JP4292255B2 - α-sialon sintered body and method for producing the same - Google Patents

α-sialon sintered body and method for producing the same Download PDF

Info

Publication number
JP4292255B2
JP4292255B2 JP2003074645A JP2003074645A JP4292255B2 JP 4292255 B2 JP4292255 B2 JP 4292255B2 JP 2003074645 A JP2003074645 A JP 2003074645A JP 2003074645 A JP2003074645 A JP 2003074645A JP 4292255 B2 JP4292255 B2 JP 4292255B2
Authority
JP
Japan
Prior art keywords
sintered body
sialon
silicon
sialon sintered
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003074645A
Other languages
Japanese (ja)
Other versions
JP2004277265A (en
Inventor
喜代司 平尾
修三 神崎
洋一郎 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003074645A priority Critical patent/JP4292255B2/en
Publication of JP2004277265A publication Critical patent/JP2004277265A/en
Application granted granted Critical
Publication of JP4292255B2 publication Critical patent/JP4292255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、α−サイアロン焼結体の製造方法に関するものであり、更に詳しくは、硬度と靭性が共に高いα−サイアロン焼結体の製造方法に関するものである。従来、高い硬度を維持して、靱性を高くしたα−サイアロン焼結体を作製することは困難であったが、本発明は、低コストでそのようなα−サイアロン焼結体を作製する方法を提供するものとして有用である。
【0002】
【従来の技術】
α−サイアロン焼結体は、窒化ケイ素(Si34 )結晶中のSi及びN原子の一部がAl及びOで置換され、更に、結晶を構成する原子間の空隙に固溶金属元素が侵入型固溶した構造を有するものであって、その焼結体は、セラミック焼結体の中でも特に高い硬度を有しており、研削材料や耐摩耗材料として使用されてきた。
【0003】
しかしながら、α−サイアロン焼結体は、上記のように高い硬度を有しており、研削性や耐摩耗性に優れているものの、結晶粒子が等軸状の粒子であるため、破壊靭性の値が3MPam1/2 程度と低い。そのため、α−サイアロン焼結体は、破壊に至りやすく実用材としては使いにくい面があったことから、これを実用材とするには、靭性が低いという欠点を改善することが課題であった。そこで、従来、α−サイアロン焼結体は、靭性の高いβ相窒化珪素マトリックス中にα−サイアロン粒子を分散させた複合材料にするなどして用いられている(例えば、特許文献1参照)。しかし、このような焼結体では、硬度の低いβ相窒化珪素をマトリックスとしているため、α−サイアロン単相の焼結体に比べて硬度が低くなる。
【0004】
そこで、α−サイアロン粒子のみを主成分とする高靭性のセラミックス焼結体の作製が試みられており、焼結体の低い破壊靭性値を改善する方法として、例えば、焼結時の粒成長を促して柱状のα−サイアロンの粒子を生成させる方法があり、以下のような方法が報告されている。
【0005】
Y−α−サイアロン焼結体を作製する場合において、一例では、原料粉にα−窒化珪素、窒化アルミニウム、アルミナ及びイットリアを用い、イットリアをY−α−サイアロン組成に対して、過剰に添加している。これにより、焼結時に多量の液相が発生し、柱状のα−サイアロン粒子の生成を促進させている。柱状のα−サイアロン粒子を多量に含んだ焼結体組織となることにより、焼結体の破壊靭性値が5MPam1/2 程度の高い値となっている(非特許文献1参照。)。しかし、この方法により作製した焼結体は、粒界にガラス相が多量に残留するため、硬度及び高温特性が低下するといった欠点がある。
【0006】
別の例では、α−サイアロン焼結体を作製するための出発原料にβ−窒化珪素粉を使い、更に、α−サイアロン結晶を構成する原子間の空隙に侵入型固溶させる固溶金属元素をイオン半径の大きいNdなどの希土類元素とすることで、柱状のα−サイアロン粒子を生成させている。柱状粒子を多量に含んだ組織となることにより、焼結体の破壊靭性値(K1C)が5〜6MPam1/2 の高い値となっている(非特許文献2参照)。しかし、この製造方法では、β−窒化珪素粉という特殊な原料粉を用いなければならず、実際の製造には適さない。
【0007】
更に、別の例では、SPS(Spark Plasma Sintering)法によりYb−α−サイアロン焼結体を作製している。この方法では、焼結時に急速に試料を加熱することができるため、多量の液相が生成して粒子の成長が促進される。そのため、柱状の粒子からなる焼結体が得られ、焼結体の機械的特性は硬度22GPa、破壊靭性値5.5MPam1/2 と高い値を示している(非特許文献3参照。)。しかしながら、この作製方法では、SPS法といった特殊な方法によって焼結を行わなければならないため、製造コストが高くなってしまう。
【0008】
【特許文献1】
特開平8−73269号公報
【非特許文献1】
S.Kurama,M.Herrmann and H.Mandal,J.Eur.Ceram.Soc.,2002,22,109−119.
