JP2008087987A - Nitride composite ceramic - Google Patents

Nitride composite ceramic Download PDF

Info

Publication number
JP2008087987A
JP2008087987A JP2006267445A JP2006267445A JP2008087987A JP 2008087987 A JP2008087987 A JP 2008087987A JP 2006267445 A JP2006267445 A JP 2006267445A JP 2006267445 A JP2006267445 A JP 2006267445A JP 2008087987 A JP2008087987 A JP 2008087987A
Authority
JP
Japan
Prior art keywords
nitride
aln
conductive
composite ceramic
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006267445A
Other languages
Japanese (ja)
Inventor
Shigeru Matsuo
松尾  繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2006267445A priority Critical patent/JP2008087987A/en
Publication of JP2008087987A publication Critical patent/JP2008087987A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride composite ceramic which can be used in the electrical discharge machining of Si<SB>3</SB>N<SB>4</SB>or AlN. <P>SOLUTION: A technique of giving conductivity by adding a metal carbide or nitride as an accessory component has been proposed. A conductive ceramic in an amount of 1 to 35 vol% is finely dispersed in carbide or nitride (Si<SB>3</SB>N<SB>4</SB>or AlN) to prepare a nitride composite ceramic sintered compact having a texture which contains no coarse particles having a particle size of 5 μm or more formed by the aggregation of the conductive ceramic. The nitride composite ceramic sintered compact is suitable for semiconductor-holding equipment, a reflecting mirror for optical position measurement, an implement for precision component processing, a precision press, a stamping die, a heat-dissipating member and a heat conduction member, a heater and an electrostatic chuck. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、微細な組織を有する窒化物と炭化物からなる複合セラミックスに関する。   The present invention relates to a composite ceramic made of nitride and carbide having a fine structure.

従来より、Siはその硬度、破壊靭性の高さ、耐摩耗性等から切削工具や造管用ロール、耐摩耗部材、耐熱部材などとして一般的に量産されている。Si単体は難焼結材であり、量産されている材料については、SiにAl、Y、AlN、TiNなどの焼結助材を数%添加しているのが一般的な組成である。前記助材はSiの粒界に存在するか、Siと一部固溶体を作り、焼結温度を下げる。

また、AlNについては、機械的性能に特筆点はないが、熱伝導率は他のセラミックスと比較して高く、150〜250W/m・Kである。耐熱性も高いために、高温での熱伝導材や放熱部材などとして用いられている。

前記SiおよびAlNは単体での電気抵抗率が1×1012(Ω・cm)以上の絶縁体であるために、放電加工ができず、焼結体の形状が限定されるという難点があった。

Si、AlNと導電性添加物とを複合化することの利点はさまざまあるが、最も重要なのは電気的特性の点である。その他の利点としては、熱膨張率の調整、SiおよびAlN粒成長の抑制、クラックの進展阻害効果による強度や靭性の改善、それに伴う割れ、欠け、チッピングの防止があげられる。

こういったSiおよびAlNと導電性添加物を複合することにより、材料の靭性、強度、耐チッピング性や焼結性をかね揃えた複合材料は多数提案されてきた。Siについての代表的な文献を、特許文献1および特許文献2から引用する。

特許文献1にはSi中に0.5〜30%の4a〜6a族金属化合物を添加しており、電気伝導度が10−3−1・cm−1)以下で放電加工可能な焼結体が提案されている。原料粉末は平均粒子径1μm以下である。
特許文献2にはSi粉末に酸化物の焼結助材を0.05〜5%、およびTi,Ta、Hf、W、Mo,Zr、Crの化合物を1〜25体積%加えた導電性Si材が開示されている。

またAlNについては特許文献3および特許文献4から引用する。
特許文献3にはAlNを主成分として、Ti、Zr化合物を0.1%以上分散したAlN抵抗体を有するヒーターが提案されている。このヒーターは電気抵抗率が1(Ω・cm)以下であるとの記載がある。
特許文献4には、主成分が非導電性セラミックスのAlNであり、4a〜6a族金属化合物を含有するセラミックス複合体が開示されている。

特開昭57−200265号公報 特開昭58−041771号公報 特開平04−308680号公報 特開平01−133968号公報 通常、複合セラミックスは下記方法で製造される。 混合はボールミルやアトライター、ブラストミルなどを用いて行うが、両粉末が均一に混合される必要がある。 乾燥・造粒は静置乾燥やスプレードライヤーを用いて行うのが一般的である。 プレス成形は、金型プレスや冷間静水圧プレス(CIP)法を用いる。こうして得られた圧粉体に必要であれば中間加工を行う。 圧粉体を焼結する方法は、雰囲気炉、真空炉、加圧炉、大気炉、ホットプレス炉などを用いるのが旧来の方法だが、通電プラズマ焼結など新しい焼結法も一般的になっている。より高い密度を得るためには、熱間静水圧プレス(HIP)をこの焼結工程の後で行えば良い。 以上が最も一般的な複合セラミックスを得る工程である。
Conventionally, Si 3 N 4 is generally mass-produced as a cutting tool, a pipe-making roll, a wear-resistant member, a heat-resistant member, etc. due to its hardness, high fracture toughness, wear resistance and the like. Si 3 N 4 itself is a hard-to-sinter material, and for materials that are mass-produced, several percent of sintering aids such as Al 2 O 3 , Y 2 O 3 , AlN, TiN are added to Si 3 N 4. It is a general composition. Whether the auxiliary material present in the grain boundary of Si 3 N 4, make some solid solution and Si 3 N 4, lowering the sintering temperature.

AlN has no special mention in mechanical performance, but its thermal conductivity is higher than that of other ceramics and is 150 to 250 W / m · K. Because of its high heat resistance, it is used as a heat conducting material or heat radiating member at high temperatures.

Since Si 3 N 4 and AlN are insulators having a single electrical resistivity of 1 × 10 12 (Ω · cm) or more, electric discharge machining cannot be performed and the shape of the sintered body is limited. was there.

There are various advantages of compounding Si 3 N 4 , AlN and a conductive additive, but the most important point is the electrical characteristics. Other advantages include adjustment of the coefficient of thermal expansion, suppression of Si 3 N 4 and AlN grain growth, improvement of strength and toughness due to crack growth inhibition effect, and prevention of cracks, chips and chipping associated therewith.

A number of composite materials have been proposed in which the toughness, strength, chipping resistance and sinterability of the material are combined by combining such Si 3 N 4 and AlN with conductive additives. Representative documents on Si 3 N 4 are cited from Patent Document 1 and Patent Document 2.

In Patent Document 1, 0.5 to 30% of a 4a to 6a group metal compound is added to Si 3 N 4 , and electric discharge is less than 10 −3−1 · cm −1 ). Possible sintered bodies have been proposed. The raw material powder has an average particle size of 1 μm or less.
In Patent Document 2, 0.05 to 5% of an oxide sintering aid and 1 to 25% by volume of a compound of Ti, Ta, Hf, W, Mo, Zr, and Cr are added to Si 3 N 4 powder. A conductive Si 3 N 4 material is disclosed.

Further, AlN is cited from Patent Document 3 and Patent Document 4.
Patent Document 3 proposes a heater having an AlN resistor in which AlN is a main component and Ti and Zr compounds are dispersed by 0.1% or more. There is a description that this heater has an electrical resistivity of 1 (Ω · cm) or less.
Patent Document 4 discloses a ceramic composite containing AlN of a nonconductive ceramic as a main component and containing a group 4a-6a metal compound.

Japanese Patent Laid-Open No. 57-200265 JP 58-041771 A Japanese Patent Laid-Open No. 04-308680 JP, 01-133968, A Composite ceramic is usually manufactured by the following method. Mixing is performed using a ball mill, an attritor, a blast mill, etc., and both powders need to be mixed uniformly. Drying and granulation are generally performed using stationary drying or a spray dryer. The press molding uses a die press or a cold isostatic press (CIP) method. If necessary, intermediate processing is performed on the green compact thus obtained. The conventional method of sintering green compacts is to use an atmospheric furnace, vacuum furnace, pressure furnace, atmospheric furnace, hot press furnace, etc., but new sintering methods such as energized plasma sintering have become common. ing. In order to obtain a higher density, hot isostatic pressing (HIP) may be performed after this sintering step. The above is the most common process for obtaining composite ceramics.

近年、前記先行技術に記載の技術では解決できない用途が目立ってきた。
たとえば、Si系のセラミックスは、半導体用保持機器、光学位置測定用反射鏡、精密部品加工用の治具、精密なプレス、打ち抜き金型などへの利用が盛んにある。これらの中でも、特に金型として利用される場合には、複雑な形状を要求されることが多い。Siは単体では絶縁体で放電加工ができず、硬質、高靭性なために機械的加工も困難である。

一方、AlNはSiに比べれば硬さや靭性が低く、昜加工材料であるが、逆に焼結体の端部が加工時や使用時にチッピングや欠けを起こしやすい。AlNもまた、Siと同様に電気加工は不能である。AlNの用途としては、放熱部材や熱伝導部材のほかに、ヒーターや静電チャックへの応用例も増えている。

そこで、引用文献にあるように、金属炭化物や窒化物を副成分として加えることで導電性を持たせる技術が提案されてきたが、導電性添加物である炭化物や窒化物は、粒子が粗大になると加工時や使用時に炭化物/窒化物の粒子の脱落が頻繁に起こる。これは、炭化物/窒化物の粗大粒子が5μmを越えている場合に顕著に見られる。

本発明が解決しようとする課題は、これらの窒化物セラミックスに電気加工が十分にできる程度に導電性を持たせ、なおかつ導電性炭化物/窒化物の粗大粒子の発生を防ぐことである。
In recent years, applications that cannot be solved by the technique described in the prior art have become conspicuous.
For example, Si 3 N 4 -based ceramics are actively used for semiconductor holding devices, optical position measuring reflectors, jigs for processing precision parts, precision presses, punching dies, and the like. Among these, particularly when used as a mold, a complicated shape is often required. Si 3 N 4 alone is an insulator and cannot be subjected to electric discharge machining, and is hard and mechanically difficult to machine because it is hard and tough.

On the other hand, AlN is lower in hardness and toughness than Si 3 N 4 and is a flaw-working material, but conversely, the end portion of the sintered body tends to cause chipping and chipping during processing and use. AlN is also not electroprocessable like Si 3 N 4 . As the use of AlN, in addition to a heat radiating member and a heat conducting member, application examples to a heater and an electrostatic chuck are increasing.

Therefore, as described in the cited document, a technique for imparting conductivity by adding metal carbide or nitride as a subsidiary component has been proposed, but carbide or nitride as a conductive additive has coarse particles. In this case, carbide / nitride particles frequently fall off during processing and use. This is noticeable when the carbide / nitride coarse particles exceed 5 μm.

The problem to be solved by the present invention is to make these nitride ceramics conductive enough to be electroprocessed and to prevent the formation of coarse particles of conductive carbide / nitride.

本発明の目的は、窒化物であるSiおよびAlNセラミックスについて、下記特徴を有する材料を得るものである。
1.導電性添加物を加え、電気加工ができる程度の導電性(1×10−1(Ω・cm)以下)を有すこと。
2.焼結体中の導電性添加物の最大粒子径および長径が5μm以下であること。この場合の長径とは、非球状の粒子の最も長い距離を指す。

これらについて説明を加えれば、下記のようになる。
1.導電性添加物の含有量は、焼結体の特性が得られる範囲にて混合する必要がある。ところが、この導電性添加物である炭化物や窒化物の粒子同士の結合は剥離を起こしやすく、粒子径が大きくなるにしたがって、この傾向は強くなる。そのために炭化物/窒化物はより微細に分散される必要がある。
組成については、導電性添加物が1体積%以下の添加では十分な導電性を得ることは難しく、35体積%を超える量添加すれば、SiやAlNの利点が活かされなくなるばかりでなく、導電性粒子が粗大な結晶になりやすくなり、反って求める性質が得られなくなる。導電性添加物としては、TiN,TiC、TaC、NbC、WC、Cr、VCから1種以上を選択することが特に適している。
2.導電性添加物である炭化物や窒化物は、粒子が粗大になると加工時や使用時に炭化物/窒化物の粒子の脱落が頻繁に起こる。これは、炭化物/窒化物の粗大粒子が5μm(直径または長径)を越えている場合に見られる。よって、この5μm以上の導電性添加物が発生しない方法として、導電性添加物の原料粉末の平均粒子径が200nm以下とした。
An object of the present invention is to obtain a material having the following characteristics with respect to Si 3 N 4 and AlN ceramics which are nitrides.
1. It must have conductivity (1 × 10 −1 (Ω · cm) or less) to the extent that electrical processing can be performed by adding a conductive additive.
2. The maximum particle diameter and major axis of the conductive additive in the sintered body are 5 μm or less. The major axis in this case refers to the longest distance of non-spherical particles.

If explanation is added about these, it will become as follows.
1. The content of the conductive additive needs to be mixed within a range where the characteristics of the sintered body can be obtained. However, the bonding between the particles of carbide and nitride, which are conductive additives, easily causes separation, and this tendency becomes stronger as the particle diameter increases. Therefore, the carbide / nitride needs to be more finely dispersed.
As for the composition, it is difficult to obtain sufficient conductivity when the conductive additive is added in an amount of 1% by volume or less, and if it is added in an amount exceeding 35% by volume, not only the advantages of Si 3 N 4 and AlN can be utilized. In other words, the conductive particles tend to be coarse crystals, and the desired properties cannot be obtained. As the conductive additive, it is particularly suitable to select one or more of TiN, TiC, TaC, NbC, WC, Cr 3 C 2 and VC.
2. Carbides and nitrides, which are conductive additives, frequently fall out of carbide / nitride particles during processing and use when the particles become coarse. This is seen when the carbide / nitride coarse particles exceed 5 μm (diameter or major axis). Therefore, as a method in which the conductive additive of 5 μm or more is not generated, the average particle diameter of the raw material powder of the conductive additive is set to 200 nm or less.

金属炭化物や窒化物を副成分として加えることで導電性を持たせる技術が提案されてきたが、導電性添加物である炭化物や窒化物(SiまたはAlN)中に1〜35体積%の導電性セラミックスを組織中に導電性セラミックスが凝集した5μm以上の粗大粒がない組織の焼結体を得ることにより、半導体用保持機器、光学位置測定用反射鏡、精密部品加工用の治具、精密なプレス、打ち抜き金型、放熱部材や熱伝導部材、ヒーターや静電チャックへなどに適した窒化物分焼結体を得ることができた。
Techniques for imparting conductivity by adding metal carbide or nitride as a subsidiary component have been proposed, but 1 to 35% by volume in the carbide or nitride (Si 3 N 4 or AlN) that is a conductive additive. By obtaining a sintered body having a structure free from coarse particles of 5 μm or more in which the conductive ceramics are aggregated in the structure, a semiconductor holding device, a reflector for optical position measurement, a jig for processing precision parts Thus, it was possible to obtain a nitride sintered body suitable for precision presses, punching dies, heat radiating members, heat conducting members, heaters and electrostatic chucks.

以下、本発明の実施の形態を実施例に基づき説明する。 Hereinafter, embodiments of the present invention will be described based on examples.

(原料・粉末)
主成分であるSiおよびAlNの原料粉末として、平均粒子径1.0μm以下、更に望ましくは0.5μm以下の原料粉末を準備する。また、1〜35体積%を占める導電性添加物である炭化物および窒化物としては、平均粒子径が10nm〜200nmの微細粉末を用いる。
焼結時に導電性添加物粒子は粒成長する(逆に導電性添加物が粒成長をしない条件では、緻密化が十分に進行しない)。焼結時の炭化物粒子の粒成長を見越して、原料粉末では前記範囲とすることが必要である。この平均粒子径範囲であれば、1500℃〜1900℃程度で、焼結および緻密化が十分に進行した後でも、焼結後の導電性粒子の最大粒子径を5μm以下に制御することができる。200nmを越える原料粉末を使用すれば、十分に緻密な焼結体(理論密度比99%以上)とした場合、導電性添加物が全体的に連続する構造を取るため、5μm以下に制御することは不可能である。
10nm未満の導電性添加物粒子の原料粉末は、それを得ることが非常に難しくなるために、工業的に利用しづらい状況である(この粒子径を排除するものではない)。導電性添加物の微細粉の製造方法は、有機金属含有物を溶媒にて液体状にし、それに炭素源/窒素源を加えて炉内で炭化処理する方法や、機械的なミリング、ジェット粉砕など、十分な粒子径がえられるのであればその手段は問わない。
導電性添加物の原料の粒子径、組成をさまざま変えて実験した条件を表1および表2に示す。焼結温度は、温度条件をさまざま変えて高密度を得た際の温度である。

また、表には特に記載していないが、この場合のSiおよびAlNとは、純粋な窒化物に限定するものでなく、MgO、Y、SiO、CaO、TiO、希土類元素酸化物など、公知の酸化物の焼結助材として用いられる物質は、その量が特に大きくない場合は(全体の3体積%以下)、本発明の範囲であることを付記しておく。
なお、SiおよびAlNの原料粉の平均粒子径は、0.5μmで統一している。
(Raw material / powder)
As raw material powders of Si 3 N 4 and AlN as the main components, raw material powders having an average particle size of 1.0 μm or less, more preferably 0.5 μm or less are prepared. Further, fine powders having an average particle diameter of 10 nm to 200 nm are used as the carbide and nitride which are conductive additives occupying 1 to 35% by volume.
The conductive additive particles grow during sintering (conversely, densification does not proceed sufficiently under the condition that the conductive additive does not grow). In anticipation of grain growth of carbide particles during sintering, the raw material powder must be in the above range. Within this average particle size range, the maximum particle size of the conductive particles after sintering can be controlled to 5 μm or less even after sintering and densification have sufficiently proceeded at about 1500 ° C. to 1900 ° C. . If a raw material powder exceeding 200 nm is used, when it is made a sufficiently dense sintered body (theoretical density ratio 99% or more), the conductive additive takes an overall continuous structure, so that it is controlled to 5 μm or less. Is impossible.
Since the raw material powder of conductive additive particles of less than 10 nm is very difficult to obtain, it is difficult to use industrially (this particle diameter is not excluded). The method for producing fine powder of conductive additive is a method in which an organic metal-containing material is liquefied with a solvent, and a carbon source / nitrogen source is added thereto and carbonized in a furnace, mechanical milling, jet pulverization, etc. Any means can be used as long as a sufficient particle size can be obtained.
Tables 1 and 2 show the experimental conditions obtained by changing the particle diameter and composition of the conductive additive material. The sintering temperature is a temperature at which a high density is obtained by changing various temperature conditions.

Further, although not specifically described in the table, Si 3 N 4 and AlN in this case are not limited to pure nitrides, but include MgO, Y 2 O 3 , SiO 2 , CaO, TiO 2 , It should be noted that substances used as sintering aids for known oxides, such as rare earth oxides, are within the scope of the present invention if the amount is not particularly large (3% by volume or less of the total). .
In addition, the average particle diameter of the raw material powders of Si 3 N 4 and AlN is unified at 0.5 μm.

Figure 2008087987
Figure 2008087987

Figure 2008087987
Figure 2008087987


(成形・焼結)
成形はプレス成形にて、所望の形を得ることができる。圧粉体に工作機にて中間加工も行うことができる。得られた成形体を、非還元雰囲気の炉にて1500〜1900℃程度で焼結が可能である。雰囲気はNガスや非酸化性ガスを用いて、10気圧程度で加圧する方法がより望ましい。本実験では焼結温度を調整し、理論密度比で十分な密度が得られる条件を探し、その温度で焼結をした結果である。
また、目的物が平板状であれば、HP(ホットプレス)を用いて成形、焼結を同時に行うことも可能である。この際の温度は1400〜1800℃、雰囲気はN雰囲気とした。ホットプレスの圧力は、300MPaで統一した。
さらに上記いずれの場合でも、焼結後にHIP処理を行うことで、更にポアを少なくすることもできる。
表1および表2に示す組成、焼結条件で焼結した焼結体をその相対密度(対理論密度比)、電気抵抗率を測定した。また、観察によって、粗大粒(5μmを越えるもの)の有無の判断を行った。なお、最大距離は光学顕微鏡でラップ研磨された断面、1mmを観察することで行った。
これらの結果を表3および表4に示す。

(Molding / Sintering)
The molding can be performed by press molding to obtain a desired shape. Intermediate processing can also be performed on the green compact with a machine tool. The obtained molded body can be sintered at about 1500 to 1900 ° C. in a non-reducing atmosphere furnace. More preferably, the atmosphere is pressurized at about 10 atm using N 2 gas or non-oxidizing gas. This experiment is the result of adjusting the sintering temperature, searching for a condition that provides a sufficient density with the theoretical density ratio, and sintering at that temperature.
Further, if the object is a flat plate, it is possible to simultaneously perform molding and sintering using HP (hot press). The temperature at this time was 1400 to 1800 ° C., and the atmosphere was an N 2 atmosphere. The pressure of the hot press was unified at 300 MPa.
Furthermore, in any of the above cases, pores can be further reduced by performing HIP treatment after sintering.
The relative density (ratio to theoretical density) and electric resistivity of the sintered body sintered under the composition and sintering conditions shown in Table 1 and Table 2 were measured. Moreover, the presence or absence of coarse particles (thickness exceeding 5 μm) was determined by observation. The maximum distance was performed by observing lapping cross-section with an optical microscope, a 1 mm 2.
These results are shown in Tables 3 and 4.

Figure 2008087987
Figure 2008087987

Figure 2008087987
Figure 2008087987

表1〜表4の試料で*印のつく番号は、本発明の範囲外の比較例である

(評価 組織・ラップ面粗度)
表3および表4に示す、本発明の試料は5μm以上の導電性添加物の粗大粒子が見られず、また電気抵抗率も1×10−2(Ω・cm)以下と、安定的に型彫放電加工およびワイヤー放電加工が可能であった。

一方、試料番号に「*」を付与した比較例は、本発明の範囲外である。
*試料1は導電性添加物(TaC)量が少なかったために、粗大粒のない緻密な焼結体は得られたが、焼結体に導電性は得られなかった。
*試料6は導電性添加物(TaC)量が多すぎたために、導電性添加物が全体に連続したために、20μmを越える粗大粒が発生した。
*試料14は導電性添加物の粉末時点での大きさが大きすぎるために、20μmを越える粗大粒子が発生する一方で、導電性も得られなかった。
*試料16と*試料19は、それぞれ実施例の試料17と試料20と同じ導電性粒子を添加したものだが、焼結条件が違う。*試料16と*試料19は焼結条件が緻密化するのに不十分であったために、十分緻密な組織が得られなかった。これは、添加物微粒子の焼結が不足しているために起こるもので、電気抵抗率も高い値を示した。
また、本発明の実施例のすべての試料で、導電性粒子とそれに最も近い他の導電性粒子との距離は2μm以下であり、微細な粒子が均一に分散していることがわかった。微視的な視点からも組織は均質であり、このことから表面粗さの改善が期待できる。また均質であるために、強度的に弱く破壊の起点になる部分が無いために、物理特性も向上する。さらに、放電加工での電圧値が一定で、加工用ワイヤーが切断するなどの不都合が起きない。

本発明の窒化物系複合セラミックスで、Si複合セラミックスは、チッピング、割れや脱粒などの不具合を生じることなく、半導体用保持機器、光学位置測定用反射鏡、精密部品加工用の治具、精密なプレス、打ち抜き金型などの材料として適しており、放電加工も可能であった。
また、AlN複合セラミックスは、放熱部材や熱伝導部材のほかに、ヒーターや静電チャックへの使用にも、十分耐えるものであり、放電加工も可能であった。
The numbers marked with * in the samples of Tables 1 to 4 are comparative examples outside the scope of the present invention.

(Evaluation organization and lapping surface roughness)
In the samples of the present invention shown in Table 3 and Table 4, coarse particles of a conductive additive of 5 μm or more are not observed, and the electric resistivity is 1 × 10 −2 (Ω · cm) or less, which is a stable type. Carved electrical discharge machining and wire electrical discharge machining were possible.

On the other hand, the comparative example which gave "*" to the sample number is outside the scope of the present invention.
* Since Sample 1 had a small amount of conductive additive (TaC), a dense sintered body without coarse particles was obtained, but the sintered body was not conductive.
* In Sample 6, since the amount of the conductive additive (TaC) was too large, the conductive additive continued throughout, and coarse particles exceeding 20 μm were generated.
* Sample 14 was too large at the time of powder of the conductive additive, so that coarse particles exceeding 20 μm were generated, but conductivity was not obtained.
* Sample 16 and * Sample 19 are obtained by adding the same conductive particles as Sample 17 and Sample 20, respectively, but the sintering conditions are different. * Sample 16 and * Sample 19 were insufficient for densification of the sintering conditions, so that a sufficiently dense structure could not be obtained. This occurs because the additive fine particles are insufficiently sintered, and the electric resistivity is also high.
Moreover, in all the samples of the Example of this invention, the distance of electroconductive particle and the other electroconductive particle nearest to it was 2 micrometers or less, and it turned out that the fine particle is disperse | distributing uniformly. From a microscopic point of view, the structure is homogeneous, which can be expected to improve surface roughness. Further, since it is homogeneous, there is no portion that is weak in strength and becomes the starting point of destruction, and therefore physical properties are also improved. Furthermore, the voltage value in electric discharge machining is constant, and inconvenience such as cutting of the machining wire does not occur.

In the nitride-based composite ceramics of the present invention, Si 3 N 4 composite ceramics are free from defects such as chipping, cracking and grain removal, and are used for holding devices for semiconductors, reflecting mirrors for optical position measurement, and jigs for processing precision parts. It was suitable as a material for precision presses, punching dies, etc., and was capable of electrical discharge machining.
Moreover, the AlN composite ceramics are sufficiently resistant to use in heaters and electrostatic chucks in addition to heat radiating members and heat conducting members, and can be subjected to electric discharge machining.

本発明は以下に示す用途に利用可能である。
レンズ成形型、半導体製造用治具、静電チャック、切削工具、刃物、電圧非直線抵抗体、真空チャック、半導体保持具、発熱体、ヒートシンク、摺動部材、精密金型、光学用反射鏡、高温用部材、耐摩耗用部材、摺動部材、ベアリング、ガスセンサー、圧電性素子、溶融金属容器、スライディングノズル、浸漬ノズルなど。
The present invention can be used for the following applications.
Lens molding die, semiconductor manufacturing jig, electrostatic chuck, cutting tool, blade, voltage nonlinear resistor, vacuum chuck, semiconductor holder, heating element, heat sink, sliding member, precision mold, optical reflector, High temperature members, wear resistant members, sliding members, bearings, gas sensors, piezoelectric elements, molten metal containers, sliding nozzles, immersion nozzles, etc.

Claims (1)

SiまたはAlN中に1〜35体積%の導電性セラミックス(電気抵抗率が1×10−2(Ω・cm)以下)が微細分散した窒化物系複合セラミックスであって、
組織中に導電性セラミックスが凝集した5μm以上の粗大粒がなく、
放電加工が可能であることを特徴とする窒化物系複合セラミックス。
A nitride-based composite ceramic in which 1 to 35% by volume of a conductive ceramic (electric resistivity is 1 × 10 −2 (Ω · cm) or less) is finely dispersed in Si 3 N 4 or AlN,
There is no coarse grain of 5μm or more in which the conductive ceramics aggregate in the structure,
Nitride-based composite ceramics characterized by being capable of electric discharge machining.
JP2006267445A 2006-09-29 2006-09-29 Nitride composite ceramic Withdrawn JP2008087987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267445A JP2008087987A (en) 2006-09-29 2006-09-29 Nitride composite ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267445A JP2008087987A (en) 2006-09-29 2006-09-29 Nitride composite ceramic

Publications (1)

Publication Number Publication Date
JP2008087987A true JP2008087987A (en) 2008-04-17

Family

ID=39372515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267445A Withdrawn JP2008087987A (en) 2006-09-29 2006-09-29 Nitride composite ceramic

Country Status (1)

Country Link
JP (1) JP2008087987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265141A (en) * 2009-05-14 2010-11-25 Kagoshima Univ Silicon nitride composite sintered compact and production method thereof
CN105272327A (en) * 2015-09-29 2016-01-27 苏州宽温电子科技有限公司 Whisker reinforced piezoceramic material and preparation method thereof
JP2017076024A (en) * 2015-10-14 2017-04-20 日本特殊陶業株式会社 Pellicle frame and manufacturing method of pellicle frame

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265141A (en) * 2009-05-14 2010-11-25 Kagoshima Univ Silicon nitride composite sintered compact and production method thereof
CN105272327A (en) * 2015-09-29 2016-01-27 苏州宽温电子科技有限公司 Whisker reinforced piezoceramic material and preparation method thereof
JP2017076024A (en) * 2015-10-14 2017-04-20 日本特殊陶業株式会社 Pellicle frame and manufacturing method of pellicle frame

Similar Documents

Publication Publication Date Title
JP3541108B2 (en) Ceramic sintered body and ceramic mold
Chamberlain et al. Low‐temperature densification of zirconium diboride ceramics by reactive hot pressing
KR100836150B1 (en) Sintered silicon nitride, method of manufacturing the same and sintered silicon nitride substrate
JP3797905B2 (en) Silicon nitride ceramic substrate, silicon nitride ceramic circuit substrate using the same, and manufacturing method thereof
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
JP6344844B2 (en) Boron carbide / titanium boride composite ceramics and method for producing the same
CN107531579B (en) Silicon nitride sintered body and high-temperature durable member using same
CN111902383B (en) Composite sintered body, semiconductor manufacturing apparatus component, and method for manufacturing composite sintered body
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
JP2008087987A (en) Nitride composite ceramic
JP4976973B2 (en) Manufacturing method of composite ceramics
JP3775335B2 (en) Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same
JP4518020B2 (en) A silicon nitride sintered body and a circuit board using the same.
JP5096720B2 (en) Method for producing conductive composite ceramics
JP4822534B2 (en) Manufacturing method of ceramics
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP4384101B2 (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using the same
JP2003221280A (en) Electroconductive silicon nitride-based composite sintered body and method for producing the same
JPH08310867A (en) Production of boride ceramic
JP2008087986A (en) Composite ceramic
KR101649551B1 (en) SiC-TiN ceramic composites
JP2016147780A (en) Conductive high strength and high hardness composite ceramic and method of making the same
JP2008087985A (en) Al2O3-TiC COMPOSITE CERAMIC SINTERED COMPACT
JP7116234B1 (en) Manufacturing method of composite ceramics
JP2008087989A (en) Composite ceramic

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201