JPS6364981A - Manufacture of porous ceramic sintered body - Google Patents

Manufacture of porous ceramic sintered body

Info

Publication number
JPS6364981A
JPS6364981A JP61207287A JP20728786A JPS6364981A JP S6364981 A JPS6364981 A JP S6364981A JP 61207287 A JP61207287 A JP 61207287A JP 20728786 A JP20728786 A JP 20728786A JP S6364981 A JPS6364981 A JP S6364981A
Authority
JP
Japan
Prior art keywords
sintered body
hydroxyapatite
porous ceramic
ceramic sintered
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61207287A
Other languages
Japanese (ja)
Other versions
JPH07100634B2 (en
Inventor
康生 小栗
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61207287A priority Critical patent/JPH07100634B2/en
Publication of JPS6364981A publication Critical patent/JPS6364981A/en
Publication of JPH07100634B2 publication Critical patent/JPH07100634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、断熱材、フィルター、センサー、・生体材料
など種々の目的に使用し得る多孔質セラミックス焼結体
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a porous ceramic sintered body that can be used for various purposes such as heat insulating materials, filters, sensors, and biomaterials.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

多孔質セラミックス焼結体は、通常発泡法によシ多孔化
された成形体を焼成することにより製造されてきた。
Porous ceramic sintered bodies have generally been produced by firing a molded body made porous by a foaming method.

しかし、発泡操作が煩雑であるため、多孔質セラミック
ス焼結体の製造が困難であった。従って、断熱材、フィ
ルター、センサー、生体材料などに使用し得る多孔質セ
ラミックス焼結体を容易に製造し得る方法が望まれてい
た。
However, since the foaming operation is complicated, it has been difficult to produce porous ceramic sintered bodies. Therefore, there has been a desire for a method that can easily produce porous ceramic sintered bodies that can be used for heat insulating materials, filters, sensors, biomaterials, and the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上記多孔質セラミックス焼結体の製造上
の問題に鑑み種々検討した結果、特定の無機化合物を混
合することにより、意外にも、上記問題点が解決し得る
ことを知得して本発明に到達した。
As a result of various studies in view of the problems in manufacturing the porous ceramic sintered body, the present inventors unexpectedly found that the above problems could be solved by mixing a specific inorganic compound. The present invention was thus achieved.

すなわち、本発明の要旨は、ヒドロキシアパタイトの粉
末に対する他の無機物質の重量比が7より大きく/デ以
下になるように、ヒドロキシアパタイトの粉末と他の無
機物質を混合して成形し焼成することにより多孔質セラ
ミックス焼結体を製造する方法であって、前記無機物質
は、焼結温度以下でヒドロキシアパタイトと反応し、そ
の結果生成する反応生成物が焼結時の温度ではガラス相
を形成しない化合物となシ得る無機物質であることを特
徴とする多孔質セラミックス焼結体の製造法に存する。
That is, the gist of the present invention is to mix hydroxyapatite powder and other inorganic substances, mold and sinter the mixture so that the weight ratio of the other inorganic substance to the hydroxyapatite powder is greater than 7/less than 7. A method for producing a porous ceramic sintered body by, wherein the inorganic substance reacts with hydroxyapatite at a temperature below the sintering temperature, and the resulting reaction product does not form a glass phase at the sintering temperature. A method for producing a porous ceramic sintered body characterized by being an inorganic substance that can be converted into a compound.

以下、本発明の詳細な説明するに、本発明で使用するヒ
ドロキシアパタイトとしては、Ca、。(PO4)、(
OH)、の化学式で示されるヒドロキシアパタイトであ
る。
The present invention will be described in detail below.The hydroxyapatite used in the present invention is Ca. (PO4), (
Hydroxyapatite is represented by the chemical formula: OH).

他の無機物質としては、ヒドロキシアパタイトの焼結温
度以下でヒドロキシアパタイトと反応し、その結果生成
する反応生成物が焼結時の温度ではガラス相を形成しな
い化合物となシ得る無機物質であればいずれでも用いる
ことができる。具体的には、アルミナ、シリカ、ジルコ
ニア、チタニアなどが例として挙げられる。ヒドロキシ
アパタイトと反応しない物質を用いると、焼結体が多孔
化せずに緻密化してしまう。
Other inorganic substances include any inorganic substance that reacts with hydroxyapatite at a temperature below the sintering temperature of hydroxyapatite, and the resulting reaction product is a compound that does not form a glass phase at the sintering temperature. Either can be used. Specific examples include alumina, silica, zirconia, and titania. If a substance that does not react with hydroxyapatite is used, the sintered body will become dense without becoming porous.

また、ヒドロキシアパタイトと反応した結果生成する反
応生成物が焼結時の温度でガラス相を形成すると焼結体
が緻密化してしまう。
Further, if a reaction product generated as a result of reaction with hydroxyapatite forms a glass phase at the temperature during sintering, the sintered body becomes dense.

これらヒドロキシアパタイトと他の無機物質は、通常粉
体として用い、その粒径は10μm以下、特には7μm
以下が好ましい。
These hydroxyapatite and other inorganic substances are usually used as powder, and the particle size is 10 μm or less, especially 7 μm.
The following are preferred.

ヒドロキシアパタイトと他の無機物質の混合割合につい
ては、ヒドロキシアパタイトの粉末に対する他の無機物
質の重量比が/より大きく/?以下になるようにするの
が良く、この比が大きすぎると多孔化が難しく、小さす
ぎると他の無機物質の特徴を生かすことが困雛となる。
Regarding the mixing ratio of hydroxyapatite and other inorganic substances, is the weight ratio of other inorganic substances to hydroxyapatite powder /larger/? It is best to set the ratio to be as follows; if this ratio is too large, it will be difficult to create porosity, and if this ratio is too small, it will be difficult to take advantage of the characteristics of other inorganic substances.

ヒドロキシアパタイトと他の無機物質の混合方法として
は、通常のセラミックス粉体の混合方法が用いられる。
As a method for mixing hydroxyapatite and other inorganic substances, a usual method for mixing ceramic powder is used.

乾式混合でも湿式混合でも良いが、より均一に混合する
ためにアルコール等の有機溶媒、又はポリビニルアルコ
ール、ポリアクリル酸系のバインダーを含有する水溶液
等を用いた湿式混合を行なうことが好ましい。
Dry mixing or wet mixing may be used, but wet mixing using an organic solvent such as alcohol, or an aqueous solution containing a polyvinyl alcohol or polyacrylic acid binder is preferred for more uniform mixing.

成形方法としては、通常のセラミックスの成形方法が用
いられる。すなわち、加圧成形、テープ成形、鋳込成形
、射出成形などから製品の形状によって選ばれる。
As the molding method, a normal ceramic molding method is used. That is, it is selected from pressure molding, tape molding, casting molding, injection molding, etc. depending on the shape of the product.

焼成温度は、使用するヒドロキシアパタイトと他の無機
物質の粒径などによって影響を受ける焼結性およびヒド
ロキシアパタイトと他の無機物質との反応性によシ決め
られるが、通常boo℃〜/600℃の範囲で選ばれる
。焼成温度が低すぎると、ヒドロキシアパタイトと他の
無機物質が反応しないし、他の無機物質粒子同士も焼結
しない。また、焼成温度が高すぎると、不要な焼成コス
トの上昇を招く。
The firing temperature is determined by the sinterability, which is influenced by the particle size of the hydroxyapatite and other inorganic substances used, and the reactivity of the hydroxyapatite with other inorganic substances, but is usually between boo°C and 600°C. selected within the range. If the firing temperature is too low, hydroxyapatite and other inorganic substances will not react with each other, and other inorganic substance particles will not sinter. Furthermore, if the firing temperature is too high, it will lead to an unnecessary increase in firing cost.

以上の方法によシ、多孔性でかつ気孔以外は焼結度の高
い焼結体を得ることができる。
By the above method, it is possible to obtain a sintered body that is porous and has a high degree of sintering except for the pores.

〔実施例〕〔Example〕

以下、本発明を実施例によって更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1〜実施例3 粒径1μmの ヒドロキシアパタイト(以下、同じもの
を使用)と粒径Q、76μmのジルコニアを表1に示す
割合で秤量し、エチルアルコール−00重量部と共にボ
ールミル中で混合した。
Examples 1 to 3 Hydroxyapatite with a particle size of 1 μm (the same one will be used hereinafter) and zirconia with a particle size Q of 76 μm were weighed in the proportions shown in Table 1, and mixed in a ball mill with 00 parts by weight of ethyl alcohol. did.

このスラリーを乾燥後にコ0nuaφ×−箇に加圧成形
した。
After drying, this slurry was pressure molded into 0 nuaφ×− pieces.

この成形体を1110℃で7時間焼成して多孔質セラミ
ックス焼結体を得た。この焼結体の密度から求めた気孔
率を表1に示す。
This molded body was fired at 1110° C. for 7 hours to obtain a porous ceramic sintered body. Table 1 shows the porosity determined from the density of this sintered body.

表  / 実施例ダ ヒドロキシアパタイト50重量部、粒径0.3μmのア
ルξす/Uθ重量部及びエチルアルコール2001全部
をボールミル中で混合した。
Table/Example 50 parts by weight of dahydroxyapatite, parts by weight of Alξ/Uθ having a particle size of 0.3 μm, and 2001 parts of ethyl alcohol were mixed together in a ball mill.

このスラリーを乾燥後に20mφ×コ■に加圧成形した
。この成形体を72SO℃で7時間焼成して多孔質セラ
ミックス焼結体を得た。この焼結体の密度を測定したと
ころ、110体積チが気孔であった。
After drying, this slurry was pressure-molded into a size of 20 mφ x square. This molded body was fired at 72SO° C. for 7 hours to obtain a porous ceramic sintered body. When the density of this sintered body was measured, it was found that 110 cubic meters were pores.

実施例5 ヒドロキシアパタイト10重量部、粒径0.3μmのシ
リカ/、10重量部及びエチルアルコール200重量部
をボールミル中で混合した。このスラリーを実施例/と
同様に処理して多孔質セラミックス焼結体を得た。この
焼結体の密度を測定したところ、35体積チが気孔であ
った。
Example 5 10 parts by weight of hydroxyapatite, 10 parts by weight of silica having a particle size of 0.3 μm, and 200 parts by weight of ethyl alcohol were mixed in a ball mill. This slurry was treated in the same manner as in Example to obtain a porous ceramic sintered body. When the density of this sintered body was measured, 35 volume squares were found to be pores.

実施例6 ヒドロキシアパタイト80重量部、粒径0.3μmのチ
タニア/コO重量部及びエチルアルコール200重量部
をボールミル中で混合した。
Example 6 80 parts by weight of hydroxyapatite, parts by weight of titania/co-O having a particle size of 0.3 μm, and 200 parts by weight of ethyl alcohol were mixed in a ball mill.

このスラリーを実施例1と同様に処理して多孔質焼結体
を得た。この焼結体の密度を測定したところ、31体積
チが気孔であった。
This slurry was treated in the same manner as in Example 1 to obtain a porous sintered body. When the density of this sintered body was measured, it was found that 31 volume squares were pores.

〔発明の効果〕〔Effect of the invention〕

以上述べたごとく本発明によれば、断熱材、フィルター
、センサー、生体材料などに使用し得る多孔質セラミッ
クス焼結体を容易に製造することができ、従って、本発
明方法は工業的に極めて優れたものである。
As described above, according to the present invention, it is possible to easily produce porous ceramic sintered bodies that can be used for heat insulating materials, filters, sensors, biomaterials, etc. Therefore, the method of the present invention is industrially extremely superior. It is something that

出 願 人  三菱化成工業株式会社 代 理 人 弁理士長各州  − (ほか7名)Sender: Mitsubishi Chemical Industries, Ltd. Representative Chief Patent Attorney in each state - (7 others)

Claims (2)