【非特許文献2】
I−W.Chen and A.Rosenflanz,Nature,1997,389,701−704.
【非特許文献3】
Z.Shen,Z.Zhao,H.Peng and M.Nygren,Nature,2002,417,266−269.
【0009】
【発明が解決しようとする課題】
このように、従来、高い硬度を維持して、靭性を高くしたα−サイアロン焼結体を作製することは困難であった。この課題を解決するために、前記従来の技術のように、高い靭性と高い硬度を有するα−サイアロン焼結体を製造する場合でも、それらの方法は、特殊な原料粉や製造方法を用いる必要があるため、実際の製造には適さず、また、高価な窒化珪素粉末を主原料として用いているため、製造コストが高いといった問題があった。
【0010】
更には、焼結時の収縮率が大きいため、特に複雑形状の試料を焼結する場合に寸法精度が悪く、加工取しろが多くなり加工費が高くなるといった問題があった。
本発明は、上記従来技術に鑑みて、上記従来の高い靭性と高い硬度を有するα−サイアロン焼結体及びその製造方法における諸問題を解決するもので、低い製造コストで高い靭性と高い硬度を有するα−サイアロン焼結体の製造方法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
上記課題を解決するための本発明は、以下の技術的手段から構成される。
)組成式R(Si,Al)12(O,N)16(但し0.33<x<0.67,RはLi,Na,Ca,Mg,Y及び他の希土類元素から選択された少なくとも1種の元素を示す。)からなるα−サイアロン粒子を主成分とする高い硬度と高い靭性を共に有するα−サイアロン焼結体の製造方法であって、所定量の主成分としてのシリコン、アルミナ、窒化アルミニウム、及びLi,Na,Ca,Mg,Yもしくは他の希土類元素から選択された少なくとも1種の元素の化合物を混合し、混合粉末とする工程、混合粉末を成形し、成形体を作製する工程、シリコンの窒化反応焼結工程、及び焼結工程を経ることを特徴とするα−サイアロン焼結体の製造方法。
)シリコンの窒化反応焼結工程の後に、窒素含有雰囲気下1800℃以上1900℃以下で焼結することを特徴とする前記()に記載のα−サイアロン焼結体の製造方法。
【0012】
【発明の実施の形態】
次に、本発明について更に詳細に説明する。
本発明の目的物質のα−サイアロン焼結体は、シリコン(Si)粉末を原料粉に使用し、シリコンの窒化反応焼結を経て得られるセラミックス焼結体であって、組成式R(Si,Al)12(O,N)16(但し0.33<x<0.67,RはLi,Na,Ca,Mg,Y及び希土類元素から選択された少なくとも1種の元素を示す。)で表される95重量%以上のα−サイアロン粒子を主成分とし、且つ前記α−サイアロン粒子の15%以上がアスペクト比2以上の柱状粒子であることを特徴とするα−サイアロン焼結体である。
【0013】
本発明の目的物質のα−サイアロン焼結体は、破壊靭性が4MPam1/2以上、且つビッカース硬度が1700(HV10)以上のα−サイアロン焼結体である。本発明により、低い製造コストで作製される高い硬度と靭性を持ったα−サイアロン焼結体を提供することができる。本発明では、シリコン粉末を原料粉に使用することで、窒化反応後に微細なα,β−Siが発達した、相対密度約70%以上の高密度の予備成形体が得られる。この予備成形体を焼結することによって、柱状のα−サイアロン粒子の発達が促進され、硬度と靭性が共に高いα−サイアロン焼結体とすることができる。これは、世界で初めて見出した現象であり、後記する比較例で具体的に述べるように、α−Si粉を原料粉として同組成のα−サイアロン焼結体を作製した場合では発現しない現象である。更に、原料粉に使用するシリコンが安価なため、低い製造コストでα−サイアロン焼結体を作製することができる。また、本発明の方法では、焼結時の収縮率が小さくなり、特に複雑形状の試料を焼結する場合に寸法精度を良くすることができ、加工費を削減できるα−サイアロン焼結体とすることができる。
【0014】
本発明のα−サイアロン焼結体の製造方法は、組成式Rx (Si,Al)12(O,N)16(但し0.33<x<0.67,RはLi,Na,Ca,Mg,Y及び希土類元素から選択された少なくとも1種の元素を示す。)からなるα−サイアロン粒子を主成分とするα−サイアロン焼結体の製造方法であって、主成分としてシリコン、アルミナ、窒化アルミニウム及びLi,Na,Ca,Mg,Yもしくは希土類元素から選択された少なくとも1種の元素の化合物を混合し混合粉末とする工程、混合粉末を成形し成形体を作製する工程及びシリコンの窒化反応焼結工程を経ることを特徴とするα−サイアロン焼結体の製造方法である。
【0015】
これらの工程により、窒化反応後の焼結時にα−サイアロン粒子の成長が促進され柱状のα−サイアロン粒子を主成分とする硬度と靭性が共に高いα−サイアロン焼結体を製造することができる。更に、本発明では、原料粉に使用するシリコンが安価なため、低い製造コストでα−サイアロン焼結体を製造することができる。また、焼結時の収縮率が小さくなり、特に複雑形状の試料を焼結する場合に寸法精度を良くすることができ、加工費を削減できるα−サイアロン焼結体を製造することができる。
【0016】
本発明のα−サイアロン焼結体の製造方法は、シリコンの窒化反応焼結工程の後に、窒素含有雰囲気下1800℃以上1900℃以下で焼結することを特徴とするが、これにより、高い硬度と靭性を持ったα−サイアロン焼結体を低い製造コストで製造することができる。
【0017】
【実施例】
次に、本発明の具体的な実施例を説明する。ただし、これら実施例により本発明が限定されるものではない。
実施例
シリコンの窒化反応焼結及び焼結後に組成がYm/3 Si12-(m+n)Alm+nn16-n(m=n=1.1)のY−α−サイアロン単相の焼結体となるように、所定量のシリコン、窒化アルミニウム、アルミナ及びイットリアを秤量した。ここで、シリコンの窒化を促進するために、鉄、アルミニウム又はカルシウムなどの化合物を窒化促進剤として少量添加してもよい。秤量した原料粉をメタノール中遊星ボールミルで混合した。作製したスラリーを乾燥後、ふるいを通してSiを主成分とする原料粉を作製した。作製した原料粉を金型で一軸プレス後、冷間静水圧プレス(CIP)を行い、成形体を作製した。この成形体を窒化硼素(BN)製のルツボに配置し、窒素中で1350℃に加熱して成形体の窒化反応焼結を行った。窒化反応焼結後の試料にシリコンが残留していないことをX線回折によって確認した。窒化反応焼結後の試料は、更に、窒素中で1800℃から1900℃で焼結を行った。
【0018】
また、比較例1として、窒化反応焼結後の試料を1600℃から1700℃で焼結を行った。更に、比較例2として、シリコン粉の代わりにα−窒化珪素粉を用いて、前記Y−α−サイアロン結晶粒子からなる焼結体と同じ組成のα−サイアロン焼結体を作製した。比較例2の焼結体の作製は、秤量した所定量のα−窒化珪素、窒化アルミニウム、アルミナ及びイットリアをメタノール中遊星ボールミルで混合、乾燥後、ふるいを通した原料粉を金型で一軸プレス及び冷間静水圧プレス(CIP)を行い、作製した成形体を窒素中1900℃で焼結することによって行った。
【0019】
作製した焼結体は、アルキメデス法により密度を測定した後、切断してα−サイアロン相の割合をX線回折によって確認した。この場合のα−サイアロン相の割合については、α相の(101)、(110)、(200)、(201)、(102)、(210)及び(301)の回折線のピーク高さとβ相の(110)、(200)、(101)及び(210)の回折線のピーク高さから試算した。焼結時の収縮率、焼結体の相対密度及びα−サイアロン相の割合を表1に示す。
【0020】
【表1】

Figure 0004292255
【0021】
1700℃以上で焼結することで、窒化珪素粉を原料に用いた比較例2の収縮率(18%)より低い収縮率(11%)で高い密度の焼結体を作製することができた。更に、1800℃以上で焼結することによって、α−サイアロン相の割合が95重量%以上であるα−サイアロン焼結体を作製することができた。また、1900℃を越える高い温度で焼結した場合、密度が低下して緻密な焼結体が得られなかった。
【0022】
次に、走査電子顕微鏡によって焼結体内部組織の主成分粒子の形状と大きさを観察した。実施例の1900℃で焼結を行ったα−サイアロン焼結体、比較例1の1700℃で焼結を行ったα−サイアロン焼結体及び比較例2のα−サイアロン焼結体の破断面の走査電子顕微鏡写真を図1に示す。
【0023】
比較例1及び2の等軸状の粒子からなる焼結体内部組織に対し、実施例では多数の柱状粒子が見られ、結晶粒子の15%以上がアスペクト比2以上の柱状粒子であることが分かった。
また、これらの焼結体を切断後、鏡面研磨してビッカース硬度(HV10)及び破壊靭性(K1C)を測定した。その結果を表2に示す。
【0024】
【表2】
Figure 0004292255
【0025】
実施例では、シリコン粉を原料に用いてシリコンの窒化反応焼結過程を経て、α−サイアロン相が95重量%以上の焼結体を作製することで、柱状のα−サイアロン粒子を主成分とする焼結体を得ることができた。その結果、α−サイアロン焼結体のビッカース硬度(HV10)が1700以上であり、破壊靭性(K1C)が4MPam1/2 以上の硬度と靭性が共に高い値となった。
また、実施例では、安価なシリコン粉を原料粉に用いているため、比較例2のように高価な窒化珪素粉を原料粉に用いた場合より、低い製造コストでα−サイアロン焼結体を作製することができた。
【0026】
【発明の効果】
以上詳述したように、本発明は、α−サイアロン焼結体の製造方法に係るものであり、本発明によれば、原料粉にシリコンを用いてシリコンの窒化反応焼結を経て、α−サイアロン焼結体を作製することで、柱状のα−サイアロン粒子を主成分とする靭性と硬度が共に高いα−サイアロン焼結体を低い製造コストで作製し、提供することができる。
【図面の簡単な説明】
