JP2003034577A - Silicon nitride-based composite sintered body and method for producing the same - Google Patents

Silicon nitride-based composite sintered body and method for producing the same

Info

Publication number
JP2003034577A
JP2003034577A JP2001222727A JP2001222727A JP2003034577A JP 2003034577 A JP2003034577 A JP 2003034577A JP 2001222727 A JP2001222727 A JP 2001222727A JP 2001222727 A JP2001222727 A JP 2001222727A JP 2003034577 A JP2003034577 A JP 2003034577A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
less
titanium
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222727A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001222727A priority Critical patent/JP2003034577A/en
Publication of JP2003034577A publication Critical patent/JP2003034577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive silicon nitride-based composite sintered body having a smooth surface after electrical discharge machining and good mechanical properties, and to provide a method for producing the same. SOLUTION: Silicon nitride powders, sintering aid powders, titanium metal powders and boron nitride powders are ground and mixed until the silicon nitride, titanium nitride, and titanium boride have an average particle diameter of 30 nm or less, and are sintered in a non-oxidizing atmosphere. There is obtained the silicon nitride-based composite sintered body comprising the silicon nitride having an average particle diameter of 100 nm or less, titanium nitride compounds and titanium boride having an average minor axis diameter of 20 nm or less and an aspect ratio of 3 or more, wherein fracture strength is 600 MPa or more and resistivity is 10<0> Ω.cm or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、各種機構部材や切
削工具・摺動部材のような耐摩耗部材として有用な導電
性を持つ窒化ケイ素系複合焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride composite sintered body having conductivity which is useful as a wear resistant member such as various mechanical members, cutting tools and sliding members.

【0002】[0002]

【従来の技術】窒化ケイ素は、硬度、機械的強度、耐熱
性に優れ、化学的にも安定であることから、自動車のエ
ンジン部品に代表される各種機構部材や切削工具材料お
よび軸受等の耐摩・摺動部材に広く用いられてきた。近
年これらいずれの分野においても、材料に課せられる性
能レベルが過酷になりつつあるとともにそれら材料に要
求される加工精度等も厳しくなってきている。その結
果、これらの材料を製品として使用する場合、加工コス
トが高くなるために製品のコストが高くなり、市場の拡
大を妨げる最大の要因となっていた。
2. Description of the Related Art Silicon nitride has excellent hardness, mechanical strength, heat resistance, and is chemically stable. Therefore, various mechanical members typified by automobile engine parts, cutting tool materials, bearings, and other wear resistant materials are used.・ Widely used for sliding members. In any of these fields in recent years, the performance level imposed on materials has become severe, and the processing accuracy and the like required for those materials have become severe. As a result, when these materials are used as a product, the processing cost becomes high, and the product cost becomes high, which is the biggest factor that hinders the expansion of the market.

【0003】そのために、各種の加工方法が提案されて
いる。その中で最もよく使用される方法は、導電性粒子
を窒化ケイ素と粒界相からなるマトリックス中に分散さ
せることにより、窒化ケイ素系複合焼結体に導電性を持
たせて、放電加工を行う手法がある。なお本発明で「窒
化ケイ素系」とは、主結晶相として窒化ケイ素(Si 3
4)および/またはサイアロンを含むセラミックスを
指す。また「窒化ケイ素系の複合焼結体」とは、このよ
うなセラミックスを主結晶相とするマトリックス中に、
それとは異なった成分を分散複合化させた材料を指す。
Therefore, various processing methods have been proposed.
There is. The most commonly used method is conductive particles
Dispersed in a matrix composed of silicon nitride and a grain boundary phase.
This makes the silicon nitride-based composite sintered body conductive.
In addition, there is a method of performing electric discharge machining. In the present invention,
"Silicone-based" means silicon nitride (Si 3
NFour) And / or ceramics containing sialon
Point to. Also, "silicon nitride-based composite sintered body" is
In a matrix with such ceramics as the main crystal phase,
It refers to a material in which different components are dispersed and composited.

【0004】このような導電性の材料として、セラミッ
クス、21,P719〜725(1986)によると、
Siに20〜40vol%の導電性粒子を分散さ
せることにより、導電性を持つ窒化ケイ素材料を作製
し、放電加工が可能であることが述べられている。しか
し、このような窒化ケイ素材料の放電加工後の表面粗さ
は悪く、放電加工時の熱衝撃や放電に起因する溶融や表
面クラックが存在する。このため、放電加工後にその表
面クラックを除去するための研削加工を行わなければ、
機械的特性が低く、実用に用いることができなかった。
また、TiNを20vol%以上添加しなければ、放電
加工が可能な程度の導電性を得ることができない。さら
に、TiNとSiとでは、熱膨張係数が大きく異
なるので、TiNを20vol%以上添加すると熱衝撃
温度が無添加の場合の約1/2程度まで低下するという
問題もあった。
As such a conductive material, according to Ceramics 21, P719-725 (1986),
It is described that by dispersing 20 to 40 vol% of conductive particles in Si 3 N 4 , a silicon nitride material having conductivity can be produced and electric discharge machining can be performed. However, the surface roughness of such a silicon nitride material after electric discharge machining is poor, and melting and surface cracks due to thermal shock and electric discharge during electric discharge machining exist. Therefore, if you do not grind to remove the surface cracks after electrical discharge machining,
It had poor mechanical properties and could not be used practically.
In addition, unless TiN is added in an amount of 20 vol% or more, it is not possible to obtain conductivity that allows electric discharge machining. Further, since TiN and Si 3 N 4 have large thermal expansion coefficients, there is a problem that when TiN is added in an amount of 20 vol% or more, the thermal shock temperature is reduced to about half that in the case of no addition.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題点
を解決するためになされたものである。すなわち、本発
明は、放電加工後の表面が平滑であり、機械的特性に優
れた導電性の窒化ケイ素系複合焼結体およびその製造方
法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems. That is, the present invention provides a conductive silicon nitride-based composite sintered body having a smooth surface after electrical discharge machining and excellent mechanical properties, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明の窒化ケイ素系複
合焼結体は、平均粒径100nm以下の窒化ケイ素と、
窒化チタン系化合物と、平均短軸径が20nm以下であ
りアスペクト比が3以上のホウ化チタンとを含む窒化ケ
イ素系複合焼結体であって、破壊強度が600MPa以
上である。
The silicon nitride-based composite sintered body of the present invention comprises silicon nitride having an average particle size of 100 nm or less,
A silicon nitride-based composite sintered body containing a titanium nitride compound and titanium boride having an average minor axis diameter of 20 nm or less and an aspect ratio of 3 or more, and a breaking strength of 600 MPa or more.

【0007】また、本発明の窒化ケイ素系複合焼結体
は、窒化チタン系化合物とホウ化チタンが絡み合いなが
らナノオーダーで均一にネットワーク状に分散している
ので、固有抵抗率が10Ω・cm以下である。
Further, silicon nitride composite sintered body of the present invention, since the titanium nitride-based compound and titanium boride are uniformly dispersed in the network structure in the nano-order, while entangled, resistivity is 10 0 Omega · cm or less.

【0008】本発明の焼結体は、窒化ケイ素粉末と焼結
助剤、チタン金属、窒化ホウ素の各粉末を準備する工程
と、これらの粉末を窒化ケイ素と、チタンの窒化物及び
ホウ化物の平均粒径が30nm以下になるまで粉砕混合
を行う工程と、該混合粉末を成形し成形体とする工程
と、該成形体を非酸化性雰囲気下にて1100〜150
0℃の温度範囲で焼結し、焼結体とする工程とを含む製
造方法によって得ることができる。
The sintered body of the present invention comprises a step of preparing powders of silicon nitride powder, a sintering aid, titanium metal and boron nitride, and the powders of silicon nitride, titanium nitride and boride. A step of pulverizing and mixing until the average particle diameter becomes 30 nm or less, a step of molding the mixed powder to form a molded body, and 1100 to 150 of the molded body in a non-oxidizing atmosphere.
It can be obtained by a manufacturing method including a step of sintering in a temperature range of 0 ° C. to obtain a sintered body.

【0009】さらに、本発明の焼結体の出発原料の組成
は、チタン金属が10〜60vol%、窒化ホウ素が3
〜20vol%であり、残部が窒化ケイ素及び焼結助剤
であることが好ましい。
Further, the composition of the starting material of the sintered body of the present invention is such that titanium metal is 10 to 60 vol% and boron nitride is 3
It is preferable that the content is ˜20 vol%, and the balance is silicon nitride and a sintering aid.

【0010】前記窒化チタン系化合物とは、TiNやT
iONなどのチタンの窒化物や酸窒化物を指す。
The titanium nitride compound is TiN or T
It refers to titanium nitride or oxynitride such as iON.

【0011】[0011]

【発明の実施の形態】本発明の複合焼結体について、そ
の製造方法も絡めて以下詳述する。本発明の複合焼結体
の窒化ケイ素粒子と窒化チタン系化合物の平均粒径は、
100nm以下である。ここでいう窒化ケイ素とは、焼
結助剤やプロセスにより不可避に生成するサイアロンや
酸窒化ケイ素等を含む。また、本発明の焼結体に含まれ
るホウ化チタン(TiB)の平均短軸系は20nm以
下であり、平均長軸径と平均短軸径との比であるアスペ
クト比は3以上である。窒化ケイ素と窒化チタン系化合
物の平均粒径が100nmよりも大きな平均粒径の複合
焼結体を利用した場合は、放電加工時に材料の除去が効
率よく行われないので、放電加工後の面粗度が悪くな
る。TiBの平均短軸系が20nmを超えたり、アス
ペクト比が3未満であると効率よくネットワーク組織が
組めず、導電率が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION The composite sintered body of the present invention will be described in detail below, including the manufacturing method thereof. The average particle size of the silicon nitride particles and the titanium nitride-based compound of the composite sintered body of the present invention,
It is 100 nm or less. As used herein, silicon nitride includes sialon, silicon oxynitride, and the like that are inevitably generated by a sintering aid or a process. Further, the average minor axis system of titanium boride (TiB 2 ) contained in the sintered body of the present invention is 20 nm or less, and the aspect ratio, which is the ratio of the average major axis diameter to the average minor axis diameter, is 3 or more. . When a composite sintered body having an average particle size of silicon nitride and a titanium nitride-based compound larger than 100 nm is used, the material cannot be removed efficiently during electric discharge machining. It gets worse. If the average minor axis system of TiB 2 exceeds 20 nm or the aspect ratio is less than 3, a network structure cannot be efficiently formed and the conductivity decreases.

【0012】放電加工を可能にするためには、導電性が
必要である。そのために、材料に含まれる導電性粒子
が、ナノオーダーで均一にネットワーク状に分散するこ
とが必要である。出発原料に平均粒径20μm以下のチ
タン金属と窒化ホウ素とを平均粒径10μm以下の窒化
ケイ素粉末及び焼結助剤に混合すれば、粉砕混合及び成
形、焼結の工程を経て得られる焼結体は、平均粒径10
0nm以下の窒化ケイ素と窒化チタン系化合物と、平均
短軸系20nm以下であり、アスペクト比が3以上のホ
ウ化チタンとが含まれ、破壊強度が、600MPa以上
となる。窒化チタン系化合物粒子とホウ化チタン粒子は
絡み合いながらナノオーダーで均一にネットワーク状に
分散するので、焼結体の固有抵抗率が10Ω・cm以
下となり、放電可能が可能となる。
To enable electrical discharge machining, conductivity is required. Therefore, it is necessary that the conductive particles contained in the material are uniformly dispersed in a network form on the order of nanometers. When titanium metal having an average particle size of 20 μm or less and boron nitride are mixed as a starting material with a silicon nitride powder having an average particle size of 10 μm or less and a sintering aid, sinter obtained through the steps of crushing, mixing, molding, and sintering. Body has an average particle size of 10
Silicon nitride and a titanium nitride-based compound of 0 nm or less, and an average short axis system of 20 nm or less and titanium boride having an aspect ratio of 3 or more are included, and the breaking strength is 600 MPa or more. Since titanium nitride compound particles and the titanium boride particles are dispersed uniformly in the network-like nanometric while entangled, resistivity of the sintered body becomes less 10 0 Ω · cm, the discharge can be performed.

【0013】本発明の窒化ケイ素系複合焼結体には、前
述のように導電性粒子として、窒化チタン系化合物とホ
ウ化チタンが含まれている。ホウ化チタンの比抵抗は窒
化チタンの比抵抗の約1/4と低いことから、窒化チタ
ンは従来よりも少ない添加量で放電加工が可能な程度の
焼結体の導電性を得ることができる。ホウ化チタンの熱
膨張係数は、窒化チタンの熱膨張係数よりも小さく、窒
化ケイ素の熱膨張係数に近いことから、焼結体の熱衝撃
温度を高く維持することができる。
The silicon nitride composite sintered body of the present invention contains the titanium nitride compound and titanium boride as the conductive particles as described above. Since the specific resistance of titanium boride is as low as about 1/4 of the specific resistance of titanium nitride, titanium nitride can obtain the electrical conductivity of a sintered body to the extent that electric discharge machining is possible with a smaller addition amount than before. . The thermal expansion coefficient of titanium boride is smaller than the thermal expansion coefficient of titanium nitride and is close to the thermal expansion coefficient of silicon nitride, so that the thermal shock temperature of the sintered body can be kept high.

【0014】また本発明の材料は、窒化ケイ素粉末と、
焼結助剤、チタン金属、窒化ホウ素の各粉末を準備する
工程と、これらの粉末を窒化ケイ素と、チタンの窒化物
及びホウ化物の平均粒径が30nm以下になるまで粉砕
混合を行う工程と、該混合粉末を成形し成形体とする工
程と、該成形体を1100〜1500℃、非酸化性雰囲
気下にて焼結し、焼結体とする工程とを含む製造方法に
よって得ることができる。この粉砕、焼結工程で、窒化
ホウ素はホウ化チタンに変化し、短軸径20nm以下で
アスペクト比3以上のホウ化チタン粒子を形成する。
The material of the present invention is a silicon nitride powder,
A step of preparing powders of a sintering aid, titanium metal, and boron nitride; and a step of pulverizing and mixing these powders with silicon nitride until the average particle diameter of titanium nitride and boride becomes 30 nm or less. It can be obtained by a manufacturing method including a step of molding the mixed powder into a molded body, and a step of sintering the molded body at 1100 to 1500 ° C. in a non-oxidizing atmosphere to form a sintered body. . In this crushing and sintering process, boron nitride is changed to titanium boride, and titanium boride particles having a minor axis diameter of 20 nm or less and an aspect ratio of 3 or more are formed.

【0015】原料粉末としては、いずれも市販のもので
よい。Si34粉末の結晶型は、α型、β型のいずれで
もよく、イミド分解粉、直接窒化粉のいずれを用いても
よい。Si34粉末、焼結助剤粉末とも、粒径制御のし
易さと機械的特性向上のため、その平均粒径は小さいほ
ど望ましいが、5μm以下、さらには2μm以下のもの
がより望ましい。チタン金属と窒化ホウ素の平均粒径
は、小さいほど望ましいが、概ね20μm以下、さらに
は10μm以下とするのが好ましい。
Any raw material powder may be commercially available. The crystal form of the Si 3 N 4 powder may be either α type or β type, and either imide decomposition powder or direct nitriding powder may be used. Both the Si 3 N 4 powder and the sintering aid powder are preferably as small as possible average particle diameters in order to facilitate particle size control and improve mechanical properties, but those having an average particle diameter of 5 μm or less, and more preferably 2 μm or less are more desirable. The average particle size of titanium metal and boron nitride is preferably as small as possible, but is preferably about 20 μm or less, and more preferably 10 μm or less.

【0016】粉砕混合した混合粉の窒化ケイ素粉末とチ
タンの窒化物及びホウ化物粉末の平均粒径は、30nm
以下になるよう粉砕混合を行う。30nmを超えると焼
結体中の窒化ケイ素粒子とチタンの窒化物及びホウ化物
粒子の平均粒径を100nm以下に制御することが困難
になるとともに、組織が不均一となり放電加工後の加工
面の面粗度が悪くなる。混合は粉砕を伴うボールミルや
アトライターのような方法によって行うのが望ましい。
例えば特開平10−338576号公報に記載されてい
るように、この種の混合装置を用いてメカニカルアロイ
ングを行う。この方法によれば、分散粒子源として添加
した金属粉末の塑性変形能及びメカノケミカル反応によ
って、平均粒径30nm以下の微細な混合粉末が得られ
る。粉砕の加速度、粉末と粉砕媒体とのチャージ量比
率、粉砕時間等の条件は、当初の原料粉末の平均粒径レ
ベルによって適宜選択する。
The average particle diameters of the pulverized and mixed powders of silicon nitride powder and titanium nitride and boride powders are 30 nm.
Grind and mix as follows. When it exceeds 30 nm, it becomes difficult to control the average particle diameter of the silicon nitride particles and the titanium nitride and boride particles in the sintered body to 100 nm or less, and the structure becomes non-uniform, resulting in a machined surface after electrical discharge machining. The surface roughness deteriorates. The mixing is preferably performed by a method such as a ball mill or an attritor that involves grinding.
For example, as described in Japanese Patent Laid-Open No. 10-338576, mechanical alloying is performed using this type of mixing device. According to this method, a fine mixed powder having an average particle size of 30 nm or less is obtained due to the plastic deformability and the mechanochemical reaction of the metal powder added as the dispersed particle source. The conditions such as the acceleration of the pulverization, the charge amount ratio of the powder and the pulverizing medium, the pulverizing time, etc. are appropriately selected according to the average particle size level of the initial raw material powder.

【0017】出発原料粉末の組成は、チタン金属が10
〜60vol%、窒化ホウ素が3〜20vol%の範囲
が好ましい。残部は、窒化ケイ素と焼結助剤である。チ
タン金属が、10vol%未満であれば、導電性粒子で
ある窒化チタンやホウ化チタンの生成量が少なくなり放
電加工が可能な固有抵抗10Ω・cm以下の導電性を
得ることが困難となる。チタン金属が60vol%を超
えると、強度の弱い窒化チタンの生成量が多くなるの
で、焼結体の強度の低下が著しく実用に耐えなくなる。
また、窒化ホウ素が3vol%未満であるとホウ化チタ
ンが少なくなるので、導電性が低下する他、焼結体の破
壊強度が低くなり実用に耐えなくなる。また、窒化ホウ
素が20vol%を超えると、残部の窒化ホウ素の量が
多くなるのでやはり焼結体の破壊強度が低くなる。
The composition of the starting material powder is titanium metal 10
The range of -60 vol% and boron nitride 3-20 vol% is preferable. The balance is silicon nitride and a sintering aid. Titanium metal, it is less than 10 vol%, a conductive particle and the amount of titanium nitride or titanium boride decreases discharge machining is possible resistivity 10 0 Ω · cm difficult to obtain less conductive Become. If the titanium metal content exceeds 60 vol%, the amount of titanium nitride, which has low strength, is increased, so that the strength of the sintered body is remarkably deteriorated and cannot be put to practical use.
Further, when the boron nitride content is less than 3 vol%, titanium boride is reduced, so that the conductivity is lowered and the fracture strength of the sintered body is lowered, which makes it unusable for practical use. Further, when the boron nitride content exceeds 20 vol%, the amount of the remaining boron nitride increases, so that the fracture strength of the sintered body also decreases.

【0018】以上のように調製された混合粉末は、通常
の乾式プレス成形法、押し出し成形法、ドクターブレー
ド成形法および射出成形法のような公知の成形法を用い
ることができ、所望する形状に合わせて品質上・生産上
最も望ましい成形方法を選べばよい。なお成形に先立ち
粉砕混合後の混合粉末を顆粒状に造粒し、予めその嵩密
度を高め、成形性を高めることもできる。
The mixed powder prepared as described above can be used in a known molding method such as a normal dry press molding method, an extrusion molding method, a doctor blade molding method and an injection molding method, to obtain a desired shape. In addition, the most desirable molding method in terms of quality and production should be selected. It is also possible to granulate the mixed powder after pulverization and mixing prior to molding to increase the bulk density in advance to improve moldability.

【0019】成形体は、非酸化性雰囲気中、1100〜
1500℃の温度範囲で焼結する。焼結の加熱手段とし
ては、通常の常圧焼結でもよいが、成形体を短時間で昇
温・均一加熱できるパルス放電焼結法や高周波誘導加熱
式の焼結法のような手段が望ましい。なお焼結時に雰囲
気ガスによって加圧するか、または機械的に外圧を加え
て、加圧下で焼結してもよい。焼結温度が1100℃以
下では、十分に焼結しない。また、1500℃を超える
と粒成長が顕著になり本発明の複合焼結体を得ることが
困難となる。
The molded product is 1100-110 in a non-oxidizing atmosphere.
Sinter in the temperature range of 1500 ° C. As a heating means for sintering, normal atmospheric pressure sintering may be used, but a means such as a pulse discharge sintering method or a high frequency induction heating type sintering method capable of heating and uniformly heating a compact in a short time is desirable. . It should be noted that the sintering may be performed under pressure by applying pressure with an atmosphere gas or by mechanically applying an external pressure. If the sintering temperature is 1100 ° C. or lower, it will not be sufficiently sintered. Further, when the temperature exceeds 1500 ° C., grain growth becomes remarkable and it becomes difficult to obtain the composite sintered body of the present invention.

【0020】[0020]

【実施例】平均粒径0.5μmのα型窒化ケイ素粉末と
平均粒径10μmの金属Ti粉末及び平均粒径5μmの
窒化ホウ素(BN)粉末と焼結助剤として、窒化ケイ素
に対し2.5wt%のYならびに1wt%のAl
を準備した。各粉末はいずれも市販のものであ
る。表1に示すTi及びBN量を調整した後、150G
の加速度を有する遊星ボールミルを用いて、16時間混
合した。得られた混合粉末の1次粒子の平均粒径は全て
30nm以下であった。
EXAMPLES α-type silicon nitride powder having an average particle size of 0.5 μm, metallic Ti powder having an average particle size of 10 μm, boron nitride (BN) powder having an average particle size of 5 μm, and a sintering aid for silicon nitride. 5 wt% Y 2 O 3 and 1 wt% Al
2 O 3 was prepared. Each powder is commercially available. After adjusting the Ti and BN amounts shown in Table 1, 150G
The mixture was mixed for 16 hours using a planetary ball mill having an acceleration of. The average particle diameter of the primary particles of the obtained mixed powder was all 30 nm or less.

【0021】[0021]

【表1】 *印は比較例[Table 1] * Indicates comparative example

【0022】作製した各混合粉末を1気圧の窒素雰囲気
中で、1300℃、30MPaの圧力でパルス放電加熱
法により加圧焼結を行った。尚、温度はダイスを二色温
度計にて計測した。得られた各焼結体は表面を鏡面加工
した後、透過電子顕微鏡で観察し、窒化ケイ素、窒化チ
タン各粒子の平均粒径を測定した。ホウ化チタン粒子
は、平均短軸径と平均長軸径を測定し、アスペクト比を
計算した。各粒子の同定は、EELS(電子エネルギー
損失分光法)によって行った。その1例として、No.
6の試料についての透過電子顕微鏡写真とEELSの結
果を図1と図2に示す。図1と2から、TiBの粒子
は、柱状粒子であり、TiN粒子を貫くように絡み合っ
ていることが判る。
The prepared mixed powders were pressure-sintered by a pulse discharge heating method at a pressure of 1300 ° C. and a pressure of 30 MPa in a nitrogen atmosphere of 1 atm. The temperature was measured with a two-color thermometer using a die. The surface of each of the obtained sintered bodies was mirror-finished and then observed with a transmission electron microscope to measure the average particle diameter of each particle of silicon nitride and titanium nitride. For the titanium boride particles, the average minor axis diameter and the average major axis diameter were measured, and the aspect ratio was calculated. Each particle was identified by EELS (electron energy loss spectroscopy). As one example, No.
Transmission electron micrographs and EELS results for the sample of No. 6 are shown in FIGS. 1 and 2. It can be seen from FIGS. 1 and 2 that the TiB 2 particles are columnar particles and are entangled so as to penetrate the TiN particles.

【0023】さらに、導電性は、4点式電気抵抗測定器
で測定し、放電加工が可能である電気抵抗が10Ω・
cm以下であるものを○、それ以上のものについては×
で示した。また機械的特性として、JIS R1601
に規定された強度試験片形状に仕上げ、三点曲げ強度を
同規定に準拠して測定した。尚、強度試験時に引っ張り
応力のかかる面は放電加工のままとした。これらの特性
を測定した結果を表2に示す。
Furthermore, the conductivity, measured by a four-point resistance measuring instrument, the electrical resistance is possible electric discharge machining 10 0 Omega ·
○ those with cm or less, × with those larger
Indicated by. As mechanical properties, JIS R1601
The test piece was finished into the strength test piece shape specified in 1 above, and the three-point bending strength was measured according to the same specification. The surface to which the tensile stress was applied during the strength test was left as it was in electrical discharge machining. The results of measuring these characteristics are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】この表より、本願発明の焼結体は、全て破
壊強度が600MPa以上であることが判る。また、N
o.2のように従来のTiNのみの添加では、放電加工
が可能にはならない10vol%と少ないTiの添加量
でも放電加工が可能な導電性を得ることができた。な
お、10vol%のTi添加量は、その全てがTiNに
転化するとすれば、TiNの量としては、10.7vo
l%となる。
From this table, it is understood that the sintered bodies of the present invention all have a breaking strength of 600 MPa or more. Also, N
o. As in the case of No. 2, the conventional addition of TiN alone does not make electrical discharge machining possible. Even with a small addition amount of Ti of 10 vol%, it was possible to obtain electrical conductivity that enables electrical discharge machining. If 10% by volume of Ti is converted to TiN, the amount of TiN is 10.7 vo.
It becomes 1%.

【0026】No.6の焼結体について、ワイヤー放電
加工機(ソディックAP450)を用いて、試料を切断
加工し、その放電加工面の面粗さ(Ra)を接触式表面
粗さ計で測定した。その結果、放電加工面の面粗さは、
放電加工面全体にわたって、0.2μm以下であった。
No. With respect to the sintered body of No. 6, a sample was cut and processed using a wire electric discharge machine (Sodick AP450), and the surface roughness (Ra) of the electric discharge machined surface was measured by a contact surface roughness meter. As a result, the surface roughness of the EDM surface is
It was 0.2 μm or less over the entire electric discharge machined surface.

【0027】さらに、No.6の焼結体について、圧子
圧入法(IF法)で測定した破壊靭性値は、6.5MP
a・m1/2であった。ビッカース硬度(Hv)は1
9.6GPaであった。また、水中急冷法による熱衝撃
破壊抵抗(ΔT:いわゆる熱衝撃温度)は、600℃以
上であり、TiNを添加しない窒化ケイ素の熱衝撃温度
と同程度であることを確認した。
Further, in No. The fracture toughness value of the sintered body of No. 6 measured by the indentation method (IF method) is 6.5 MP.
It was a · m 1/2 . Vickers hardness (Hv) is 1
It was 9.6 GPa. Further, it was confirmed that the thermal shock fracture resistance (ΔT: so-called thermal shock temperature) by the underwater quenching method was 600 ° C. or higher, which was about the same as the thermal shock temperature of silicon nitride to which TiN was not added.

【0028】[0028]

【発明の効果】本発明によれば、Si34を主成分とす
る微細なマトリックス中に、窒化チタン系化合物とホウ
化チタンをナノオーダーで均一にネットワーク状に分散
させることによって、放電加工が可能であり、放電加工
のままでも機械的特性に優れた窒化ケイ素系複合焼結体
を、従来になく安価に提供することができる。
According to the present invention, the electric discharge machining is performed by uniformly dispersing the titanium nitride compound and titanium boride in a nano-order in a network in a fine matrix containing Si 3 N 4 as a main component. It is possible to provide a silicon nitride-based composite sintered body having excellent mechanical properties even in the electrical discharge machining state, at a lower cost than ever before.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例No.6の透過電子顕微鏡写真を示
す。
FIG. 1 shows an example No. 6 shows a transmission electron micrograph of No. 6.

【図2】(a)図1の1で示す粒子のEELSの結果を
示す。(b)図1の2で示す粒子のEELSの結果を示
す。
FIG. 2 (a) shows the EELS results of the particles indicated by 1 in FIG. (B) shows the EELS results of the particles indicated by 2 in FIG.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C046 FF34 4G001 BA03 BA09 BA32 BA33 BA38 BA43 BA61 BB03 BB09 BB32 BB38 BB44 BC01 BC13 BC14 BC42 BC52 BC54 BD13 BD14 BD23 BE23    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 3C046 FF34                 4G001 BA03 BA09 BA32 BA33 BA38                       BA43 BA61 BB03 BB09 BB32                       BB38 BB44 BC01 BC13 BC14                       BC42 BC52 BC54 BD13 BD14                       BD23 BE23

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】平均粒径100nm以下の窒化ケイ素と、
窒化チタン系化合物と、平均短軸径が20nm以下であ
りアスペクト比が3以上のホウ化チタンとを含む窒化ケ
イ素系複合焼結体であって、破壊強度が600MPa以
上であることを特徴とする窒化ケイ素系複合焼結体。
1. Silicon nitride having an average particle size of 100 nm or less,
A silicon nitride-based composite sintered body containing a titanium nitride-based compound and titanium boride having an average minor axis diameter of 20 nm or less and an aspect ratio of 3 or more, characterized by a breaking strength of 600 MPa or more. Silicon nitride composite sintered body.
【請求項2】平均粒径100nm以下の窒化ケイ素と、
窒化チタン系化合物と、平均短軸径が20nm以下であ
りアスペクト比が3以上のホウ化チタンとを含む窒化ケ
イ素系複合焼結体であって、固有抵抗率が10Ω・c
m以下であることを特徴とする窒化ケイ素系複合焼結
体。
2. Silicon nitride having an average particle size of 100 nm or less,
A titanium nitride compound, an average minor axis diameter of a silicon nitride composite sintered body containing the less is the aspect ratio of 3 or more titanium boride 20 nm, specific resistivity of 10 0 Ω · c
A silicon nitride-based composite sintered body characterized by being m or less.
【請求項3】窒化ケイ素粉末と焼結助剤、チタン金属、
窒化ホウ素の各粉末を準備する工程と、これらの粉末を
窒化ケイ素と、金属の窒化物及びホウ化物の平均粒径が
30nm以下になるまで粉砕混合を行う工程と、該混合
粉末を成形し成形体とする工程と、該成形体を非酸化性
雰囲気下にて焼結し、焼結体とする工程とを含む請求項
1又は2に記載の窒化ケイ素系複合焼結体の製造方法。
3. A silicon nitride powder, a sintering aid, titanium metal,
A step of preparing each powder of boron nitride, a step of pulverizing and mixing these powders with silicon nitride until the average particle diameter of metal nitride and boride becomes 30 nm or less, and molding and molding the mixed powder The method for producing a silicon nitride-based composite sintered body according to claim 1, comprising a step of forming a body and a step of sintering the formed body in a non-oxidizing atmosphere to form a sintered body.
【請求項4】出発原料にチタン金属が10〜60vol
%、窒化ホウ素が3〜20vol%含まれることを特徴
とする請求項3に記載の窒化ケイ素系複合焼結体の製造
方法。
4. A starting material containing titanium metal in an amount of 10 to 60 vol.
%, And boron nitride is contained in an amount of 3 to 20% by volume. 4. The method for manufacturing a silicon nitride-based composite sintered body according to claim 3, wherein
JP2001222727A 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same Pending JP2003034577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222727A JP2003034577A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222727A JP2003034577A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same

Publications (1)

Publication Number Publication Date
JP2003034577A true JP2003034577A (en) 2003-02-07

Family

ID=19056163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222727A Pending JP2003034577A (en) 2001-07-24 2001-07-24 Silicon nitride-based composite sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2003034577A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528048A1 (en) * 2003-10-29 2005-05-04 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
KR100714978B1 (en) * 2005-08-03 2007-05-04 한국과학기술연구원 The method for fabricatiing ultrafine crystalline TiN/TiB2 composite cermet
EP2957368A4 (en) * 2013-02-13 2016-10-19 Kyocera Corp Cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528048A1 (en) * 2003-10-29 2005-05-04 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
US7348286B2 (en) 2003-10-29 2008-03-25 Sumitomo Electric Industries, Ltd. Ceramic composite material and method of its manufacture
KR100714978B1 (en) * 2005-08-03 2007-05-04 한국과학기술연구원 The method for fabricatiing ultrafine crystalline TiN/TiB2 composite cermet
EP2957368A4 (en) * 2013-02-13 2016-10-19 Kyocera Corp Cutting tool
US10086437B2 (en) 2013-02-13 2018-10-02 Kyocera Corporation Cutting tool

Similar Documents

Publication Publication Date Title
Gupta et al. Spark plasma sintering of novel ZrB2–SiC–TiSi2 composites with better mechanical properties
JP6344844B2 (en) Boron carbide / titanium boride composite ceramics and method for producing the same
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
EP0429665B1 (en) Method of producing sintered ceramic materials
JP2002097005A5 (en)
JP2003221280A (en) Electroconductive silicon nitride-based composite sintered body and method for producing the same
JPS61111969A (en) Discharge-processable electroconductive silicon nitride sintered body and manufacture
JP2003034577A (en) Silicon nitride-based composite sintered body and method for producing the same
JP2004067432A (en) Ceramic composite sintered body and its manufacturing process
JP5096720B2 (en) Method for producing conductive composite ceramics
RU2697987C1 (en) Method of making ceramics based on silicon nitride - titanium nitride composite
WO2002057197A1 (en) Electroconductive silicon nitride based composite sintered body and method for preparation thereof
JPH08310867A (en) Production of boride ceramic
JP2000277815A (en) Thermoelectric material containing dispersed short thin metallic wires and its manufacture
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP2008087987A (en) Nitride composite ceramic
JP2000154064A (en) Electrically conductive silicon nitride-base sintered compact and its production
Soloviova et al. Spark Plasma Sintering of Cu-(LaB 6-TiB 2) Metal-Ceramic Composite and Its Physical-Mechanical Properties
JPH06263540A (en) Composite compact and its production
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
JPH10338576A (en) Silicon nitride sintered compact and its production
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JPH02157169A (en) Electrical conductive sialon sintered body, production thereof and die for drawing
JPH0812443A (en) Superplastic silicon nitride sintered compact