JPS6364974A - Manufacture of electroconductive sialon sintered body - Google Patents

Manufacture of electroconductive sialon sintered body

Info

Publication number
JPS6364974A
JPS6364974A JP61208956A JP20895686A JPS6364974A JP S6364974 A JPS6364974 A JP S6364974A JP 61208956 A JP61208956 A JP 61208956A JP 20895686 A JP20895686 A JP 20895686A JP S6364974 A JPS6364974 A JP S6364974A
Authority
JP
Japan
Prior art keywords
powder
sintered body
sialon
tin
sialon sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61208956A
Other languages
Japanese (ja)
Other versions
JPH0424308B2 (en
Inventor
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP61208956A priority Critical patent/JPS6364974A/en
Publication of JPS6364974A publication Critical patent/JPS6364974A/en
Publication of JPH0424308B2 publication Critical patent/JPH0424308B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、サイアロン焼結体の製造方法に関するもので
あり、特にβサイアロン相とTiN相を主体とする導電
性サイアロン焼結体の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a sialon sintered body, and particularly a method for manufacturing a conductive sialon sintered body mainly composed of a β-sialon phase and a TiN phase. It is related to.

〔従来の技術〕[Conventional technology]

βサイアロン焼結体は、高温強度および耐酸化性に優れ
、熱膨張係数が小さく耐熱衝撃性が非常に大きい等の利
点があるため、近年種々の分野において利用されている
。このβサイアロン焼結体は、例えば特公昭58−14
391号公報または特公昭58−52949号公報など
により知られているように、窒化ケイ素、窒化アルミニ
ウムおよびアルミナからなる第1成分と、イツトリウム
、スカンジウム、セリウム、ランタンおよびランタニド
系譜金属のうちの少なくとも1つの元素の酸化物からな
る第2成分とからなる粉末混合物を成形し、この成形体
を加圧下または非加圧下において保護雰囲気内で焼結す
ることにより得られている。
β-sialon sintered bodies have been used in various fields in recent years because they have advantages such as excellent high-temperature strength and oxidation resistance, a small coefficient of thermal expansion, and very high thermal shock resistance. This β-sialon sintered body is, for example,
As is known from Japanese Patent Publication No. 391 or Japanese Patent Publication No. 58-52949, a first component consisting of silicon nitride, aluminum nitride, and alumina, and at least one of yttrium, scandium, cerium, lanthanum, and lanthanide family metals. It is obtained by molding a powder mixture consisting of a second component consisting of oxides of two elements, and sintering this molded body in a protective atmosphere with or without pressure.

しかし、βサイアロン焼結体は加工性に難点があり、通
常、ダイヤモンド砥石を用いて加工が行なわれているも
のの、加工時間及びコストが非常に大きくなるという問
題点がある。
However, the β-SiAlON sintered body has difficulties in workability, and although it is usually processed using a diamond grindstone, there is a problem in that the processing time and cost are extremely large.

このため、最近、一般式S j@ −1A lz Oz
 N @−2で表わされるβサイアロンのうち、特に2
が1ないし4.2である組成物に、容量比にして15〜
5部のrVa、Va、VIa族元素の酸化物、窒化物、
炭化物、硼化物のうち1種以上の化合物および/または
5iC1A14C;より選ばれた1種以上を添加するこ
とにより導電性を付与し、放電加工を可能としたサイア
ロン焼結体を得ることが提案されている(特開昭59−
207881号公報)。
For this reason, recently the general formula S j@ -1A lz Oz
Of the β-sialons represented by N@-2, especially 2
is 1 to 4.2, and the volume ratio is 15 to 4.2.
5 parts of rVa, Va, oxides, nitrides of group VIa elements,
It has been proposed to add one or more compounds selected from carbides and borides and/or one or more selected from 5iC1A14C to obtain a sialon sintered body that imparts conductivity and enables electrical discharge machining. (Unexamined Japanese Patent Publication No. 1983-
207881).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は上記公知事実に従い、導電性を有するサイア
ロン焼結体を作製し、放電加工して複雑形状の製品を得
るべく種々実験検討を行なった結果、実用的にはより一
層放電加工性を改善し、さらに加工性に優れた焼結体を
得ることが必要であることが判明した。
In accordance with the above-mentioned known facts, the present inventor prepared a conductive sialon sintered body and conducted various experiments and studies to obtain a product with a complex shape by electrical discharge machining. It has been found that it is necessary to improve the process and obtain a sintered body with excellent workability.

すなわち、上記提案による導電性サイアロンは、実施例
1.2,3に見られるように電気抵抗率がいずれの場合
とも10−”(Ω・Ql)以上であり、放電加工は可能
であるものの加工速度が遅いとが、−室以上の厚さの焼
結体のワイヤーカットは不可能になる等の問題点がある
ことが明らかとなった。
In other words, as seen in Examples 1, 2, and 3, the conductive Sialon proposed above has an electrical resistivity of 10-'' (Ω・Ql) or more in all cases, and although electrical discharge machining is possible, it is difficult to process. It has become clear that if the speed is slow, there are problems such as making it impossible to wire-cut a sintered body with a thickness greater than 100 mm.

また、上記提案によるサイアロンは実施例に見られるよ
うにホットプレス焼結を行なうことが主体となっており
、製品の形状が極めて限定されることも問題点として浮
び上がってきた。
Furthermore, as seen in the examples, the SiAlON proposed above is mainly based on hot press sintering, and the problem has also emerged that the shape of the product is extremely limited.

本発明は、上記事情に鑑み、より放電加工性に優れ、か
つ本来βサイアロンが持つ耐酸化性、耐熱衝撃性等の劣
化を最小限に抑制した導電性サイアロン焼結体の製造方
法を提供とすることを目的とするものである。
In view of the above circumstances, the present invention provides a method for manufacturing a conductive sialon sintered body that has better electrical discharge machinability and minimizes deterioration of the oxidation resistance, thermal shock resistance, etc. that β-sialon inherently has. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明は、主としてSi、N
4粉末、Al2O3粉末、AINポリタイプ粉末(AI
Nを含む)、Sin、粉末および1種以上のma族元素
の酸化物または窒化物粉末およびこれらに対し、25〜
70容量%のTiN粉末を添加し、混合、成形の後、こ
の成形体を1600〜2000℃において常圧または加
圧窒素中で焼結することにより、βサイアロン相および
TiN相を主体として残部が、Si、Al、1種以上の
ma族元素、0、Nからなる粒界相で構成される導電性
サイアロン焼結体を得る方法において、前記TiN粉末
がT i O。
In order to achieve the above object, the present invention mainly focuses on Si, N
4 powder, Al2O3 powder, AIN polytype powder (AI
(including N), Sin, powder, and oxide or nitride powder of one or more MA group elements, and for these,
After adding 70% by volume of TiN powder, mixing and shaping, the compact is sintered at 1,600 to 2,000°C under normal pressure or pressurized nitrogen to form a mixture consisting mainly of β-SiAlON phase and TiN phase, with the remainder being , Si, Al, one or more Ma group elements, 0, and a method for obtaining a conductive sialon sintered body comprising a grain boundary phase consisting of 0 and N, wherein the TiN powder is TiO.

を還元、窒化したものであることを特徴とする導電性サ
イアロン焼結体の製造方法である。
This is a method for producing a conductive sialon sintered body, characterized in that the conductive sialon sintered body is reduced and nitrided.

1  TiNの各種類゛ 法 本製造法における最大の特徴は、TiN粉末としてTi
e、を還元、窒化し製造したTiN粉末を用いることで
ある。ここでTiNの製造方法として表1に記すような
各種の方法がある。大別すると、 ■Tiを直接窒化しTiNとする、 ■Tie、を還元、窒化する、 ■T i H、を窒化する、 ■気相反応によりT i Nとする、 の4方法に分けられる。ここで現在量産化されているプ
ロセスは、■のTiを直接窒化するやり方である0本発
明者は、各種プロセスにより作られたTiN粉末を集め
検討を行なった。粉末の粒子構造を第1図に示す(比表
面積も併示)、これより直接窒化法による粉末は、塊状
のものを粉砕しているため、微粒のものがかなり多く含
まれることがわかる。また、Tie、より還元、窒化し
たものは比表面積は、直接窒化によるものと変わらない
が、粒径がよくそろっている。一方、気相反応により作
製したものは、上記のものに比べ粒径が非常に細かく、
比表面積も約7倍となる。そこで、これらのT i N
粉末を用い、導電性サイアロンを作製したところ、同一
の体積%を加えた場合にも電気抵抗率に大きな差が生じ
ることが判明した。
1. Various types of TiN ゛ The biggest feature of this method is that TiN can be used as TiN powder.
The method is to use TiN powder produced by reducing and nitriding e. Here, there are various methods for manufacturing TiN as shown in Table 1. Broadly speaking, there are four methods: (1) directly nitriding Ti to make TiN, (2) reducing and nitriding Ti, (2) nitriding TiH, and (2) making TiN by gas phase reaction. The process that is currently being mass-produced here is the direct nitriding of Ti (2).The present inventor collected and studied TiN powder produced by various processes. The particle structure of the powder is shown in Figure 1 (the specific surface area is also shown), and it can be seen from this that the powder produced by the direct nitriding method contains a considerable amount of fine particles because the powder is pulverized in the form of lumps. In addition, the specific surface area of Tie, which is further reduced and nitrided, is the same as that of direct nitridation, but the particle size is well matched. On the other hand, those produced by gas phase reactions have much finer particle sizes than those mentioned above.
The specific surface area is also approximately 7 times larger. Therefore, these T i N
When conductive sialon was produced using the powder, it was found that there was a large difference in electrical resistivity even when the same volume % was added.

すなわち、Tie、の還元、窒化によるTiNを用いた
場合には、直接窒化によるT i Nを用いた場合に比
べ、極めて電気抵抗率が低いことが判明した。電気抵抗
率が低いほど放電加工性は良好となり、加工速度も大き
くすることができ、加工の効率が上昇する。また、同一
の電気抵抗率とするためのTiN量も少なくてすみ、耐
酸化性、耐熱衝撃性を向上することが可能となる。
That is, it has been found that when TiN obtained by reduction and nitridation of Tie is used, the electrical resistivity is extremely lower than when TiN obtained by direct nitridation is used. The lower the electrical resistivity, the better the electrical discharge machinability, the higher the machining speed, and the higher the machining efficiency. In addition, the amount of TiN required to maintain the same electrical resistivity can be reduced, making it possible to improve oxidation resistance and thermal shock resistance.

ここでT i N粉末の添加量25〜70容量%とする
のは、25容量%未満では、TiN粒子相互の接触が不
十分であり、良好な放電加工性を得られず、また抵抗率
のバラツキも大きいためであり、70容量%を越えると
βサイアロン本来の特長である耐酸化性、高温強度等の
特性の低下が著しいからである。より好ましいTiN量
は、30〜50容量%である。
The reason why the amount of TiN powder added is 25 to 70% by volume is because if it is less than 25% by volume, contact between TiN particles will be insufficient, good electrical discharge machinability will not be obtained, and the resistivity will decrease. This is because the variation is large, and if it exceeds 70% by volume, the characteristics inherent to β-sialon, such as oxidation resistance and high-temperature strength, are significantly reduced. A more preferable amount of TiN is 30 to 50% by volume.

なお、本発明においては、ma族元素が添加されるが、
これは常圧焼結、ガス圧焼結等を可能にするためである
。ここでma族元素は焼結時に液相を形成し焼結を促進
する。モしてβサイアロン中には固溶しないため、焼結
体中においては粒界相の主成分となる。このような作用
をもたらすためにはMgO等の使用も可能であるが、高
温強度を高く保持するためにはma族元素が望ましい。
In addition, in the present invention, a Ma group element is added,
This is to enable normal pressure sintering, gas pressure sintering, etc. Here, the Ma group elements form a liquid phase during sintering and promote sintering. Since it is not solidly dissolved in β-SiAlON, it becomes the main component of the grain boundary phase in the sintered body. Although it is possible to use MgO or the like to bring about such an effect, it is preferable to use a Ma group element in order to maintain high high-temperature strength.

なお、焼結は常圧又は加圧窒素中で1600〜2000
℃で行なうのが好ましい、 1600℃未満の焼結温度
では緻密化が十分に進まず、焼結温度が2000℃を越
える場合には高圧の窒素ガス中で焼結した場合でも焼結
体からの分解ガスの発生を完全には抑制できなくなる。
In addition, sintering is performed at normal pressure or pressurized nitrogen at a temperature of 1600 to 2000
It is preferable to carry out the sintering at a temperature of 1,600°C. If the sintering temperature is less than 1,600°C, densification will not proceed sufficiently, and if the sintering temperature exceeds 2,000°C, even if sintered in high pressure nitrogen gas, the sintered body will not be sintered. The generation of decomposed gas cannot be completely suppressed.

また、ma族元素の酸化物、窒化物のかわりに、焼結中
にこれら物質に変わるもの、例えばma族元素の硝酸塩
、水酸化物、アルコキシド等を用いてもよい。
Furthermore, instead of the oxides and nitrides of the MA group elements, substances that convert into these substances during sintering, such as nitrates, hydroxides, alkoxides, etc. of the MA group elements, may be used.

さらにまた、本発明において混合粉末を成形する際には
、射出成形、プレス、ラバープレス、スリップキャスト
等の成形方法を用いることができ、また焼結後HIP処
理により更に特性の向上を図ったり、熱処理を行ない粒
界相を強化することも可能である。
Furthermore, when molding the mixed powder in the present invention, molding methods such as injection molding, pressing, rubber pressing, and slip casting can be used, and the properties can be further improved by HIP treatment after sintering. It is also possible to perform heat treatment to strengthen the grain boundary phase.