【図1】本発明と比較例のα−サイアロン焼結体の破断面の走査型電子顕微鏡写真を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing α- sialon sintered body, and more particularly, to a method for manufacturing a hardness and toughness are both high α- sialon sintered body. Conventionally, it has been difficult to produce an α-sialon sintered body that maintains high hardness and has high toughness, but the present invention provides a method for producing such an α-sialon sintered body at low cost. It is useful as a thing to provide.
[0002]
[Prior art]
In the α-sialon sintered body, a part of Si and N atoms in a silicon nitride (Si 3 N 4 ) crystal is substituted with Al and O, and further, a solid solution metal element is present in a space between atoms constituting the crystal. It has an interstitial solid solution structure, and its sintered body has a particularly high hardness among ceramic sintered bodies and has been used as a grinding material and an abrasion resistant material.
[0003]
However, although the α-sialon sintered body has high hardness as described above and is excellent in grindability and wear resistance, the value of fracture toughness is obtained because the crystal particles are equiaxed particles. Is as low as about 3 MPam 1/2 . Therefore, since the α-sialon sintered body has a surface that is easily broken and difficult to use as a practical material, in order to make it a practical material, it has been a problem to improve the disadvantage of low toughness. . Therefore, conventionally, α-sialon sintered bodies have been used as composite materials in which α-sialon particles are dispersed in a tough β-phase silicon nitride matrix (see, for example, Patent Document 1). However, since such a sintered body uses β-phase silicon nitride having a low hardness as a matrix, the hardness is lower than that of an α-sialon single-phase sintered body.
[0004]
Therefore, production of a high toughness ceramic sintered body mainly composed of α-sialon particles has been attempted. As a method for improving the low fracture toughness value of the sintered body, for example, grain growth during sintering is performed. There is a method of promptly generating columnar α-sialon particles, and the following methods have been reported.
[0005]
In the case of producing a Y-α-sialon sintered body, in one example, α-silicon nitride, aluminum nitride, alumina, and yttria are used as raw material powder, and yttria is added excessively with respect to the Y-α-sialon composition. ing. Thereby, a large amount of liquid phase is generated at the time of sintering, and the generation of columnar α-sialon particles is promoted. By forming a sintered body structure containing a large amount of columnar α-sialon particles, the fracture toughness value of the sintered body is a high value of about 5 MPam 1/2 (see Non-Patent Document 1). However, the sintered body produced by this method has a drawback that hardness and high temperature characteristics are lowered because a large amount of glass phase remains at the grain boundaries.
[0006]
In another example, a solid solution metal element that uses β-silicon nitride powder as a starting material for producing an α-sialon sintered body, and further interstitially dissolves in a space between atoms constituting the α-sialon crystal. Columnar α-sialon particles are produced by using a rare earth element such as Nd having a large ion radius. By forming a structure containing a large amount of columnar particles, the fracture toughness value (K 1C ) of the sintered body is a high value of 5 to 6 MPam 1/2 (see Non-Patent Document 2). However, in this manufacturing method, a special raw material powder called β-silicon nitride powder must be used, which is not suitable for actual manufacturing.
[0007]
Furthermore, in another example, a Yb-α-sialon sintered body is produced by an SPS (Spark Plasma Sintering) method. In this method, the sample can be rapidly heated during sintering, so that a large amount of liquid phase is generated and particle growth is promoted. Therefore, a sintered body made of columnar particles is obtained, and the mechanical properties of the sintered body are as high as a hardness of 22 GPa and a fracture toughness value of 5.5 MPam 1/2 (see Non-Patent Document 3). However, this manufacturing method increases the manufacturing cost because sintering must be performed by a special method such as the SPS method.
[0008]
[Patent Document 1]
JP-A-8-73269 [Non-Patent Document 1]
S. Kurama, M .; Herrmann and H.M. Mandal, J .; Eur. Ceram. Soc. , 2002, 22, 109-119.
[Non-Patent Document 2]
I-W. Chen and A.M. Rosenflanz, Nature, 1997, 389, 701-704.
[Non-Patent Document 3]
Z. Shen, Z .; Zhao, H .; Peng and M.M. Nygren, Nature, 2002, 417, 266-269.
[0009]
[Problems to be solved by the invention]
Thus, conventionally, it has been difficult to produce an α-sialon sintered body having high hardness and high toughness. In order to solve this problem, even when an α-sialon sintered body having high toughness and high hardness is produced as in the conventional technique, those methods need to use special raw material powders and production methods. Therefore, it is not suitable for actual production, and expensive silicon nitride powder is used as a main raw material.
[0010]
Furthermore, since the shrinkage rate during sintering is large, there is a problem that the dimensional accuracy is poor particularly when a sample having a complicated shape is sintered, and the machining allowance increases and the processing cost increases.
In view of the prior art, the present invention solves the problems in the conventional α-sialon sintered body having high toughness and high hardness and its manufacturing method, and has high toughness and high hardness at a low manufacturing cost. It aims at providing the manufacturing method of the alpha sialon sintered compact which has.
[0011]
[Means for Solving the Problems]
The present invention for solving the above-described problems comprises the following technical means.
( 1 ) Composition formula R x (Si, Al) 12 (O, N) 16 (where 0.33 <x <0.67, R is selected from Li, Na, Ca, Mg, Y and other rare earth elements) A high-hardness and high-toughness α-sialon sintered body mainly composed of α-sialon particles consisting of α-sialon particles, and silicon as a predetermined amount of main component. , Alumina, aluminum nitride, and a compound of at least one element selected from Li, Na, Ca, Mg, Y or other rare earth elements to form a mixed powder, a mixed powder is formed, and a molded body The manufacturing method of (alpha) -sialon sintered compact characterized by passing through the process which produces nitriding reaction sintering process of silicon, and a sintering process.
( 2 ) The method for producing an α-sialon sintered body according to ( 1 ), wherein the sintering is performed at 1800 ° C. or higher and 1900 ° C. or lower in a nitrogen-containing atmosphere after the silicon nitriding reaction sintering step.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
The target material α-sialon sintered body of the present invention is a ceramic sintered body obtained by using silicon (Si) powder as a raw material powder and nitriding reaction sintering of silicon, and has a composition formula R x (Si , Al) 12 (O, N) 16 (where 0.33 <x <0.67, R represents at least one element selected from Li, Na, Ca, Mg, Y and rare earth elements). An α-sialon sintered body characterized by comprising 95% by weight or more of α-sialon particles as a main component and 15% or more of the α-sialon particles being columnar particles having an aspect ratio of 2 or more. .
[0013]
The α-sialon sintered body of the target substance of the present invention is an α-sialon sintered body having a fracture toughness of 4 MPam 1/2 or more and a Vickers hardness of 1700 (HV10) or more. According to the present invention, it is possible to provide an α-sialon sintered body having high hardness and toughness manufactured at a low manufacturing cost. In the present invention, by using silicon powder as the raw material powder, a high-density preform having a relative density of about 70% or more in which fine α, β-Si 3 N 4 has developed after the nitriding reaction is obtained. By sintering this preform, the development of columnar α-sialon particles is promoted, and an α-sialon sintered body having both high hardness and toughness can be obtained. This is the phenomenon found for the first time in the world, and, as will be described in detail in a comparative example to be described later, is expressed when an α-sialon sintered body having the same composition is made using α-Si 3 N 4 powder as a raw material powder. It is a phenomenon that does not. Furthermore, since silicon used for the raw material powder is inexpensive, an α-sialon sintered body can be produced at a low production cost. Further, in the method of the present invention, the shrinkage rate during sintering is reduced, and particularly when a sample having a complicated shape is sintered, the dimensional accuracy can be improved, and the α-sialon sintered body capable of reducing processing costs and can do.
[0014]
The manufacturing method of the α-sialon sintered body of the present invention has a composition formula R x (Si, Al) 12 (O, N) 16 (where 0.33 <x <0.67, R represents Li, Na, Ca, An at least one element selected from Mg, Y and a rare earth element). A method for producing an α-sialon sintered body mainly composed of α-sialon particles comprising silicon, alumina, A step of mixing aluminum nitride and a compound of at least one element selected from Li, Na, Ca, Mg, Y or rare earth elements to form a mixed powder, a step of forming a mixed powder to produce a molded body, and a nitriding of silicon It is a manufacturing method of the alpha sialon sintered compact characterized by passing through a reaction sintering process.
[0015]
By these steps, the growth of α-sialon particles is promoted during sintering after the nitriding reaction, and an α-sialon sintered body having high hardness and toughness mainly composed of columnar α-sialon particles can be produced. . Furthermore, in the present invention, since the silicon used for the raw material powder is inexpensive, an α-sialon sintered body can be produced at a low production cost. Moreover, the shrinkage rate at the time of sintering is reduced, and in particular, when a sample having a complicated shape is sintered, the dimensional accuracy can be improved, and an α-sialon sintered body that can reduce the processing cost can be manufactured.
[0016]
The method for producing an α-sialon sintered body of the present invention is characterized by sintering at 1800 ° C. or more and 1900 ° C. or less in a nitrogen-containing atmosphere after the silicon nitriding reaction sintering step. And tough α-sialon sintered body can be manufactured at a low manufacturing cost.
[0017]
【Example】
Next, specific examples of the present invention will be described. However, the present invention is not limited to these examples.
Example: Nitriding reaction sintering of silicon and Y-α- of Y m / 3 Si 12- (m + n) Al m + n On N 16-n (m = n = 1.1) after sintering A predetermined amount of silicon, aluminum nitride, alumina, and yttria were weighed so as to be a sialon single-phase sintered body. Here, in order to promote nitriding of silicon, a small amount of a compound such as iron, aluminum or calcium may be added as a nitriding accelerator. The weighed raw material powder was mixed with a planetary ball mill in methanol. After the produced slurry was dried, a raw material powder containing Si as a main component was produced through a sieve. The produced raw material powder was uniaxially pressed with a mold and then subjected to cold isostatic pressing (CIP) to produce a molded body. This compact was placed in a boron nitride (BN) crucible and heated to 1350 ° C. in nitrogen to perform nitriding reaction sintering of the compact. It was confirmed by X-ray diffraction that no silicon remained in the sample after nitriding reaction sintering. The sample after nitriding reaction sintering was further sintered at 1800 ° C. to 1900 ° C. in nitrogen.
[0018]
As Comparative Example 1, the sample after nitriding reaction sintering was sintered at 1600 ° C. to 1700 ° C. Furthermore, as Comparative Example 2, an α-sialon sintered body having the same composition as that of the sintered body composed of the Y-α-sialon crystal particles was produced using α-silicon nitride powder instead of silicon powder. The sintered body of Comparative Example 2 was prepared by mixing a predetermined amount of α-silicon nitride, aluminum nitride, alumina and yttria in a planetary ball mill in methanol, drying, and then uniaxially pressing the raw material powder passed through a sieve with a mold. And the cold isostatic press (CIP) was performed, and the produced molded object was performed by sintering at 1900 degreeC in nitrogen.
[0019]
The produced sintered body was measured for density by Archimedes method, and then cut to confirm the proportion of α-sialon phase by X-ray diffraction. The ratio of the α-sialon phase in this case is as follows. The peak heights of the diffraction lines of the α phase (101), (110), (200), (201), (102), (210) and (301) and β It was estimated from the peak heights of the diffraction lines of (110), (200), (101) and (210) of the phase. Table 1 shows the shrinkage ratio during sintering, the relative density of the sintered body, and the proportion of the α-sialon phase.
[0020]
[Table 1]
Figure 0004292255
[0021]
By sintering at 1700 ° C. or higher, it was possible to produce a sintered body having a high density with a shrinkage rate (11%) lower than that of Comparative Example 2 using silicon nitride powder as a raw material. . Furthermore, by sintering at 1800 ° C. or higher, an α-sialon sintered body having an α-sialon phase ratio of 95 wt% or higher could be produced. Further, when sintered at a high temperature exceeding 1900 ° C., the density was lowered and a dense sintered body could not be obtained.
[0022]
Next, the shape and size of the main component particles of the internal structure of the sintered body were observed with a scanning electron microscope. Fracture surfaces of the α-sialon sintered body sintered at 1900 ° C. of the example, the α-sialon sintered body sintered at 1700 ° C. of the comparative example 1, and the α-sialon sintered body of comparative example 2 A scanning electron micrograph is shown in FIG.
[0023]
In contrast to the sintered body internal structure composed of equiaxed particles of Comparative Examples 1 and 2, in the Examples, a large number of columnar particles are observed, and 15% or more of the crystal particles are columnar particles having an aspect ratio of 2 or more. I understood.
Further, these sintered bodies were cut and then mirror-polished to measure Vickers hardness (HV10) and fracture toughness (K 1C ). The results are shown in Table 2.
[0024]
[Table 2]
Figure 0004292255
[0025]
In the examples, silicon powder is used as a raw material, through a nitridation reaction sintering process of silicon, and a sintered body having an α-sialon phase of 95% by weight or more is produced, so that columnar α-sialon particles are the main component. A sintered body to be obtained could be obtained. As a result, the Vickers hardness (HV10) of the α-sialon sintered body was 1700 or higher, and the fracture toughness (K1C) was 4 MPam1 / 2 or higher.
Further, in the examples, since inexpensive silicon powder is used as the raw material powder, the α-sialon sintered body can be produced at a lower production cost than when expensive silicon nitride powder is used as the raw material powder as in Comparative Example 2. We were able to make it.
[0026]
【The invention's effect】
As described above in detail, the present invention relates to a method for producing an α-sialon sintered body, and according to the present invention, silicon is used as a raw material powder and subjected to nitridation reaction sintering of silicon. By producing a sialon sintered body, it is possible to produce and provide an α-sialon sintered body having both toughness and high hardness mainly composed of columnar α-sialon particles at a low production cost.
[Brief description of the drawings]
FIG. 1 shows scanning electron micrographs of fracture surfaces of α-sialon sintered bodies of the present invention and a comparative example.

Claims (2)

組成式R(Si,Al)12(O,N)16(但し0.33<x<0.67,RはLi,Na,Ca,Mg,Y及び他の希土類元素から選択された少なくとも1種の元素を示す。)からなるα−サイアロン粒子を主成分とする高い硬度と高い靭性を共に有するα−サイアロン焼結体の製造方法であって、所定量の主成分としてのシリコン、アルミナ、窒化アルミニウム、及びLi,Na,Ca,Mg,Yもしくは他の希土類元素から選択された少なくとも1種の元素の化合物を混合し、混合粉末とする工程、混合粉末を成形し、成形体を作製する工程、シリコンの窒化反応焼結工程、及び焼結工程を経ることを特徴とするα−サイアロン焼結体の製造方法。Composition formula R x (Si, Al) 12 (O, N) 16 (where 0.33 <x <0.67, R is at least one selected from Li, Na, Ca, Mg, Y and other rare earth elements) An α-sialon sintered body having both high hardness and high toughness mainly composed of α-sialon particles composed of α-sialon particles comprising silicon, alumina as a predetermined amount of main components, A step of mixing aluminum nitride and a compound of at least one element selected from Li, Na, Ca, Mg, Y or other rare earth elements to form a mixed powder, forming the mixed powder, and producing a molded body The manufacturing method of the alpha-sialon sintered compact characterized by passing through a process, the nitridation reaction sintering process of silicon, and a sintering process. シリコンの窒化反応焼結工程の後に、窒素含有雰囲気下1800℃以上1900℃以下で焼結することを特徴とする請求項に記載のα−サイアロン焼結体の製造方法。2. The method for producing an α-sialon sintered body according to claim 1 , wherein after the silicon nitriding reaction sintering step, sintering is performed at 1800 ° C. or more and 1900 ° C. or less in a nitrogen-containing atmosphere.
JP2003074645A 2003-03-18 2003-03-18 α-sialon sintered body and method for producing the same Expired - Lifetime JP4292255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003074645A JP4292255B2 (en) 2003-03-18 2003-03-18 α-sialon sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003074645A JP4292255B2 (en) 2003-03-18 2003-03-18 α-sialon sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004277265A JP2004277265A (en) 2004-10-07
JP4292255B2 true JP4292255B2 (en) 2009-07-08

Family

ID=33290185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003074645A Expired - Lifetime JP4292255B2 (en) 2003-03-18 2003-03-18 α-sialon sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4292255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492257B1 (en) 2022-05-11 2022-11-08 King Fahd University Of Petroleum And Minerals Method of forming an alkali metal-doped calcium-SiA1ON material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1854864B1 (en) * 2005-02-28 2012-11-21 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and process for producing the same, and luminescent element using the same
FR3045598B1 (en) * 2015-12-21 2018-01-12 Centre National De La Recherche Scientifique PROCESS FOR PRODUCING A CERAMIC FROM A CHEMICAL REACTION

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492257B1 (en) 2022-05-11 2022-11-08 King Fahd University Of Petroleum And Minerals Method of forming an alkali metal-doped calcium-SiA1ON material

Also Published As

Publication number Publication date
JP2004277265A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
Kim et al. Effect of initial α‐phase content on microstructure and mechanical properties of sintered silicon carbide
Zhou et al. Tailoring the mechanical properties of silicon carbide ceramics by modification of the intergranular phase chemistry and microstructure
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JP2005281084A (en) Sintered compact and manufacturing method therefor
Tanaka et al. Nonequiaxial grain growth and polytype transformation of sintered α‐silicon carbide and β‐silicon carbide
JP4292255B2 (en) α-sialon sintered body and method for producing the same
US20070225150A1 (en) Sintered ceramic material with improved properties and method for its manufacturing
JP2000256066A (en) Silicon nitride-base sintered compact, its production and wear resistant member using same
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
JP3932349B2 (en) Reaction synthesis of non-oxide boron nitride composites
JP2007326745A (en) Wear resistant member, wear resistant equipment and method of manufacturing wear resistant member
Sopicka-Lizer et al. The Effect of SiAlON Precursor Nanostructurization in a Planetary Mill on the Properties of Sintered Ceramics
JP4385122B2 (en) Method for producing α-sialon sintered body and α-sialon sintered body
JPH04305064A (en) Ceramic composition
JP2004091243A (en) Method for manufacturing sintered compact of silicon nitride, and sintered compact of silicon nitride
JPH1029869A (en) Silicon nitride-silicon carbide composite sintered compact and its production
JP2000335976A (en) Silicon nitride-based sintered compact and its production and abrasion-resistant member using the same
JP2002293638A (en) Silicon nitride sintered compact
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
KR101708826B1 (en) Cutting tool of silicon nitride containing alumina and erbium oxide sintered by discharge plasma
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JP2000247749A (en) Silicon nitride-silicon carbide-based composite sintered compact and its production
JPH0379308B2 (en)
Kasuriya et al. Nitrided pressureless sintering of Si {sub 3} N {sub 4}-SiC composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4292255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term