JPH05279130A - Silicon carbide-silicon nitride composite material and its production - Google Patents

Silicon carbide-silicon nitride composite material and its production

Info

Publication number
JPH05279130A
JPH05279130A JP4071616A JP7161692A JPH05279130A JP H05279130 A JPH05279130 A JP H05279130A JP 4071616 A JP4071616 A JP 4071616A JP 7161692 A JP7161692 A JP 7161692A JP H05279130 A JPH05279130 A JP H05279130A
Authority
JP
Japan
Prior art keywords
powder
silicon carbide
silicon nitride
volume
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4071616A
Other languages
Japanese (ja)
Inventor
Mamoru Kosakai
守 小坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP4071616A priority Critical patent/JPH05279130A/en
Publication of JPH05279130A publication Critical patent/JPH05279130A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject dense sintered compact little in grain boundary phase, excellent in high-temperature strength, hardness and toughness by forming a mixed powder comprising alpha-SIALON, silicon nitride powder and silicon carbide powder followed by sintering in a nitrogen atmosphere. CONSTITUTION:A powder mixture comprising (A) 30-89.5vol.% of alpha-SIALON powder <=2mum in particle diameter, (B) 10-69.5vol.% of silicon nitride powder >=90% in alpha-rate and <=1mum in mean particle diameter, and (C) 0.5-30vol.% of silicon carbide powder <=0.05mum in particle diameter is formed by one of various means, and the resulting form is sintered in a nitrogen atmosphere under 0.1-10atm at 1600-1900 deg.C, thus giving the objective sintered compact >=95% in relative density, having the above advantages.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、緻密で、粒界相が少な
く、高温強度、硬度及び靱性に優れた炭化ケイ素−窒化
ケイ素基複合材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide-silicon nitride based composite material which is dense, has few grain boundary phases and is excellent in high temperature strength, hardness and toughness, and a method for producing the same.

【0002】[0002]

【従来の技術】窒化ケイ素質セラミックスは、耐摩耗性
及び高温特性に優れ、各種自動車部材料として注目され
ており、更なる高温強度、硬度、靱性等の向上を目的と
してこの窒化ケイ素質セラミックス材と炭化ケイ素材と
の複合化の研究が進められている。
2. Description of the Related Art Silicon nitride ceramics are excellent in wear resistance and high temperature characteristics and are attracting attention as various automobile materials. For the purpose of further improving high temperature strength, hardness, toughness, etc. Studies on the compounding of carbonaceous materials with silicon carbide are underway.

【0003】炭化ケイ素材との複合化はその難焼結性の
ため、その焼結に際してはホットプレス等の加圧焼結
法、焼結温度を高くするためのガス圧焼結法、多量の焼
結助剤を添加する焼結法等が採用されている。
Since complexing with a silicon carbide material is difficult to sinter, a pressure sintering method such as hot pressing, a gas pressure sintering method for increasing the sintering temperature, and a large amount of sintering are used for the sintering. A sintering method or the like in which a sintering aid is added is adopted.

【0004】しかしながら、ホットプレス等の加圧焼結
法では複雑形状品の焼結が困難であるとともに、生産性
や費用の点で問題があり、また、ガス圧焼結法では複雑
形状品の焼結は可能ではあるが、やはり生産性や費用の
点で問題がある。
However, it is difficult to sinter a complex-shaped product by a pressure sintering method such as hot pressing, and there is a problem in productivity and cost. Further, the gas-pressure sintering method has a problem in that a complex-shaped product is difficult to sinter. Sintering is possible, but it still has problems in terms of productivity and cost.

【0005】また、多量の焼結助剤の添加による常圧下
での焼結法は、得られる焼結体の粒界相が厚く、高温強
度、硬度の低下が大きく、従って炭化ケイ素添加の効果
が低いという問題がある。
Further, in the sintering method under normal pressure by adding a large amount of sintering aid, the grain boundary phase of the obtained sintered body is thick and the high temperature strength and the hardness are largely lowered. Therefore, the effect of adding silicon carbide is obtained. There is a problem that is low.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記従来技
術の有する問題点を解決して、0.1〜10気圧下で焼
結することにより得られる、緻密で、粒界相が少なく、
高温強度、硬度及び靱性に優れた炭化ケイ素−窒化ケイ
素基複合材料及びその製造方法を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and is obtained by sintering at 0.1 to 10 atm, which is dense and has few grain boundary phases.
An object of the present invention is to provide a silicon carbide-silicon nitride based composite material excellent in high temperature strength, hardness and toughness and a method for producing the same.

【0007】本発明者は、特定のα−サイアロン粉、窒
化ケイ素粉及び特定の粒子径の炭化ケイ素粉をそれぞれ
特定の割合で使用することにより、緻密で、粒界相が少
なく、高温強度、硬度及び靱性に優れた炭化ケイ素−窒
化ケイ素基複合材料を、0.1〜10気圧下で焼結する
ことができることを見出した。
The inventor of the present invention uses a specific α-sialon powder, a silicon nitride powder and a silicon carbide powder having a specific particle size in specific ratios to obtain a dense, low grain boundary phase, high temperature strength, It has been found that a silicon carbide-silicon nitride based composite material having excellent hardness and toughness can be sintered under 0.1 to 10 atmospheres.

【0008】[0008]

【課題を解決するための手段】本発明の炭化ケイ素−窒
化ケイ素基複合材料は、一般式((MX (Si,Al)
12(O,N)16(式中MはLa、Ceを除く希土類元
素、Mg又はCaを意味し、xは0.1〜1.0を意味
する)で表わされるα−サイアロン粉30〜89.5体
積%、窒化ケイ素粉10〜69.5体積%及び粒子径が
0.05μm以下の炭化ケイ素粉0.5〜30体積%よ
りなる混合粉末を成形後、0.1〜10気圧の窒素雰囲
気中で1600〜1900℃で焼結してなることを手段
とする。
The silicon carbide-silicon nitride matrix composite material of the present invention has the general formula ((M X (Si, Al)
Α-sialon powder 30 to 89 represented by 12 (O, N) 16 (wherein M represents a rare earth element other than La or Ce, Mg or Ca, and x represents 0.1 to 1.0) 0.5 volume%, 10 to 69.5 volume% of silicon nitride powder, and 0.5 to 30 volume% of silicon carbide powder having a particle diameter of 0.05 μm or less are molded, and then nitrogen of 0.1 to 10 atm is used. The means is that it is sintered at 1600 to 1900 ° C. in the atmosphere.

【0009】また、本発明の炭化ケイ素−窒化ケイ素基
複合材料の製造方法は、一般式((MX (Si,Al)
12(O,N)16(式中MはLa、Ceを除く希土類元
素、Mg又はCaを意味し、xは0.1〜1.0を意味
する)で表わされるα−サイアロン粉30〜89.5体
積%、窒化ケイ素粉10〜69.5体積%及び粒子径が
0.05μm以下の炭化ケイ素粉0.5〜30体積%を
混合し、得られる混合粉末を成形後、0.1〜10気圧
の窒素雰囲気中で1600〜1900℃で焼結すること
を手段とする。
Further, the method for producing a silicon carbide-silicon nitride based composite material of the present invention has a general formula ((M X (Si, Al)
Α-sialon powder 30 to 89 represented by 12 (O, N) 16 (wherein M represents a rare earth element other than La or Ce, Mg or Ca, and x represents 0.1 to 1.0) 0.5% by volume, 10-69.5% by volume of silicon nitride powder and 0.5-30% by volume of silicon carbide powder having a particle diameter of 0.05 μm or less are mixed, and the resulting mixed powder is molded with 0.1% by volume. Sintering is performed at 1600 to 1900 ° C in a nitrogen atmosphere of 10 atm.

【0010】前記α−サイアロン粉の割合は30〜8
9.5体積%が好ましい。この割合が30体積%未満の
場合には緻密な焼結体が得られず、89.5体積%を越
える場合には靱性及び高温強度が低下する。
The ratio of the α-sialon powder is 30 to 8
9.5% by volume is preferred. If this ratio is less than 30% by volume, a dense sintered body cannot be obtained, and if it exceeds 89.5% by volume, the toughness and high temperature strength decrease.

【0011】また、α−サイアロンの粒径は2μm以下
が好ましい。
The particle size of α-sialon is preferably 2 μm or less.

【0012】前記窒化ケイ素粉の割合は10〜69.5
体積%が好ましい。この割合が10体積%未満の場合に
は靱性及び高温強度が低下し、69.5体積%を越える
場合には緻密な焼結体が得られない。
The ratio of the silicon nitride powder is 10 to 69.5.
Volume% is preferred. If this ratio is less than 10% by volume, the toughness and high temperature strength are reduced, and if it exceeds 69.5% by volume, a dense sintered body cannot be obtained.

【0013】また、窒化ケイ素粉としてはα率90%以
上で、平均粒子径が1μm以下のものが好ましい。
The silicon nitride powder preferably has an α ratio of 90% or more and an average particle size of 1 μm or less.

【0014】前記炭化ケイ素粉の割合は0.5〜30体
積%が好ましい。この割合が0.5体積%未満の場合に
は炭化ケイ素添加の効果が十分に発揮されず、30体積
%を越える場合には十分に緻密な焼結体が得られない。
The proportion of the silicon carbide powder is preferably 0.5 to 30% by volume. If this ratio is less than 0.5% by volume, the effect of adding silicon carbide is not sufficiently exhibited, and if it exceeds 30% by volume, a sufficiently dense sintered body cannot be obtained.

【0015】また、炭化ケイ素粉の粒子径は0.05μ
m以下が好ましい。この粒子径が0.05μmを越える
場合には緻密な焼結体が得られない。
The particle size of the silicon carbide powder is 0.05 μm.
m or less is preferable. If the particle size exceeds 0.05 μm, a dense sintered body cannot be obtained.

【0016】本発明においては、前記各割合のα−サイ
アロン粉、窒化ケイ素粉及び炭化ケイ素粉を混合し、得
られる混合粉末を各種成形方法により成形後、0.1〜
10気圧の窒素雰囲気中で焼結する。
In the present invention, α-sialon powder, silicon nitride powder and silicon carbide powder in the respective proportions described above are mixed, and the resulting mixed powder is molded by various molding methods, and then 0.1 to 0.1
Sinter in a nitrogen atmosphere of 10 atm.

【0017】この際焼結温度は1600〜1900℃が
好ましく、1650〜1800℃が特に好ましい。16
00℃未満の場合には十分に緻密化せず、1900℃を
越える場合にはα−サイアロンや窒化ケイ素材が分解す
る。
At this time, the sintering temperature is preferably 1600 to 1900 ° C, particularly preferably 1650 to 1800 ° C. 16
If it is less than 00 ° C, it is not sufficiently densified, and if it exceeds 1900 ° C, the α-sialon and the silicon nitride material are decomposed.

【0018】[0018]

【作用】本発明においては、前記一般式で表わされるα
−サイアロン粉、窒化ケイ素粉及び粒子径が0.05μ
m以下の炭化ケイ素粉を前記の各割合で使用することに
より、0.1〜10気圧下で焼結することができ、相対
密度が95%以上の、緻密で、粒界相が少なく、高温強
度、硬度及び靱性に優れた炭化ケイ素−窒化ケイ素基複
合材料が得られる。
In the present invention, α represented by the above general formula
-Sialon powder, silicon nitride powder and particle size is 0.05μ
By using silicon carbide powder of m or less in each of the above proportions, it is possible to sinter under 0.1 to 10 atmospheres, a relative density of 95% or more, a dense, low grain boundary phase, high temperature A silicon carbide-silicon nitride based composite material having excellent strength, hardness and toughness is obtained.

【0019】以下、本発明を実施例により詳細に説明す
る。
The present invention will be described in detail below with reference to examples.

【0020】[0020]

【実施例】αーサイアロン粉(Y0.5 Si9.75Al2.25
0.7515.25 )(平均粒子径2.0μm)、α−窒化
ケイ素粉(平均粒子径0.5μm)及び高周波プラズマ
CVD法で合成した炭化ケイ素粉(粒子径0.01μ
m)を調合し、これらをメタノールを用いてボールミル
により混合した後、乾燥、解砕、成形(金型成形+CI
P(コールドアイソティックプレス))して表1に示す
組成の成形体(45×35×10mm)を得た。
Example: α-sialon powder (Y 0.5 Si 9.75 Al 2.25
O 0.75 N 15.25 ) (average particle size 2.0 μm), α-silicon nitride powder (average particle size 0.5 μm) and silicon carbide powder synthesized by the high frequency plasma CVD method (particle size 0.01 μm)
m) are mixed, and these are mixed in a ball mill with methanol, followed by drying, crushing, and molding (mold molding + CI
P (cold isotropic press) to obtain a molded product (45 × 35 × 10 mm) having the composition shown in Table 1.

【0021】得られた成形体を、1650〜1850℃
で4時間、1気圧の窒素雰囲気中で焼結した。
The obtained molded product was heated at 1650 to 1850 ° C.
For 4 hours in a nitrogen atmosphere at 1 atm.

【0022】得られた焼結体を、JIS R−1601
に準じた40×3×4mmの試験片に加工した後、この
試験片について、密度、硬度、破壊靱性(IN法)及び
4点曲げ強度(室温、1300℃)の測定を行い、その
結果を表1に示す。
The obtained sintered body was subjected to JIS R-1601.
After processing into a 40 × 3 × 4 mm test piece according to the above, the density, hardness, fracture toughness (IN method) and 4-point bending strength (room temperature, 1300 ° C.) of this test piece were measured, and the results were measured. It shows in Table 1.

【0023】一方、比較として、窒化ケイ素粉を使用し
ない場合(比較例1)、炭化ケイ素粉を使用しない場合
(比較例2)、窒化ケイ素粉及び炭化ケイ素粉のいずれ
も使用しない場合(比較例3)及び平均粒子径0.3μ
mの炭化ケイ素粉を使用する場合(比較例4)につい
て、前記と同様の方法で混合、焼結して得られた焼結体
の特性についても併せて表1に示す。
On the other hand, for comparison, when silicon nitride powder is not used (Comparative Example 1), silicon carbide powder is not used (Comparative Example 2), and neither silicon nitride powder nor silicon carbide powder is used (Comparative Example). 3) and average particle size 0.3μ
Table 1 also shows the characteristics of the sintered body obtained by mixing and sintering in the same manner as described above when using silicon carbide powder of m (Comparative Example 4).

【0024】[0024]

【表1】 [Table 1]

【0025】表1の結果より、本発明の炭化ケイ素−窒
化ケイ素基複合材料は、比較例の場合に比較して、その
硬度、靱性、高温強度において優れていることが示され
る。
The results shown in Table 1 show that the silicon carbide-silicon nitride based composite material of the present invention is superior in hardness, toughness and high temperature strength as compared with the case of the comparative example.

【0026】[0026]

【発明の効果】本発明によれば、前記一般式で表わされ
るα−サイアロン粉、窒化ケイ素粉及び粒子径が0.0
5μm以下の炭化ケイ素粉を特定の割合で使用して、
0.1〜10気圧の窒素雰囲気中で焼結することによ
り、相対密度が95%以上の、緻密で、粒界相が少な
く、高温強度、硬度及び靱性に優れた炭化ケイ素−窒化
ケイ素基複合材料及びその製造方法を提供することがで
きる。
According to the present invention, the α-sialon powder represented by the above general formula, the silicon nitride powder and the particle size of 0.0.
Using silicon carbide powder of 5 μm or less in a specific ratio,
By sintering in a nitrogen atmosphere at 0.1 to 10 atm, a silicon carbide-silicon nitride matrix composite having a relative density of 95% or more, being dense, having few grain boundary phases, and having excellent high temperature strength, hardness and toughness. A material and a manufacturing method thereof can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式((MX (Si,Al)12(O,
N)16(式中MはLa、Ceを除く希土類元素、Mg又
はCaを意味し、xは0.1〜1.0を意味する)で表
わされるα−サイアロン粉30〜89.5体積%、窒化
ケイ素粉10〜69.5体積%及び粒子径が0.05μ
m以下の炭化ケイ素粉0.5〜30体積%よりなる混合
粉末を成形後、0.1〜10気圧の窒素雰囲気中で16
00〜1900℃で焼結してなることを特徴とする、炭
化ケイ素ー窒化ケイ素基複合材料。
1. The general formula ((M X (Si, Al) 12 (O,
N) 16 (wherein M represents a rare earth element other than La or Ce, Mg or Ca, and x represents 0.1 to 1.0) 30 to 89.5% by volume of α-sialon powder , Silicon nitride powder 10 to 69.5% by volume and particle size 0.05 μ
After molding a mixed powder of 0.5 to 30% by volume of silicon carbide powder of m or less, 16 in a nitrogen atmosphere of 0.1 to 10 atm.
A silicon carbide-silicon nitride based composite material, characterized by being sintered at 00 to 1900 ° C.
【請求項2】 一般式((MX (Si,Al)12(O,
N)16(式中MはLa、Ceを除く希土類元素、Mg又
はCaを意味し、xは0.1〜1.0を意味する)で表
わされるα−サイアロン粉30〜89.5体積%、窒化
ケイ素粉10〜69.5体積%及び粒子径が0.05μ
m以下の炭化ケイ素粉0.5〜30体積%を混合し、得
られる混合粉末を成形後、0.1〜10気圧の窒素雰囲
気中で1600〜1900℃で焼結することを特徴とす
る、炭化ケイ素−窒化ケイ素基複合材料の製造方法。
2. The general formula ((M X (Si, Al) 12 (O,
N) 16 (wherein M represents a rare earth element other than La or Ce, Mg or Ca, and x represents 0.1 to 1.0) 30 to 89.5% by volume of α-sialon powder , Silicon nitride powder 10 to 69.5% by volume and particle size 0.05 μ
characterized in that 0.5 to 30% by volume of silicon carbide powder of m or less is mixed, the obtained mixed powder is molded, and then sintered at 1600 to 1900 ° C. in a nitrogen atmosphere of 0.1 to 10 atm. A method for producing a silicon carbide-silicon nitride based composite material.
JP4071616A 1992-03-27 1992-03-27 Silicon carbide-silicon nitride composite material and its production Pending JPH05279130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4071616A JPH05279130A (en) 1992-03-27 1992-03-27 Silicon carbide-silicon nitride composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4071616A JPH05279130A (en) 1992-03-27 1992-03-27 Silicon carbide-silicon nitride composite material and its production

Publications (1)

Publication Number Publication Date
JPH05279130A true JPH05279130A (en) 1993-10-26

Family

ID=13465762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4071616A Pending JPH05279130A (en) 1992-03-27 1992-03-27 Silicon carbide-silicon nitride composite material and its production

Country Status (1)

Country Link
JP (1) JPH05279130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084895A1 (en) * 2002-04-04 2003-10-16 Kabushiki Kaisha Toshiba Silicon nitride anti-wear member and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003084895A1 (en) * 2002-04-04 2003-10-16 Kabushiki Kaisha Toshiba Silicon nitride anti-wear member and process for producing the same
US7151066B2 (en) 2002-04-04 2006-12-19 Kabushiki Kaisha Toshiba Silicon nitride anti-wear member and process for producing the same

Similar Documents

Publication Publication Date Title
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JPH09268072A (en) Production of silicon nitride sintered compact
JPH05279130A (en) Silicon carbide-silicon nitride composite material and its production
JP2736386B2 (en) Silicon nitride sintered body
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPS6212663A (en) Method of sintering b4c base fine body
JP4292255B2 (en) α-sialon sintered body and method for producing the same
JPH0797256A (en) Sintered body of aluminum oxide base and its production
JP3932349B2 (en) Reaction synthesis of non-oxide boron nitride composites
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JPH09165264A (en) Silicon nitride sintetred product and its production
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JPH0840776A (en) Sintered substance based on si3n4/bn and their production
JP2002293638A (en) Silicon nitride sintered compact
JP3236733B2 (en) Silicon nitride sintered body
JPH0477699B2 (en)
JP2571303B2 (en) Silicon carbide sintered body and method for producing the same
JPS6126566A (en) Method of sintering sic composite body
JPH0873268A (en) Production of silicon nitride ceramics
JPH09110530A (en) Titanium nitride sintered material and its production