〔実施例〕〔Example〕

実施例I Si、N、粉末(粒径0.7μ墓、α化率93%)、A
INポリタイプ粉末(結晶型21R1粒程2μm、98
.8%)、Al、O,粉末(粒度0.5 μm、99.
5%)、Y2O3粉末(粒径1μm、99.99%)を
用い、βサイアロンにおいてz =0.5となるように
配合した( Y x Os量は7%)。
Example I Si, N, powder (particle size 0.7 μm, gelatinization rate 93%), A
IN polytype powder (crystal type 21R 1 grain size 2 μm, 98
.. 8%), Al, O, powder (particle size 0.5 μm, 99.
5%) and Y2O3 powder (particle size 1 μm, 99.99%) were blended so that z = 0.5 in β-sialon (Y x Os amount was 7%).

これに対し、製造プロセスの異なる3種類のT i N
を35容量%添加し、これらを混合、成形後、1750
℃、4時間、1気圧窒素雰囲気中で焼結した。
On the other hand, three types of T i N with different manufacturing processes
After adding 35% by volume, mixing and molding, 1750
C. for 4 hours in a nitrogen atmosphere at 1 atmosphere.

得られた焼結体の電気抵抗率、密度、常温強度を 。The electrical resistivity, density, and room temperature strength of the obtained sintered body.

表2に示す。It is shown in Table 2.

表2 これらよりTie、還元窒化によるTiNを用い、ると
同量のTiNを添加した場合でも電気抵抗が大きく低下
することがわかる。
Table 2 From these results, it can be seen that when Tie and TiN obtained by reduction nitridation are used, the electrical resistance is greatly reduced even when the same amount of TiN is added.

実施例2 実施例1と同様の粉末を用い、z =0.4のβサイア
ロン組成になるよう配合し、これに31容量%の実施例
1で用いたT i Nを添加した。これを混合、成形後
、1780℃、4時間、5気圧の窒素雰囲気中で焼結し
た。得られた焼結体の組織を第2図に示す、また、原料
粉末の比表面積、電気抵抗率を表3に示す。
Example 2 Using the same powder as in Example 1, it was blended to have a β-sialon composition of z = 0.4, and 31% by volume of T i N used in Example 1 was added thereto. After mixing and shaping, the mixture was sintered at 1780° C. for 4 hours in a nitrogen atmosphere of 5 atm. The structure of the obtained sintered body is shown in FIG. 2, and the specific surface area and electrical resistivity of the raw material powder are shown in Table 3.

表3 第2図より、Ti’N原料Aより作製した焼結体中のT
iNの粒径は、B、Cより作製したものに比べ、著しく
細かいことがわかる。
Table 3 From Figure 2, T in the sintered body made from Ti'N raw material A
It can be seen that the particle size of iN is significantly smaller than those made from B and C.

そして、電気抵抗率もこれに対応して著しく低くなる。Correspondingly, the electrical resistivity also becomes significantly lower.

実施例3 実施例1と同様の粉末を用い、z=0.5のβサイアロ
ン組成となるように配合し、これに20〜75容量%の
T i N (A粉末)を添加した。これを混合、成形
の後、1750℃、4時間、1気圧の窒素中で焼結した
0表4に焼結体の相対密度、電気抵抗率。
Example 3 Using the same powder as in Example 1, it was blended to have a β-sialon composition with z=0.5, and 20 to 75% by volume of T i N (A powder) was added thereto. After mixing and molding, this was sintered at 1750°C for 4 hours in 1 atmosphere of nitrogen.Table 4 shows the relative density and electrical resistivity of the sintered body.

高温強度(1100℃)を示す。Shows high temperature strength (1100°C).

表4 以上より、Si、N、粉末、Al2O,粉末、A I 
Nポリタイプ粉末およびまたはS i O、粉末および
1種以上のma族元素の化合物およびこれらに対し、2
5〜70容量%のTiN粉末を添加し、混合、成形。
Table 4 From the above, Si, N, powder, Al2O, powder, A I
N polytype powder and or S i O, powder and compound of one or more ma group elements and for these, 2
Add 5-70% by volume of TiN powder, mix and mold.

焼結して導電性サイアロン焼結体を得る製造方法におい
て、T i O,を還元したTiN粉末より作られたT
iNを用いることにより電気抵抗率が低く、機械的性質
の優れた導電性サイアロン焼結体が得られることがわか
る。
In a manufacturing method for obtaining a conductive sialon sintered body by sintering, T
It can be seen that by using iN, a conductive sialon sintered body with low electrical resistivity and excellent mechanical properties can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明により、放電加工性に優れ、かつ本来のβサイア
ロンが持つ耐酸化性、耐熱衝撃性等の劣化を最小限に抑
制した導電性サイアロン焼結体の製造が可能となる。こ
れにより、従来のサイアロンでは不可能であった複雑形
状の穴加工等が可能となり、ダイス、構造用部材等とし
ての応用範囲が拡がる他、導電性を利用したヒーター等
の分野ヘサイアロンを適用することが可能となる。
According to the present invention, it is possible to produce a conductive sialon sintered body that has excellent electrical discharge machinability and minimizes deterioration of the oxidation resistance, thermal shock resistance, etc. of the original β-sialon. This makes it possible to drill holes with complex shapes that were impossible with conventional Sialons, expanding the range of applications for dies, structural members, etc., and also allowing SiAlons to be applied to fields such as heaters that utilize conductivity. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種プロセスにより作られたT i N粉末の
粒子構造を示す顕微鏡写真、第2図はT i N粉末A
、B、Cを原料として作られた焼結体のミクロ組織を示
す顕微鏡写真である。 第  】  図 2、&餐/@ X 6QO01,’れFitd/g X
 BC++)0第  2  図 A X 200G
Figure 1 is a micrograph showing the particle structure of T i N powder made by various processes, and Figure 2 is T i N powder A.
, B, and C are micrographs showing the microstructures of sintered bodies made from raw materials. ] Figure 2, & Dinner/@X 6QO01,'ReFitd/g X
BC++)0 2nd figure A X 200G

Claims (1)

【特許請求の範囲】[Claims] TiO_2を還元、窒化することにより得られたTiN
粉末を用いることを特徴とする、導電相がTiN相であ
る導電性サイアロン焼結体の製造方法。
TiN obtained by reducing and nitriding TiO_2
A method for producing a conductive sialon sintered body whose conductive phase is a TiN phase, the method comprising using powder.
JP61208956A 1986-09-05 1986-09-05 Manufacture of electroconductive sialon sintered body Granted JPS6364974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208956A JPS6364974A (en) 1986-09-05 1986-09-05 Manufacture of electroconductive sialon sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208956A JPS6364974A (en) 1986-09-05 1986-09-05 Manufacture of electroconductive sialon sintered body

Publications (2)

Publication Number Publication Date
JPS6364974A true JPS6364974A (en) 1988-03-23
JPH0424308B2 JPH0424308B2 (en) 1992-04-24

Family

ID=16564932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208956A Granted JPS6364974A (en) 1986-09-05 1986-09-05 Manufacture of electroconductive sialon sintered body

Country Status (1)

Country Link
JP (1) JPS6364974A (en)

Also Published As

Publication number Publication date
JPH0424308B2 (en) 1992-04-24

Similar Documents

Publication Publication Date Title
JPH0925166A (en) Aluminum nitride sintered compact and its production
JPS61111970A (en) Silicon nitride sintered body and manufacture
JPS59207881A (en) Ceramic sintered body and manufacture
JPS6364974A (en) Manufacture of electroconductive sialon sintered body
JPH07172921A (en) Aluminum nitride sintered material and its production
JPS6364975A (en) Manufacture of electroconductive sialon sintered body
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS59190268A (en) Silicon carbide sintered body
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JP4301617B2 (en) Method for manufacturing aluminum nitride sintered body for DBC circuit board and method for manufacturing DBC circuit board
JPH0477699B2 (en)
JPH0380750B2 (en)
JPH01153574A (en) Sintered material of electrically conductive sialon
JPH0283265A (en) Production of silicon nitride
JPH08319168A (en) Production of sialon ceramic
JPS60239360A (en) Silicon carbide ceramic sintered body
JPH0840776A (en) Sintered substance based on si3n4/bn and their production
JPS6126566A (en) Method of sintering sic composite body
JP2571303B2 (en) Silicon carbide sintered body and method for producing the same
JPH05279130A (en) Silicon carbide-silicon nitride composite material and its production
JPS6230665A (en) High temperature strength sintered body
JPH02157169A (en) Electrical conductive sialon sintered body, production thereof and die for drawing
JPS62288166A (en) Manufacture of tungsten carbide-oxide composite sintered body
JP2817908B2 (en) Method for producing silicon oxynitride-based ceramics having hot workability
JPH01179761A (en) Conductive silicon nitride sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term