【特許請求の範囲】[Claims] (1)ヒドロキシアパタイトの粉末に対する他の無機物
質の重量比が1より大きく19以下になるように、ヒド
ロキシアパタイトの粉末と他の無機物質を混合して成形
し焼成することにより多孔質セラミックス焼結体を製造
する方法であつて、前記無機物質は、焼結温度以下でヒ
ドロキシアパタイトと反応し、その結果生成する反応生
成物が焼結時の温度ではガラス相を形成しない化合物と
なり得る無機物質であることを特徴とする多孔質セラミ
ックス焼結体の製造法。
(1) Sintering porous ceramics by mixing hydroxyapatite powder and other inorganic substances, molding and firing the mixture so that the weight ratio of the other inorganic substances to the hydroxyapatite powder is greater than 1 and less than 19. 2. A method for producing a body, wherein the inorganic substance is an inorganic substance that can react with hydroxyapatite at a temperature below the sintering temperature, and the resulting reaction product can be a compound that does not form a glass phase at the sintering temperature. A method for producing a porous ceramic sintered body, characterized by the following.
(2)他の無機物質がアルミナ、シリカ、ジルコニア及
びチタニアからなる群から選ばれた1種又は2種以上の
物質であることを特徴とする特許請求の範囲第1項記載
の製造法。
(2) The manufacturing method according to claim 1, wherein the other inorganic substance is one or more substances selected from the group consisting of alumina, silica, zirconia, and titania.
JP61207287A 1986-09-03 1986-09-03 Manufacturing method of porous ceramics sintered body Expired - Fee Related JPH07100634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207287A JPH07100634B2 (en) 1986-09-03 1986-09-03 Manufacturing method of porous ceramics sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207287A JPH07100634B2 (en) 1986-09-03 1986-09-03 Manufacturing method of porous ceramics sintered body

Publications (2)

Publication Number Publication Date
JPS6364981A true JPS6364981A (en) 1988-03-23
JPH07100634B2 JPH07100634B2 (en) 1995-11-01

Family

ID=16537296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207287A Expired - Fee Related JPH07100634B2 (en) 1986-09-03 1986-09-03 Manufacturing method of porous ceramics sintered body

Country Status (1)

Country Link
JP (1) JPH07100634B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505542A (en) * 1988-04-20 1991-12-05 エバース ロルフ Filtration media for technical filters
CN108264373A (en) * 2018-02-06 2018-07-10 付主枝 The preparation method of medical reinforced porous biological ceramic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03505542A (en) * 1988-04-20 1991-12-05 エバース ロルフ Filtration media for technical filters
CN108264373A (en) * 2018-02-06 2018-07-10 付主枝 The preparation method of medical reinforced porous biological ceramic material

Also Published As

Publication number Publication date
JPH07100634B2 (en) 1995-11-01

Similar Documents

Publication Publication Date Title
JP3581879B2 (en) Alumina porous body and method for producing the same
US4560669A (en) Silicon nitride sintered bodies of Si3 N4, Y2 O3, MgO and ZrO2
US4692420A (en) Silicon nitride sintered body and manufacturing method thereof
JPS6364981A (en) Manufacture of porous ceramic sintered body
JPH0757707B2 (en) Manufacturing method of porous ceramics sintered body
EP0704414A1 (en) Alumina fiber granules, process for producing the granules and a process for producing a porous article using the granules
JP2851100B2 (en) Method for producing low-density silicon carbide porous body
JP2959402B2 (en) High strength porcelain
JPH02279553A (en) Ceramic molded body and its production
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP2515527B2 (en) Method for manufacturing SiC refractory
JPS6221750A (en) Manufacture of ceramic sintered body
JP3012275B2 (en) Manufacturing method of high density apatite ceramics
JPH0236549B2 (en)
JPS58135134A (en) Ferrite magnetic material
JPS6235995B2 (en)
SU647259A1 (en) Method of apparatus for producing glass mass
JP2002201083A (en) Ceramic porous compact and method of manufacturing the same
JPH0674178B2 (en) Porous refractory
JPS61247659A (en) Alumina ceramic sintered body
JPS63156059A (en) Manufacture of alumina ceramic
KR940019858A (en) Porous ceramic carriers for immobilizing yeast and a method of manufacturing the same
JPS62212265A (en) Manufacture of silicon nitride base sintered body
JPS63112470A (en) Cast formation of aluminum nitride ceramic or silicon nitride ceramic
JPS6355109A (en) Production of aluminum nitride powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees