠点の他に製造工
程数が多くなるという欠点があつた。
On the other hand, in a thyristor, in order to substantially reduce the base lateral resistance, a high impurity density region of the same conductivity type as the base region is provided in contact with the side of the base region that is connected to the cathode, and a large number of small holes are formed in the region. The structure is the same as the structure in which the base region runs through and is in contact with the cathode region (Japanese Patent Publication No. 44-30535), or the base region in which many small holes are similarly drilled in the base region away from the joints on both sides of the base region. A structure in which a conductive type high impurity density layer is formed has been proposed (Japanese Patent Laid-Open No. 77585/1985), but in the former, this high impurity density region is bonded to a relatively high density layer on the cathode side. Therefore, the depletion layer does not extend much, the distributed capacitance is large, and the switching time becomes long. Furthermore, in the latter case, since the high impurity density region is located in the middle of the base, in addition to the above-mentioned drawback, the number of manufacturing steps is increased.

また、トランジスタにおいては、ベース領域の
両側の接合から離れたベース領域中にベース領域
と同導電型の高不純物密度領域を埋込んだ構造
(特開昭50−26480号公報、特開昭52−5273号公
報)や、ベースコレクタ接合を中心としてベース
領域とコレクタ領域にベース領域と同一導電型の
高不純物密度領域を埋込んだ構造(特開昭52−
22885号公報)が提案されているが、前者はこの
高不純物密度領域による空乏層ののびが少なくス
イツチング時間が長くなるのと、製造工程が多く
なる欠点を有し、また、後者では、ベースコレク
タ接合の分布容量が大きくなるためにスイツチン
グ時間が長くなり、また、ベースコレクタ間耐圧
が減少し、取り扱い電力が減少するといつた欠点
を有している。
In addition, transistors have a structure in which a high impurity density region of the same conductivity type as the base region is buried in the base region away from the junctions on both sides of the base region (Japanese Patent Application Laid-Open No. 50-26480, 5273), and a structure in which a high impurity density region of the same conductivity type as the base region is buried in the base region and collector region around the base-collector junction (Japanese Patent Application Laid-Open No.
22885), but the former has the drawbacks that the depletion layer does not extend due to this high impurity density region and the switching time becomes long, and the manufacturing process is increased, and the latter has the disadvantage that the base collector Disadvantages include an increase in the distributed capacitance of the junction, which increases the switching time, and a decrease in the base-collector breakdown voltage, resulting in a decrease in the handling power.

この発明は、上記従来の欠点を除去するために
なされたものであり、その目的は超高速・大電力
動作が行え、しかも高能率、かつ直流遮断にも適
用できる新規なトランジスタ半導体装置を提供す
ることにある。
This invention was made to eliminate the above-mentioned drawbacks of the conventional devices, and its purpose is to provide a novel transistor semiconductor device that can operate at ultra-high speed and with high power, has high efficiency, and can also be applied to DC interruption. There is a particular thing.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体装置は、おおよそ1×
1011cm-3から1016cm-3の不純物密度を有する低不
純物密度領域よりなる第1の半導体層と、この第
1の半導体層と逆導電型の第2の半導体層と、第
1の半導体層と同導電型の第3の半導体層とで形
成されるトランジスタにおいて、第2の半導体層
中に、低不純物密度のよりなる第1の半導体層と
同一平面上に並んで第1の半導体層のみに接す
る、第2の半導体層と同一導電型のおおよそ1×
1017cm-3以上の不純物密度を有する高不純物密度
の半導体領域をほぼ平行線状に形成し、第2の半
導体層中の高不純物密度の半導体領域をベース電
極としたものである。
The semiconductor device according to the present invention has approximately 1×
a first semiconductor layer consisting of a low impurity density region having an impurity density of 10 11 cm -3 to 10 16 cm -3 ; a second semiconductor layer having a conductivity type opposite to that of the first semiconductor layer; In a transistor formed of a semiconductor layer and a third semiconductor layer of the same conductivity type, the first semiconductor layer is arranged in the second semiconductor layer on the same plane as the first semiconductor layer of low impurity density. Approximately 1× of the same conductivity type as the second semiconductor layer, in contact with the layer only
High impurity density semiconductor regions having an impurity density of 10 17 cm -3 or more are formed in substantially parallel lines, and the high impurity density semiconductor regions in the second semiconductor layer are used as base electrodes.

〔作用〕[Effect]

この発明においては、ほぼ平行線状に形成した
高不純物密度の半導体領域により第2の半導体層
(ベース)の横方向抵抗が低減するとともに、第
1の半導体層(コレクタ)との間の分布容量が減
少する。
In this invention, the lateral resistance of the second semiconductor layer (base) is reduced by the high impurity density semiconductor regions formed in substantially parallel lines, and the distributed capacitance between the second semiconductor layer (base) and the first semiconductor layer (collector) is reduced. decreases.

〔実施例〕〔Example〕

以下、図面を参照してこの発明のトランジスタ
を詳細に説明する。
Hereinafter, the transistor of the present invention will be explained in detail with reference to the drawings.

第1図はこの発明のnpn型トランジスタの一例
である。
FIG. 1 shows an example of an npn type transistor of the present invention.

n型の第1層6、p型の第2層7、n型の第3
層8の3層構造を有しており、ベースである第2
層7中には、比較的不純物密度の低いp領域と同
一平面上に並んで第3層8と接する比較的不純物
密度の高いp+領域9を有し、これらのp+領域9
はほとんどすべて互いに接続されている。p+
域9の効果は、ベースの横方向抵抗が減少するこ
とによりベース端子から遠い領域にまでベースに
加えた電圧の効果がすばやくおよび、また、第3
層8中に空乏層が拡がることにより分布容量が低
減するほか、キヤリアの流量の制御が容易に行え
る。トランジスタの場合もpnp型、pnip型、npin
型でも同様であることはもちろんである。
n-type first layer 6, p-type second layer 7, n-type third layer
It has a three-layer structure with layer 8, and the second layer is the base.
The layer 7 has a p + region 9 with a relatively high impurity density, which is arranged on the same plane as the p region with a relatively low impurity density and is in contact with the third layer 8.
are almost all connected to each other. The effect of the p + region 9 is that the lateral resistance of the base is reduced, so that the effect of the voltage applied to the base quickly extends to the region far from the base terminal, and
By expanding the depletion layer in the layer 8, the distributed capacitance is reduced, and the flow rate of the carrier can be easily controlled. In the case of transistors, there are also pnp type, pnip type, npin
Of course, the same applies to types.

この発明では以上の説明のように、ベース中に
あるP+層からn-層あるいはn+層へ空乏層を容易
に拡げることによりキヤリアの制御を十分に行う
ことができるトランジスタで、ベースのp+領域
の総面積を接合全面積の例えば半分以下としてベ
ースをつきぬける主電流の妨げとならないように
して、かつベース抵抗を下げるためにベース中の
p+層の形状に特徴を有している。
As explained above, this invention is a transistor in which carriers can be sufficiently controlled by easily expanding the depletion layer from the P + layer in the base to the n - layer or n + layer. The total area of the + region should be, for example, less than half of the total area of the junction so that it does not interfere with the main current passing through the base, and in order to lower the base resistance,
It is characterized by the shape of the p + layer.

このベースのp+領域はほぼ平行線状に配列さ
れれば、ベース抵抗を減少させるために一層効果
がある。
It is more effective to reduce the base resistance if the p + regions of the base are arranged in substantially parallel lines.

第2図は、第1図の第2層7だけにp+領域9
をほぼ平行線状に配列した場合について図中下側
からみた斜視図である。p領域2中にp+領域9
がほぼ平行線状に所定の間隔をへだてて配列され
ている様子がわかる(以下これをビーム型と称
し、ビーム型を持つたベースをビーム・ベースと
称す)。このようにp+領域をビーム型に配列した
場合、接合全面積に占めるp+領域の割合は最も
小さくなる。すなわち、主電流を妨げる度合が最
も少なく、また、分布容量とベース抵抗を非常に
小さくできる。ベースのCR時定数が小さくなる
ことによつて動作速度が非常に速くなる。ベース
中のp+領域9が主電流通路に面していて電流が
均一に流れるために大面積化、すなわち大電力化
も容易にできる。
FIG. 2 shows a p + region 9 only in the second layer 7 of FIG.
FIG. 3 is a perspective view of a case where the wafers are arranged in substantially parallel lines, as seen from the bottom side of the figure. p + region 9 in p region 2
It can be seen that the beams are arranged in substantially parallel lines at predetermined intervals (hereinafter, this will be referred to as a beam type, and the base having the beam type will be referred to as a beam base). When the p + regions are arranged in a beam shape in this way, the ratio of the p + regions to the total junction area becomes the smallest. That is, the degree of interference with the main current is minimal, and the distributed capacitance and base resistance can be made very small. By reducing the CR time constant of the base, the operating speed becomes very fast. Since the p + region 9 in the base faces the main current path and current flows uniformly, it is possible to easily increase the area, that is, increase the power.

第3図はビーム・ベースの応用例で、第2図と
同じ位置から第2層7をみたものである。ビーム
状のp+領域9を同じく線状のp+領域11によつ
て互いに接続し、その間隔を前者ビーム状p+
域9の間隔の10倍以上にしたものである。こうす
ることにより、ベース抵抗が各々1/10程度以下
に減少する。この形状のベースはどの方向にもベ
ースの横方向抵抗が小さくなる。ベース抵抗が非
常に小さくなつているにもかかわらず、製造に際
し、ビーム状のp+領域9が途中でとぎれたとし
ても全面にわたつてp+領域接続が保てる利点を
有するので、第2図に示されている半導体装置に
比べて大電流を流すのに適している。また、それ
ぞれ逆の導電型を有する構造の場合には、p+
p領域は、n+,n領域となるのはもちろんであ
る。
FIG. 3 shows an example of a beam-based application, showing the second layer 7 from the same position as in FIG. The beam-shaped p + regions 9 are connected to each other by linear p + regions 11, and the spacing between the two is ten times or more the spacing between the former beam-like p + regions 9. By doing so, each base resistance is reduced to about 1/10 or less. This shape of the base reduces the lateral resistance of the base in all directions. Even though the base resistance has become extremely small, it has the advantage that even if the beam-shaped p + region 9 is interrupted in the middle during manufacturing, the p + region connection can be maintained over the entire surface. It is suitable for passing large currents compared to the semiconductor device shown. In addition, in the case of structures with opposite conductivity types, p + ,
Of course, the p region becomes an n + , n region.

この発明のトランジスタは、ベース中のp+
を第3図のように形成することにより、ベース抵
抗を非常に小さくすることができて、スイツチン
グ特性の向上、温度上昇時の安定性の向上に大き
く寄与するものである。この発明のトランジスタ
は、主電流通路がベース層にp+層がビーム型に
分割されていることにより、エミツタからベース
への注入効率がきわめて良好で、しかもベース抵
抗が小さくて、スイツチング速度が速いという特
徴を持つことになる。
In the transistor of this invention, by forming the p + layer in the base as shown in Figure 3, the base resistance can be made extremely small, resulting in improved switching characteristics and stability when temperature rises. This will make a major contribution. The transistor of this invention has an extremely good injection efficiency from the emitter to the base because the main current path is divided into the base layer and the p + layer in a beam shape, and the base resistance is small and the switching speed is fast. It will have the following characteristics.

この発明の半導体装置の構造は、放射線センサ
半導体装置、例えば光サイリスタや光トランジス
タとしても使用でき、入射光により発生したキヤ
リアの移動はベースの高不純物密度領域を通るこ
とによりすばやく移動するため、やはり高速化、
大面積化が図れる。もちろん光に限らず、放射線
全般に対して同様である。
The structure of the semiconductor device of the present invention can also be used as a radiation sensor semiconductor device, such as a photothyristor or a phototransistor, since carriers generated by incident light move quickly by passing through the high impurity density region of the base. Speeding up,
A large area can be achieved. Of course, this applies not only to light but also to radiation in general.

次に、第1図に示したこの発明の半導体装置の
製造方法について以下に説明する。第4図a乃至
hはその製造工程の例を断面で示した工程図であ
る。
Next, a method for manufacturing the semiconductor device of the present invention shown in FIG. 1 will be described below. FIGS. 4a to 4h are process diagrams showing an example of the manufacturing process in cross section.

比抵抗1KΩ―cm程度のシリコンn-型基板3を
100μm程度にエツチングして(a)、一方の面に歪補
正したp+領域5(不純物密度1×1021cm-3程度)
を1050℃で2μm程度エピタキシヤル成長し(b)、p+
領域5を幅5μm、間隔15μmのビーム状に残して
不要の部分を2.5μmエツチングする(c)。ビーム状
にp+領域5の残つた表面全面にp層2(1×1016
cm-3程度)を1050℃で5μmエピタキシヤル成長し
(d)、さらにその上に歪補正したn+層1(1×1021
cm-3)を1μmエピタキシヤル成長する(e)。
A silicon n - type substrate 3 with a specific resistance of about 1KΩ-cm
(a) Etched to about 100 μm and strain-corrected p + region 5 on one side (impurity density about 1 × 10 21 cm -3 )
is epitaxially grown to about 2 μm at 1050℃ (b), p +
Area 5 is left in the form of a beam with a width of 5 μm and an interval of 15 μm, and the unnecessary portion is etched by 2.5 μm (c). P layer 2 (1×10 16
cm -3 degree) was epitaxially grown to 5 μm at 1050°C.
(d), and further on top of that is a strain-corrected n + layer 1 (1×10 21
cm -3 ) to 1 μm epitaxial growth (e).

いずれか一方の面から、一部を階段状にエツチ
ングしてビーム状のp+領域5の一部を露出させ
(f)、基板3の裏面を10μmエツチングした後、基
板裏面に歪補正したn+層4を1000℃で全面拡散
して形成し(g)、最後に、各電極端子として金属1
2をつけて完成する(h)。シリコンn-型基板3は、
コレクタ耐圧を増すためには、例えば300〜
500μmとしたほうが望ましい。もちろん、このよ
うに厚くすると導通時の抵抗は極端に増大する。
ここで、ビーム状p+領域5の形成には、エピタ
キシヤル成長ではなく、1100℃で10分不純物をつ
けた後、1200℃で5分酸素中で熱処理する選択拡
散法、イオン打込量1×1015cm-2、加速電圧
300KeVで選択的にイオン打込み後、1100℃で30
分熱処理する方法等種々使用できるし、また、他
の領域の形成についても同様である。ベース端子
の取出しは表面からベース領域と同導電型の高不
純物密度領域を深い拡散によつて形成してもよ
い。また、各領域の形成順序もこの例と異なつて
いてもよい。
A part of the beam-shaped p + region 5 is exposed by etching a part in a stepwise manner from either side.
(f), After etching the back surface of the substrate 3 by 10 μm, a strain-corrected n + layer 4 is diffused over the entire surface at 1000°C on the back surface of the substrate (g), and finally, metal 1 is formed as each electrode terminal.
Add 2 to complete (h). The silicon n - type substrate 3 is
In order to increase the collector voltage resistance, for example, 300~
It is preferable to set it to 500μm. Of course, if the thickness is increased in this way, the resistance during conduction will be extremely increased.
Here, the beam-shaped p + region 5 is formed not by epitaxial growth but by a selective diffusion method in which impurities are added at 1100°C for 10 minutes and then heat-treated in oxygen at 1200°C for 5 minutes, and the ion implantation amount is 1. ×10 15 cm -2 , acceleration voltage
After selective ion implantation at 300KeV, 30 at 1100℃
Various methods such as heat treatment can be used, and the same applies to the formation of other regions. To take out the base terminal, a high impurity density region of the same conductivity type as the base region may be formed from the surface by deep diffusion. Furthermore, the order in which the regions are formed may also be different from this example.

以上構造例を示したが、この発明はこれに限ら
れるものではなく、それぞれ逆導電型のものでも
よいことはいうまでもない。
Although the structural example has been shown above, the present invention is not limited to this, and it goes without saying that structures of opposite conductivity type may be used.

製作例に述べた不純物密度、厚さ、温度、時間
等すべての数値はここにあげた例に限ることな
く、設計条件によつていろいろ変えて実現するも
のであり、歪補正も場合によつては必要でない。
高不純物密度領域すなわち、p+領域5の不純物
密度は、例えば1017cm-3乃至1021cm-3、また、低
不純物密度領域すなわち、n-型基板3の不純物
密度は、例えば1011cm-3乃至1016cm-3のように変
え得る。
All numerical values such as impurity density, thickness, temperature, time, etc. mentioned in the production examples are not limited to the examples listed here, but can be realized by changing them in various ways depending on the design conditions, and distortion correction may also be applied depending on the case. is not necessary.
The impurity density of the high impurity density region, that is, the p + region 5 is, for example, 10 17 cm -3 to 10 21 cm -3 , and the impurity density of the low impurity density region, that is, the n - type substrate 3 is, for example, 10 11 cm -3 to 10 16 cm -3 .

また、材料はシリコンに限られず、ゲルマニウ
ムでもよいし、化合物半導体であるガリウム砒
素、ガリウム・アルミニウム・砒素、インジウ
ム・砒素・燐などでもよく、また、エピタキシヤ
ル成長を例にとつて説明したが、ヘテロ接合を形
成して製造してもよい。
Furthermore, the material is not limited to silicon, but may also be germanium, or compound semiconductors such as gallium arsenide, gallium aluminum arsenic, indium arsenic phosphorus, etc.Also, although epitaxial growth has been explained as an example, It may also be manufactured by forming a heterojunction.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の半導体装置
は、普通のトランジスタに比べてベースの横方向
抵抗が小さくなることおよび従来の高不純物密度
領域をベース中に形成した通常のものより、ベー
ス領域の分布容量が小さくなるから、従来のもの
に比べて高速化でき、かつ大電力化のための大面
積化が容易になる。また、この構造をもつたトラ
ンジスタは、ベース入力信号をいろいろと設計に
より変えることができる。すなわち、ベース領域
の比較的低不純物密度の領域の厚みを変えること
により、ベースの高不純物密度領域によつて隣接
した領域中にできる空乏層の状態を代えることが
できる。例えばベース入力が0の時にでもオン、
オフいろいろの状態を設定できる。
As explained above, the semiconductor device of the present invention has a lower lateral resistance of the base than a normal transistor, and a better distribution of the base region than the conventional one in which a high impurity density region is formed in the base. Since the capacity is smaller, the speed can be increased compared to the conventional one, and it is easier to increase the area for higher power. Furthermore, the base input signal of a transistor with this structure can be changed in various ways depending on the design. That is, by changing the thickness of the relatively low impurity density region of the base region, the state of the depletion layer formed in the region adjacent to the high impurity density region of the base can be changed. For example, it turns on even when the base input is 0,
Off You can set various states.

以上のように、この発明の半導体装置は、工業
的価値の非常に高いものである。
As described above, the semiconductor device of the present invention has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のトランジスタの一実施例を
示す断面図、第2図、第3図は、第1図における
ベースの形の例を示すため第2層のみを図面下方
からみた斜視図、第4図は、第1図のトランジス
タの製造工程を示す断面図である。 図において、2はp型第2層・ベース、6はn
型第1層、7はp型第2層・ベース、8はn-
第3層、9はベース中のp+領域、10はビーム
状p+領域、11はビーム状p+領域を相互に接続
するp+領域である。なお、各図中の同一符号は
同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing one embodiment of the transistor of the present invention, FIGS. 2 and 3 are perspective views of only the second layer viewed from below in order to show an example of the shape of the base in FIG. FIG. 4 is a cross-sectional view showing the manufacturing process of the transistor shown in FIG. 1. In the figure, 2 is the p-type second layer/base, 6 is the n-type
type first layer, 7 is a p-type second layer/base, 8 is an n - type third layer, 9 is a p + region in the base, 10 is a beam-shaped p + region, 11 is a beam-shaped p + region mutually is a p + region that connects to. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 おおよそ1×1011cm-3から1016cm-3の不純物
密度を有する低不純物密度よりなる第1の半導体
層と、この第1の半導体層と逆導電型の第2の半
導体層と、前記第1の半導体層と同導電型の第3
の半導体層とで形成されるトランジスタにおい
て、前記第2の半導体層中に、前記低不純物密度
よりなる第1の半導体層と同一平面上に並んで第
1の半導体層のみに接する、前記第2の半導体層
と同一導電型のおおよそ1×1017cm-3以上の不純
物密度を有する高不純物密度の半導体領域をほぼ
平行線状に形成し、前記第2の半導体層中の高不
純物密度の半導体領域をベース電極としたことを
特徴とする半導体装置。 2 第2の半導体層中の高不純物密度領域が、ほ
ぼ平行線上に形成された高不純物密度の半導体領
域をほぼ互いに接続したものであり、その間隔が
平行線状領域の間隔の少なくとも10倍以上である
ことを特徴とする特許請求の範囲第1項記載の半
導体装置。
[Claims] 1. A first semiconductor layer made of a low impurity density having an impurity density of approximately 1×10 11 cm -3 to 10 16 cm -3 , and a first semiconductor layer of a conductivity type opposite to that of the first semiconductor layer. a second semiconductor layer, and a third semiconductor layer of the same conductivity type as the first semiconductor layer.
In the transistor formed of a semiconductor layer, the second semiconductor layer is arranged in the second semiconductor layer on the same plane as the first semiconductor layer having a low impurity density and is in contact only with the first semiconductor layer. High impurity density semiconductor regions having an impurity density of approximately 1×10 17 cm -3 or more and having the same conductivity type as the semiconductor layer in the second semiconductor layer are formed in substantially parallel lines, and the high impurity density semiconductor region in the second semiconductor layer A semiconductor device characterized in that a region is used as a base electrode. 2. The high impurity density regions in the second semiconductor layer are formed by connecting high impurity density semiconductor regions formed on substantially parallel lines to each other, and the spacing between the regions is at least 10 times the spacing between the parallel linear regions. A semiconductor device according to claim 1, characterized in that:
JP8981881A 1981-06-11 1981-06-11 Semiconductor device Granted JPS5743475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8981881A JPS5743475A (en) 1981-06-11 1981-06-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8981881A JPS5743475A (en) 1981-06-11 1981-06-11 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12699375A Division JPS53124086A (en) 1975-10-21 1975-10-21 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5737988A Division JPS63283062A (en) 1988-03-12 1988-03-12 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5743475A JPS5743475A (en) 1982-03-11
JPS6366430B2 true JPS6366430B2 (en) 1988-12-20

Family

ID=13981322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8981881A Granted JPS5743475A (en) 1981-06-11 1981-06-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5743475A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012388A (en) * 1983-06-30 1985-01-22 Ishikawajima Harima Heavy Ind Co Ltd Building method of bulbous bow in bow part

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026480A (en) * 1973-07-09 1975-03-19
JPS525273A (en) * 1975-07-02 1977-01-14 Hitachi Ltd Transistor
JPS5222885A (en) * 1975-08-14 1977-02-21 Matsushita Electronics Corp Transistor and manufacturing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026480A (en) * 1973-07-09 1975-03-19
JPS525273A (en) * 1975-07-02 1977-01-14 Hitachi Ltd Transistor
JPS5222885A (en) * 1975-08-14 1977-02-21 Matsushita Electronics Corp Transistor and manufacturing system

Also Published As

Publication number Publication date
JPS5743475A (en) 1982-03-11

Similar Documents

Publication Publication Date Title
JP5859319B2 (en) Semiconductor elements and reverse conducting IGBTs.
US6037632A (en) Semiconductor device
US4450467A (en) Gate turn-off thyristor with selective anode penetrating shorts
JPH0347593B2 (en)
EP0615292A1 (en) Insulated gate bipolar transistor
US5637910A (en) Multi-emitter or a multi-base transistor
US4288807A (en) Darlington circuit having an improved diode drain
JP3905929B2 (en) Semiconductor device
JPH08228001A (en) Semiconductor device and manufacture thereof
JPS6124832B2 (en)
JPS6366430B2 (en)
JP2724204B2 (en) Conduction modulation type MOSFET
JPS62177968A (en) Gate turn-off thyristor
JPS61187271A (en) Hetero-junction type bipolar transistor
JPS6132828B2 (en)
JPH0416443Y2 (en)
JP4779291B2 (en) Semiconductor element
JPH026229B2 (en)
JPS5917547B2 (en) thyristor
KR100242436B1 (en) Transistor with increased safe operating area and the manufacturing method thereof
JPH08241993A (en) Power switching device
JPS6174369A (en) Semiconductor device
JPH0878431A (en) Silicon carbide vertical type bipolar transistor and its manufacture
JPS63283062A (en) Manufacture of semiconductor device
JPH0563185A (en) Buried gate type static induction thyristor with silicon thin film layer ballast resistor