JPH02157169A - Electrical conductive sialon sintered body, production thereof and die for drawing - Google Patents

Electrical conductive sialon sintered body, production thereof and die for drawing

Info

Publication number
JPH02157169A
JPH02157169A JP63309823A JP30982388A JPH02157169A JP H02157169 A JPH02157169 A JP H02157169A JP 63309823 A JP63309823 A JP 63309823A JP 30982388 A JP30982388 A JP 30982388A JP H02157169 A JPH02157169 A JP H02157169A
Authority
JP
Japan
Prior art keywords
sintered body
powder
molding
die
sialon sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63309823A
Other languages
Japanese (ja)
Other versions
JPH0627037B2 (en
Inventor
Taketo Nakano
中野 武人
Hideo Ide
井出 秀夫
Tetsuo Nose
哲郎 野瀬
Shigeharu Matsubayashi
重治 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63309823A priority Critical patent/JPH0627037B2/en
Publication of JPH02157169A publication Critical patent/JPH02157169A/en
Publication of JPH0627037B2 publication Critical patent/JPH0627037B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the electrical conductive sialon sintered body which has high deflection strength and allows electric discharge machining by compounding specific ratios of the nitrides or silicides of Ti or Zr with a powder mixture composed of Si3N4, Al2O3, AlN poly type, sintering assistant, etc., and molding the mixture, then sintering the molding under prescribed conditions. CONSTITUTION:The Si3N4 powder, the Al2O3 powder, the AlN poly type powder (contg. AlN) and the sintering assistant (e.g.; Y2O3) are mixed. This powder mixture is added with >=1 kinds of the nitrides of the Ti and Zr at 25 to 60vol.% of the total volume and is further added with >=1 kinds of the silicides of the Ti and Zr at 0.2 to 4.6vol.% of the total volume. The resulted powder mixture is molded and the molding is held for >=1 hours at 1,600+ or -50 deg.C in an atm. pressure or pressurized gaseous nitrogen atmosphere and is then held for >=2 hours at 1,700 to 1,840 deg.C, by which the molding is sintered. The electrical conductive beta type sialon sintered body adequate for the stock for the nib of the die for drawing, etc., is thereby obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はサイアロン焼結体およびその製造方法、更に伸
線用ダイスへの応用に関するものであり、特に、一般式
5i6−zAIjzOzN8−zで表されるβ型サイア
ロンを主体とする導電性焼結体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a sialon sintered body, a method for manufacturing the same, and an application to wire drawing dies, and in particular, a sialon sintered body represented by the general formula 5i6-zAIjzOzN8-z This invention relates to a conductive sintered body mainly composed of β-type sialon.

従来の技術 β型サイアロン焼結体は、鉄などの金属が比較的凝着し
にくい、高温強度および耐酸化性に優れ、熱膨張係数が
小さく耐熱衝撃性が大きい等の利点があるため、近年種
々の分野で応用が試みられている。一方、β型サイアロ
ン焼結体は加工性に難点があり、現状では一般にダイヤ
モンド砥石を用いて加工が行なわれているが、加工屑に
よる砥石の目詰りが起こりやすく、加工時間およびコス
トが非常に大きくなるという問題点がある。
Conventional technology β-type sialon sintered bodies have been gaining popularity in recent years because of their advantages, such as being relatively resistant to adhesion of metals such as iron, having excellent high-temperature strength and oxidation resistance, and having a small coefficient of thermal expansion and high thermal shock resistance. Applications are being attempted in various fields. On the other hand, β-type sialon sintered bodies have difficulties in workability, and currently they are generally processed using a diamond grinding wheel, but the grinding wheel is easily clogged with processing debris, and the processing time and cost are extremely high. The problem is that it gets bigger.

このため、最近β型サイアロンにIVa 、Va、VI
a族元素の酸化物、窒化物、炭化物を添加して導電性を
付与し、放電加工を可能としたサイアロン焼結体を得る
ことが提案されている(特開昭622E1517?)。
For this reason, recently β-type sialons include IVa, Va, and VI.
It has been proposed to add oxides, nitrides, and carbides of group A elements to impart conductivity to obtain a sialon sintered body that can be subjected to electrical discharge machining (Japanese Patent Laid-Open No. 622E1517?).

放電加工により、特殊・複雑形状のものが比較的短時間
・低コストで加工可能となる。従って、伸線用ダイスの
ようなテーパや曲面を組合せた形状でも比較的加工が容
易となる。
Electrical discharge machining makes it possible to machine objects with special and complex shapes in a relatively short time and at low cost. Therefore, even a shape with a combination of tapered and curved surfaces, such as a die for wire drawing, can be processed relatively easily.

発明が解決しようとする課題 本発明者は、上記公知技術による導電性サイアロン焼結
体を、ダイスやバイトのような金属加工用工具に適用す
べく実験検討を行った結果、実用的にはセラミックス粒
子間の結合力がより高い焼結体が望ましいという結論を
得た。
Problems to be Solved by the Invention The present inventor conducted an experimental study to apply the conductive sialon sintered body according to the above-mentioned known technology to metal processing tools such as dies and bits, and found that it is practically impossible to use ceramics. It was concluded that a sintered body with higher bonding strength between particles is desirable.

すなわち、粒子間の結合力が弱い場合、鉄のような金属
が塑性変形する際発生する高い応力によって、粒子が剥
離し摩耗が進行する。この摩耗を抑制し工具寿命を延長
するためには、粒子間の結合力を高めること、すなわち
抗折強度を高める必要がある。抗折強度を高める方法と
しては、ホットプレス、HIP等の物理的方法が提案さ
れている(特開昭59−207881)。
That is, when the bonding force between particles is weak, the particles peel off due to the high stress generated when a metal such as iron undergoes plastic deformation, and wear progresses. In order to suppress this wear and extend tool life, it is necessary to increase the bonding force between particles, that is, to increase the bending strength. As a method for increasing the bending strength, physical methods such as hot pressing and HIP have been proposed (Japanese Patent Laid-Open No. 59-207881).

しかしながら、ホットプレスにより焼結する場合には、
比較的単純な形状の焼結体は得られるが、複雑形状の焼
結体を得ることは困難である。
However, when sintering by hot pressing,
Although a sintered body with a relatively simple shape can be obtained, it is difficult to obtain a sintered body with a complicated shape.

また、HIPを用いる場合、複雑形状の焼結体を得るこ
とは可能であるが、前工程での焼結が必要となり製造工
程がそれだけ増えることになる。
Furthermore, when HIP is used, it is possible to obtain a sintered body with a complicated shape, but sintering is required in the previous step, which increases the number of manufacturing steps.

本発明は、上記事情に鑑み、製造工程を増やすことなく
、抗折強度がより高く特殊・複雑形状を有する導電性サ
イアロン焼結体を提供することを目的とするものである
。さらに、本焼結体を伸線用ダイスに適用することによ
り、寿命の長いダイスを提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a conductive sialon sintered body having higher flexural strength and a special/complicated shape without increasing the number of manufacturing steps. Furthermore, by applying this sintered body to a die for wire drawing, it is an object of the present invention to provide a die with a long life.

課題を解決するための手段 上記目的を達成するために末弟1の発明は、焼結助剤を
含むβ型サイアロン(Si6−zA9.zOzNg−z
)に対して、Ti、Zrの窒化物のうち一種以上が全容
量に対して25〜60容量%、Ti、 Zrの珪化物の
うち一種以上が全容量に対して0.2〜4.6容量%か
らなる焼結体であることを特徴とする。
Means for Solving the Problems In order to achieve the above object, the invention of the youngest brother 1 is a β-sialon (Si6-zA9.zOzNg-z) containing a sintering aid.
), one or more of Ti and Zr nitrides accounts for 25 to 60% by volume of the total capacity, and one or more of Ti and Zr silicides accounts for 0.2 to 4.6% of the total capacity. It is characterized by being a sintered body consisting of % by volume.

すなわち、Ti、 Zrの窒化物を構成成分とするのは
これらが導電性と高融点をもつ化合物であり、サイアロ
ンの焼結に悪影響を与えることが少ないからである。こ
れら化合物の添加量を25〜60容量%とするのは、2
5容量%未満では導電性化合物粒子相互の接触点が少な
く、放電加工に必要な導電性が得られないからであり、
60容量%を越えると本来β型サイアロンが有する金属
との凝着しにくさや高強度高靭性が損なわれるからであ
る。窒化物の添加量はより好ましくは30〜50容量%
である。
That is, the reason why nitrides of Ti and Zr are used as constituent components is because these are compounds having conductivity and a high melting point, and therefore have little adverse effect on the sintering of Sialon. The addition amount of these compounds is 25 to 60% by volume.
This is because if it is less than 5% by volume, there are few contact points between the conductive compound particles and the conductivity required for electric discharge machining cannot be obtained.
This is because if the content exceeds 60% by volume, the difficulty in adhesion to metal and the high strength and toughness that β-sialon originally possesses will be impaired. The amount of nitride added is preferably 30 to 50% by volume.
It is.

Ti、Zrの珪化物は、いずれもサイアロン焼結時に生
成する融液と濡れやすい。従って、第1図(A)のよう
に珪化物がない場合、融液はセラミックス粒子間に十分
に行き渡ることができないが、第1図(B)のように珪
化物がある場合、融液は珪化物粒子表面を積極的に濡ら
し、同時に周囲の粒子表面をも濡らすので融液が粒子間
に十分に行き渡ることができ、より均質性が高く欠陥の
少ない組織となる。その結果、ホットプレスやHIPに
匹敵する高強度を有することになる。
Both Ti and Zr silicides are easily wetted by the melt produced during sialon sintering. Therefore, when there is no silicide as shown in Figure 1 (A), the melt cannot sufficiently spread between the ceramic particles, but when there is silicide as shown in Figure 1 (B), the melt Since the silicide particle surface is actively wetted and the surrounding particle surfaces are also wetted at the same time, the melt can sufficiently spread between the particles, resulting in a more homogeneous structure with fewer defects. As a result, it has high strength comparable to hot pressing and HIP.

これら珪化物の添加量を0.2〜4.6容量%とするの
は、 0.2容量%未満では融液と粒子の濡れを向上さ
せるのに不十分であり、 4.6容量%を越えると珪化
物自身が破壊の起点となる効果の方が顕著になるからで
ある。珪化物の添加量はより好ましくは1.5〜2,5
容量%である。
The reason why the amount of these silicides added is 0.2 to 4.6% by volume is that less than 0.2% by volume is insufficient to improve wetting of the melt and particles, so 4.6% by volume is used. This is because, if it exceeds this, the effect that the silicide itself becomes the starting point of destruction becomes more pronounced. The amount of silicide added is preferably 1.5 to 2.5
It is capacity %.

焼結助剤としては、公知のものが使用できる。As the sintering aid, known ones can be used.

さらに、末弟2の発明である導電性サイアロン焼結体の
製造方法は次の通りである。
Furthermore, the method for manufacturing the conductive sialon sintered body, which is the invention of the youngest brother 2, is as follows.

すなわち、Si3N4粉末、At 203粉末、A免N
ポリタイプ粉末(AuNを含む)および焼結助剤に対し
、Ti、 Zrの窒化物のうち一種以上を全容量に対し
て25〜60容量%、Ti、Zrの珪化物のうち一種以
上が全容量に対して0.2〜4.8容量%からなる混合
粉末を成形し、この成形体を常圧又は加圧窒素ガス雰囲
気中で1600℃±50℃で1時間以上保持した後、1
700〜1840℃で2時間以上保持して焼結すること
により本発明導電性サイアロン焼結体が得られる。
Namely, Si3N4 powder, At 203 powder, AmenN
For polytype powder (including AuN) and sintering aid, one or more of Ti and Zr nitrides is added to the total volume by 25 to 60%, and one or more of Ti and Zr silicides is added to the total volume. A mixed powder consisting of 0.2 to 4.8% by volume based on the volume is molded, and this molded body is held at 1600°C ± 50°C for 1 hour or more in a normal pressure or pressurized nitrogen gas atmosphere.
The conductive sialon sintered body of the present invention can be obtained by holding and sintering at 700 to 1840°C for 2 hours or more.

ここで、1600℃±50℃で1時間以上保持するのは
、融液を粒界に均一に分布させるためである。
Here, the reason why the temperature is maintained at 1600° C.±50° C. for 1 hour or more is to uniformly distribute the melt at the grain boundaries.

1550℃未満では融液の分布が不充分であり、165
゜℃超ではSi3N4等の溶解が始まるので好ましくな
い。また、1700℃未満の焼結温度では緻密化が十分
に進まず、1840℃を越える場合には100気圧以」
二の窒素ガス中でなければSi3N4の分解を抑制する
ことはできないが、このような高圧では予め成型体の開
気孔をなくすことが必要となり製造工程を増やすことに
なる。
Below 1550°C, the distribution of the melt is insufficient, and 165°C
If the temperature exceeds .degree. C., dissolution of Si3N4, etc. begins, which is not preferable. Furthermore, if the sintering temperature is less than 1700°C, densification will not proceed sufficiently, and if the temperature exceeds 1840°C, the pressure will exceed 100 atm.
Although it is not possible to suppress the decomposition of Si3N4 unless it is in nitrogen gas, such high pressure requires eliminating open pores in the molded body in advance, which increases the number of manufacturing steps.

さらに本節3の発明は、上述の焼結体又は上述の製造方
法によって製造した焼結体をニブとダイケースとを有す
る伸線用ダイスにおいて、ニブに適用することである。
Furthermore, the invention of this section 3 is to apply the above-mentioned sintered compact or the sintered compact manufactured by the above-mentioned manufacturing method to the nib in a wire drawing die having a nib and a die case.

作用 以」−のように本発明により、ホットプレスすることな
しに、常圧もしくは加圧の窒素雰囲気中で焼結すること
により、従来の導電性サイアロン焼結体よりも粒子間の
結合力が高く、従って抗折強度が高い焼結体を容易に得
ることが可能となった。更に、ニブとグイケースとを有
する伸線用ダイスにおいて、該ニブへ上述の導電性サイ
アロン焼結体を適用し、金属線材を伸線すると、従来材
料よりもダイス寿命が向上した。これは、ニブを構成す
る材料の粒子間結合力向上により、粒子が剥離しにくく
なり、ニブの摩耗が抑制されたためである。
According to the present invention, the bonding force between particles is stronger than that of conventional conductive sialon sintered bodies by sintering in a normal pressure or pressurized nitrogen atmosphere without hot pressing. Therefore, it has become possible to easily obtain a sintered body with high bending strength. Furthermore, in a wire drawing die having a nib and a gooey case, when the above-mentioned conductive sialon sintered body was applied to the nib and a metal wire was drawn, the life of the die was improved compared to conventional materials. This is because the particles are less likely to peel off due to the improved interparticle bonding strength of the material constituting the nib, and wear of the nib is suppressed.

実施例 以下、本発明を実施例に基づいて、更に詳細に説明する
EXAMPLES Hereinafter, the present invention will be explained in more detail based on examples.

実施例l Si3N4粉末(平均粒径0.5pLm、α化率87%
以上) 、 AQ203粉末(平均粒径0.2gm)、
AQNポリタイプ粉末(結晶型21R1平均粒径3pL
m)を用いて、焼結体中のβ型サイアロン(Si2−z
Ai!zozN8のZ = 0.45となるように配合
し、更にY2O3粉末(平均粒径0.[ipm)を(Y
203/β型サイアロン+Y2O3) X 1oO= 
7.3重量%となるように配合した。
Example 1 Si3N4 powder (average particle size 0.5 pLm, gelatinization rate 87%)
above), AQ203 powder (average particle size 0.2 gm),
AQN polytype powder (crystal type 21R1 average particle size 3pL
m) in the sintered body, β-type sialon (Si2-z
Ai! Blend so that Z of zozN8 = 0.45, and further add Y2O3 powder (average particle size 0. [ipm) to (Y
203/β-type sialon+Y2O3) X 1oO=
The content was 7.3% by weight.

この粉末に、TiN、ZrN (いずれも平均粒径2p
Lm)およびTiSi2 、ZrSi2  (いずれも
平均粒径3gm)を表1に示す割合となるように配合し
た。
TiN, ZrN (each with an average particle size of 2p) was added to this powder.
Lm), TiSi2, and ZrSi2 (all having an average particle size of 3 gm) were blended in the proportions shown in Table 1.

これらを混合、成形後、常圧窒素ガス雰囲気中で160
0℃で2時間保持した後、+750’cで5時間保持し
て焼結し、室温まで徐冷した。これにより得られた焼結
体の常温抗折強度、電気抵抗率を表1に示す。
After mixing and molding these, 160°C in a normal pressure nitrogen gas atmosphere
After holding at 0°C for 2 hours, sintering was performed by holding at +750'C for 5 hours, and slowly cooled to room temperature. Table 1 shows the room temperature bending strength and electrical resistivity of the sintered body thus obtained.

比較例は、TiあるいはZrの珪化物を含まない例であ
る。
The comparative example is an example that does not contain Ti or Zr silicide.

実施例2 実施例1に示す本発明の焼結体のうちいくつかを伸線用
ダイスのニブに適用し、伸線テストに供試した。その結
果を表2に示す。
Example 2 Some of the sintered bodies of the present invention shown in Example 1 were applied to the nib of a wire drawing die, and subjected to a wire drawing test. The results are shown in Table 2.

(以下余白) 表2 伸線速度:低速(2〜6 m/m1n)(A) 発明の効果 本発明により、従来のものより抗折強度が高く、放電加
工可能なβ型サイアロン焼結体の製造が可能となった。
(Leaving space below) Table 2 Wire drawing speed: Low speed (2 to 6 m/m1n) (A) Effects of the invention The present invention has produced a β-type sialon sintered body that has higher bending strength than conventional products and is capable of electrical discharge machining. Manufacture has become possible.

また本発明のサイアロンを伸線用ダイスに適用すること
により、ダイスの高寿命化が可能となった。本発明のサ
イアロンは伸線用ダイスに限定されるものではなく、バ
イトその他金属加工用工具にも適用が可能である。
Moreover, by applying the Sialon of the present invention to a die for wire drawing, it has become possible to extend the life of the die. The Sialon of the present invention is not limited to wire drawing dies, but can also be applied to bits and other metal processing tools.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は融液とセラミックス粒子の濡れを示す説明図で
ある。 1・拳・セラミックス粒子、2・・・融液、3・・・珪
化物粒子。
FIG. 1 is an explanatory diagram showing wetting of the melt and ceramic particles. 1. Fist/ceramic particles, 2. Melt, 3. Silicide particles.

Claims (3)

【特許請求の範囲】[Claims] (1)焼結助剤を含むβ型サイアロン(Si_6_−_
zAl_zO_zN_8_−_z)に対して、Ti、Z
rの窒化物のうち一種以上が全容量に対して25〜60
容量%、Ti、Zrの珪化物のうち一種以上が全容量に
対して0.2〜4.6容量%添加してなることを特徴と
する導電性サイアロン焼結体。
(1) β-type sialon (Si_6_-_
zAl_zO_zN_8_-_z), Ti, Z
One or more of the nitrides of r is 25 to 60% of the total capacity.
1. A conductive sialon sintered body, characterized in that at least one of Ti and Zr silicides is added in an amount of 0.2 to 4.6 volume % based on the total volume.
(2)Si_3N_4粉末、Al_2O_3粉末、Al
Nポリタイプ粉末(AlNを含む)および焼結助剤に対
し、Ti、Zrの窒化物のうち一種以上を全容量に対し
て25〜60容量%、Ti,Zrの珪化物のうち一種以
上を全容量に対して0.2〜4.6容量%を添加して混
合粉末を成形し、この成形体を常圧又は加圧窒素ガス雰
囲気中で1600℃±50℃で1時間以上保持した後、
1700〜1840℃で2時間以上保持して焼結するこ
とを特徴とする導電性サイアロン焼結体の製造方法。
(2) Si_3N_4 powder, Al_2O_3 powder, Al
For the N polytype powder (including AlN) and the sintering aid, 25 to 60% by volume of one or more of Ti and Zr nitrides and one or more of Ti and Zr silicides are added to the total volume. After adding 0.2 to 4.6% by volume based on the total volume and molding the mixed powder, this molded body is held at 1600 ° C ± 50 ° C for 1 hour or more in normal pressure or pressurized nitrogen gas atmosphere. ,
A method for producing a conductive sialon sintered body, which comprises sintering by holding at 1700 to 1840°C for 2 hours or more.
(3)ニブとダイケースとを有する伸線用ダイスにおい
て、該ニブが請求項1記載の導電性サイアロン焼結体か
らなることを特徴とする伸線用ダイス。
(3) A wire drawing die having a nib and a die case, wherein the nib is made of the conductive sialon sintered body according to claim 1.
JP63309823A 1988-12-09 1988-12-09 Conductive sialon sintered body, method for producing the same, and wire drawing die Expired - Fee Related JPH0627037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63309823A JPH0627037B2 (en) 1988-12-09 1988-12-09 Conductive sialon sintered body, method for producing the same, and wire drawing die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63309823A JPH0627037B2 (en) 1988-12-09 1988-12-09 Conductive sialon sintered body, method for producing the same, and wire drawing die

Publications (2)

Publication Number Publication Date
JPH02157169A true JPH02157169A (en) 1990-06-15
JPH0627037B2 JPH0627037B2 (en) 1994-04-13

Family

ID=17997688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63309823A Expired - Fee Related JPH0627037B2 (en) 1988-12-09 1988-12-09 Conductive sialon sintered body, method for producing the same, and wire drawing die

Country Status (1)

Country Link
JP (1) JPH0627037B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171612A (en) * 1991-01-14 1995-07-11 Daido Steel Co Ltd Capstan roll for wire drawing mill
CN112091732A (en) * 2020-09-08 2020-12-18 珠海市微银信通科技有限公司 Manufacturing method of metal wire drawing die
EP3974405A1 (en) * 2020-09-25 2022-03-30 The Swatch Group Research and Development Ltd Ceramic decorative item

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07171612A (en) * 1991-01-14 1995-07-11 Daido Steel Co Ltd Capstan roll for wire drawing mill
CN112091732A (en) * 2020-09-08 2020-12-18 珠海市微银信通科技有限公司 Manufacturing method of metal wire drawing die
EP3974405A1 (en) * 2020-09-25 2022-03-30 The Swatch Group Research and Development Ltd Ceramic decorative item
WO2022063462A1 (en) * 2020-09-25 2022-03-31 The Swatch Group Research And Development Ltd Ceramic article
CN115988974A (en) * 2020-09-25 2023-04-18 斯沃奇集团研究和开发有限公司 Ceramic article

Also Published As

Publication number Publication date
JPH0627037B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JPS63185864A (en) Composite ceramics and manufacture
JPS5860677A (en) Manufacture of high tenacity silicon nitride sintered body
JPH10182234A (en) Cubic boron nitride-base sintered material and its production
JPH02293380A (en) Sintered silicon nitride ceramics
JPH02157169A (en) Electrical conductive sialon sintered body, production thereof and die for drawing
US4927791A (en) Chromium carbide sintered body
KR960016069B1 (en) Silicon nitride base sintered body
JPH07172923A (en) Production of hard sintered material having high tenacity for tool
JP2665755B2 (en) Method for producing β-sialon composite ceramics
JPH01122971A (en) Cubic boron nitride sintered product
JPS63277576A (en) Production of ceramic having high dimensional accuracy and composition thereof
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JP2730666B2 (en) Method for producing superplastic silicon nitride sintered body
JP2627768B2 (en) Method for producing sialon-non-oxide sintered body
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPH08269591A (en) Aluminum alloy powder molding partially containing ceramic particles and its production
JPH02225376A (en) Electroconductive sialon sintered product, its production and dice for wire elongation
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JP2003034577A (en) Silicon nitride-based composite sintered body and method for producing the same
JPH0585506B2 (en)
JPS63256572A (en) Sic base ceramics and manufacture
JPH01179761A (en) Conductive silicon nitride sintered body
JPS6335456A (en) High hardness sintered body for cast iron catting work
JPS6283377A (en) Manufacture of composite sintered body
JPS63195170A (en) Manufacture of silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees