JPS6364903A - High-purity metal phosphide and production thereof - Google Patents

High-purity metal phosphide and production thereof

Info

Publication number
JPS6364903A
JPS6364903A JP20595486A JP20595486A JPS6364903A JP S6364903 A JPS6364903 A JP S6364903A JP 20595486 A JP20595486 A JP 20595486A JP 20595486 A JP20595486 A JP 20595486A JP S6364903 A JPS6364903 A JP S6364903A
Authority
JP
Japan
Prior art keywords
metal
phosphide
purity
raw material
calcium phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20595486A
Other languages
Japanese (ja)
Inventor
Seikichi Tabei
田部井 清吉
Takashi Fukuzawa
福沢 隆
Kosuke Takeuchi
宏介 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP20595486A priority Critical patent/JPS6364903A/en
Publication of JPS6364903A publication Critical patent/JPS6364903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To make it possible to industrially produce a high-purity metal phosphide usable as a raw material for amophous alloys, by heating and melting a blended raw material consisting of calcium phosphate, silica-containing substance, two or more kinds of metal raw materials and carbon in a reducing atmosphere and reducing the melt. CONSTITUTION:Mn, Cr, Cu, Co, Ni containing <=1ppm As, Sb, etc., which are impurities or two or more kinds of hydroxides and oxides as a precursor thereof are blended with calcium phosphate and silica-containing raw material, e.g. natural quartz, etc., and carbonaceous material, e.g. graphite, carbon black, etc., at <=1.2 Ca/Si molar ratio and the resultant blend is melted and reduced in a reducing atmosphere. The amount of C is 1.5 times based on the theoretical amount required fro reducing calcium phosphate and metal precursor and the amount of the metal raw material is 0.5-1.0 based on formed equivalents of the metal phosphide of the formula MenP (Mn is the above-mentioned metal; n is 1-3) expressed in terms of the metal. Thereby the aimed high-purity metal phosphide with >=99% total content of the two or more kinds of the above- mentioned metal and P, 10-30% P thereof, <0.5% amount of metal impurities contained and <1.0% C is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高純度の金属リン化物およびその製造方法に関
し、特にアモルファス合金用原料として使用できる高純
度の金属リン化物を工業的に提供することに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high-purity metal phosphide and a method for producing the same, and particularly to industrially provide a high-purity metal phosphide that can be used as a raw material for an amorphous alloy. Regarding.

〈従来の技術〉 リン化鉄、リン化クロム、リン化マンガン、リン化銅、
リン化コバルトなどはアモルファス金属の構成原料とし
て用いられるが、これらのリン化物は通常の合金化手段
である混合、加熱、溶融による場合、リンの蒸気圧が高
いため不適で、通常、従来法では、高圧密閉容器内で反
応させるか、リンの蒸気圧を1気圧程度に保つ温度で長
時間反応させるかの、いづれかの方法が取られている。
<Conventional technology> Iron phosphide, chromium phosphide, manganese phosphide, copper phosphide,
Cobalt phosphide and the like are used as constituent raw materials for amorphous metals, but the high vapor pressure of phosphorus makes these phosphides unsuitable for common alloying methods such as mixing, heating, and melting, and conventional methods are usually not used. Either the reaction is carried out in a high-pressure sealed container, or the reaction is carried out for a long time at a temperature that maintains the vapor pressure of phosphorus at about 1 atm.

前者の場合、高温、高圧に耐える容器が必要であり、そ
の構造的制約からくる生産性の低下および容器材質から
の汚染がさけられぬ欠点となる。後者の場合、石英等の
容器を用いれば材質汚染は多くの場合さけられるが、反
応時間が非常に長くなるので、工業的でない。
In the former case, a container that can withstand high temperatures and pressures is required, and the unavoidable drawbacks are a decrease in productivity due to its structural limitations and contamination from the material of the container. In the latter case, material contamination can be avoided in many cases by using a container made of quartz or the like, but the reaction time becomes very long, so this is not industrially practical.

又、燐酸鉄などの燐酸塩を水素や一酸化炭素により還元
する方法も知られているが、燐酸塩の製造が前提となる
ため、全ての金属燐化物に適用することはできず、製造
工程の複雑化に伴う製品の汚染やコストの増加が多くの
場合避けられない。又、完全な還元は難しく、酸化物の
残留があるためアモルファス合金用原料としては問題が
ある。
Additionally, a method is known in which phosphates such as iron phosphate are reduced with hydrogen or carbon monoxide, but since it requires the production of phosphates, it cannot be applied to all metal phosphides, and the production process Product contamination and increased costs associated with increased complexity are often unavoidable. Furthermore, complete reduction is difficult and oxides remain, which poses problems as a raw material for amorphous alloys.

〈発明が解決しようとする問題点〉 本発明は、従来のいづれの方法でも高純度化を図るには
限度があるので、高純度の原料より直接的に高純度の金
属リン化物を製造することにある。
<Problems to be Solved by the Invention> Since there is a limit to achieving high purity using any of the conventional methods, the present invention is directed to the production of high-purity metal phosphides directly from high-purity raw materials. It is in.

即ち、生成の困難な不純物元素を実質的に含有しないリ
ン酸カルシウム塩、ケイ酸、金属粉、又はこれらの前駆
体、炭素などを原料として還元溶融することにより、高
純度の金属リン化物を製造し臂ることを知見し本発明を
完成したものである。
That is, high-purity metal phosphides are produced by reducing and melting raw materials such as calcium phosphate salts, silicic acid, metal powders, or their precursors, and carbon, which do not substantially contain impurity elements that are difficult to produce. The present invention was completed based on this knowledge.

く問題点を解決するための手段〉及びく作用〉本発明の
要旨とするところは、2種以上の金属とPとの合計量が
99重量%以上であって、かつPが10〜30重量%、
不純物金属の合計量が0.5重層%以下およびCが1.
0重量%以下であることを特徴とする高純度金属リン化
物(以下「第1発明」) 及び、 リン酸カルシウム、シリカ含有物、2種以上の金!!A
原料および炭素からなる混合物を還元雰囲気下で加熱溶
融することを特徴とする高純度金属リン化物の製造方法
(以下「第2発明」)である。
Means for Solving the Problems and Effects The gist of the present invention is that the total amount of two or more metals and P is 99% by weight or more, and P is 10 to 30% by weight. %,
The total amount of impurity metals is 0.5% or less and C is 1.
A high-purity metal phosphide (hereinafter referred to as the "first invention") characterized by a content of 0% by weight or less, calcium phosphate, a silica-containing material, and two or more types of gold! ! A
This is a method for producing a high-purity metal phosphide (hereinafter referred to as the "second invention"), which is characterized by heating and melting a mixture consisting of a raw material and carbon in a reducing atmosphere.

第1発明の高純度金属リン化物は、Pと2種以上の金属
からなるものであるが、この金属成分としては、Pと合
金を作るものであればよく、例えば、F e s Cr
 −N i 1Co、Cu等から選ばれた2種以上が挙
げられる。
The high-purity metal phosphide of the first invention is composed of P and two or more metals, but the metal component may be anything that forms an alloy with P, such as Fe s Cr.
-N i Two or more types selected from 1Co, Cu, etc. are mentioned.

また、第1発明の金属リン化物は、Pの含有量が10〜
30重轟%で、残りが他の金属成分である。
Further, the metal phosphide of the first invention has a P content of 10 to
30% by weight, the rest being other metal components.

第1発明の高純度金属リン化物を得るために、可能な限
り原料中に不純物の少ないことが好ましく、特に精製の
困難な砒素、アンチモン、マグネシウム、アルミニウム
、チタニウム、ジルコニウムなどの不純物が少ない原料
を使用することが望ましく、特にリンと同族元素である
砒素、アンチモンは極力少ないものが好ましい。
In order to obtain the high-purity metal phosphide of the first invention, it is preferable that the raw materials contain as few impurities as possible, and in particular, raw materials with few impurities such as arsenic, antimony, magnesium, aluminum, titanium, zirconium, etc., which are difficult to purify, are used. It is desirable to use such a material, and in particular, it is preferable to use as little amount of arsenic and antimony as possible, which are elements in the same group as phosphorus.

リンの原料であるリン酸カルシウム塩としては、例えば
、リン酸−カルシウム、リン酸二カルシウム、リン酸三
カルシウム、塩基性リン酸カルシウム又はピロリン酸カ
ルシウムなどが挙げられ、いづれの場合も、As、Sb
が1111)II以下のものを選択する方が良い。
Examples of calcium phosphate salts that are raw materials for phosphorus include calcium phosphate, dicalcium phosphate, tricalcium phosphate, basic calcium phosphate, and calcium pyrophosphate.
It is better to select one below 1111) II.

シリカ含有物としては、高純度天然石英、珪砂、合成シ
リカなどが挙げられる。
Examples of the silica-containing material include high-purity natural quartz, silica sand, and synthetic silica.

炭素としては、黒鉛、カーボンブラック、活性炭などが
挙げられる。
Examples of carbon include graphite, carbon black, and activated carbon.

金属原料としてFe、Mn、Cr、N i。Fe, Mn, Cr, Ni as metal raw materials.

CQ又はCuの金属粉若しくは還元するとこれらの金属
となる金属化合物が好ましく、更に言えば、高純度が要
求されるので、電解法で製造した金属、化学的方法で得
られる金属水酸化物又は、その金属水酸化物を焼成して
得られた金属水酸化物が好ましく挙げられ、それらは1
種又は2種以上であってもよい。
Metal powders of CQ or Cu or metal compounds that become these metals when reduced are preferable.Moreover, since high purity is required, metals produced by electrolytic methods, metal hydroxides obtained by chemical methods, or Preferred examples include metal hydroxides obtained by firing the metal hydroxides, and they are
It may be one species or two or more species.

原料の配合割合はCa/Si(モル比)が1゜2J:X
下、好ましくは0.8〜1.1、炭素はリン酸カルシウ
ム塩及び前駆体を金属に還元するに足る理論量乃至その
1.5倍量の範囲が良い。
The mixing ratio of raw materials is Ca/Si (molar ratio) of 1゜2J:X
The amount of carbon is preferably from 0.8 to 1.1, and the amount of carbon is preferably in the range of from the theoretical amount to 1.5 times the amount sufficient to reduce the calcium phosphate salt and the precursor to the metal.

また、本発明で使用する金属粉又は金属化合物の配合量
は、用いるリン酸カルシウムの組成によって、一様では
ないが、金腐換樟でMe。
The amount of the metal powder or metal compound used in the present invention varies depending on the composition of the calcium phosphate used;

P (MeはFelMn、Cr、N i、Co、又はC
uであり、nは1〜3)生成当量の0.5〜1.0倍母
が好ましい。
P (Me is FelMn, Cr, Ni, Co, or C
u, and n is preferably 1 to 3) 0.5 to 1.0 times the production equivalent.

当量0.5未満の場合、元素リンの生成量が増大して金
属リン化物の収量が少なくなるためスラグ成分との分離
が難しく、高MA度のものが得られない。得られてもそ
の精製操作が非常に困難となる。一方、当量が1を越え
るとリン化物以外の金属成分が多くなり、リン化物とし
ての有用性が減少し、未反応原料の混入が増加する傾向
になる。
If the equivalent is less than 0.5, the amount of elemental phosphorus produced increases and the yield of metal phosphide decreases, making it difficult to separate it from the slag components and making it impossible to obtain a product with a high degree of MA. Even if it is obtained, its purification operation will be extremely difficult. On the other hand, when the equivalent weight exceeds 1, metal components other than phosphides increase, the usefulness as a phosphide decreases, and there is a tendency for unreacted raw materials to be mixed in more.

本発明は上記の割合において各原料を調合し、還元雰囲
気化で加熱溶融させると金属リン化物が生成する。加熱
温度は生成する金属リン化物の組成により変化するが、
少なくとも金属リン化物の融点以上でなければならない
In the present invention, a metal phosphide is produced by preparing each raw material in the above proportions and heating and melting the mixture in a reducing atmosphere. The heating temperature varies depending on the composition of the metal phosphide produced, but
The temperature must be at least higher than the melting point of the metal phosphide.

また、金属リン化物と未反応原料や生成する珪酸カルシ
ウムの如きスラグ成分の溶融物との比重分離を確実にす
るためには、金属リン化物の組成にもよるが、少なくと
も金属リン化物の融点以上の温度が必要であり、かつ溶
融物の保持時間は温度によって異なるけれども、少なく
とも10分以上が必要である。
In addition, in order to ensure specific gravity separation between the metal phosphide and the melt of unreacted raw materials and slag components such as calcium silicate, it is necessary to at least exceed the melting point of the metal phosphide, although it depends on the composition of the metal phosphide. Although the holding time of the melt varies depending on the temperature, it is necessary to hold the melt for at least 10 minutes.

一般にアモルファス合金の強度低下の一因として、急冷
固化時の結晶化があげられるが、これは急冷時に結晶の
析出誘因となる高融点をもツ不純物、例えばCabSM
gO1ZrO2、A1゜03、TiO2、Si3N4、
などの存在がアモルファス合金組成以外の因子として考
えられている。
Generally, one of the causes of strength reduction in amorphous alloys is crystallization during rapid cooling and solidification.
gO1ZrO2, A1゜03, TiO2, Si3N4,
The presence of these factors is considered to be a factor other than the amorphous alloy composition.

従って金属リン化物にこれらの不純物が極めて少ないこ
とがアモルファス合金用原料として望まれるが、本発明
においてはCaOおよびSiO2成分の混入を極力避け
るべく、Ca/Siモル比を0.8〜1の範囲で5i0
2の過剰度を上げると共に還元温度を通常の黄リン製造
における溶融温度よりも高い1500℃以上で還元させ
ると、SiO2の還元も生じ3iとなるのでアモルファ
ス合金結晶化誘因とならなくなり、その影響は実質的に
避けられ、且つCaO成分の混入も同様に回避できる。
Therefore, it is desired that the metal phosphide contains very few of these impurities as a raw material for an amorphous alloy. However, in the present invention, in order to avoid the incorporation of CaO and SiO2 components as much as possible, the Ca/Si molar ratio is set in the range of 0.8 to 1. So 5i0
When the excess degree of 2 is increased and the reduction temperature is increased to 1500°C or higher, which is higher than the melting temperature in normal yellow phosphorus production, SiO2 is also reduced and becomes 3i, which no longer induces crystallization of the amorphous alloy, and the effect is This can be substantially avoided, and contamination of CaO components can be avoided as well.

また金属リン化物とスラグ成分との分離が容易に行われ
るので極めて高純度の金属リン化物が生成できる。
Furthermore, since the metal phosphide and the slag component are easily separated, extremely high purity metal phosphide can be produced.

なお、加熱方法は密閉され還元雰囲気を保つものであれ
ば特に限定はないが、望ましくはアーク炉、抵抗炉、高
周波誘導炉などが一般的である。
The heating method is not particularly limited as long as it is sealed and maintains a reducing atmosphere, but preferably an arc furnace, a resistance furnace, a high frequency induction furnace, etc. are commonly used.

加熱溶融により蒸気として副生じ揮散する元素状リンは
温水シャワー(40〜60℃)により冷却凝縮させて液
状の黄リンとして捕集する。
Elemental phosphorus, which is produced as a by-product as vapor by heating and melting, is condensed by cooling with a hot water shower (40 to 60° C.) and collected as liquid yellow phosphorus.

他方、金属リン化物、珪酸カルシウムの如き珪M塩は溶
湯として炉底に溜るので、これをタップ穴を通じて流出
させる。
On the other hand, silica M salts such as metal phosphides and calcium silicate accumulate at the bottom of the furnace as molten metal, and are allowed to flow out through tap holes.

、この両者の分離は液の比重差により行うが、炉内で分
離され、上下2ケ所のタップ穴よりそれぞれを取り出す
方法又は1ケ所のタップ穴より流出させ、炉外で静置分
離させる方法のいずれかであってもよい。
The separation of the two is done by the difference in specific gravity of the liquid, but there are two methods: either the liquid is separated in the furnace and each is taken out from two tap holes on the top and bottom, or the liquid is flowed out from one tap hole and left to separate outside the furnace. It may be either.

なお、この工程の成否は金属リン化物の純度に大きく影
響するので、分離に充分な温度と時間をかけなければな
らない。
The success or failure of this step greatly affects the purity of the metal phosphide, so sufficient temperature and time must be used for separation.

分離後の溶湯は、それぞれ室温まで急冷又は徐冷して固
化することにより回収する。
The molten metal after separation is recovered by being solidified by rapid cooling or slow cooling to room temperature, respectively.

本発明の方法により製造された金属リン化物は、不純物
量が従来のものにない高純度品であり多くの場合、重量
基準で純度(Me+p)が99%以上であって、かつ結
晶化の誘因となり易い不純物金属の合計ffi (Ca
+Mg+A l 十■i+zr+V)が0.5重量%以
下及びCが1.0重量%以下である。
The metal phosphide produced by the method of the present invention is a high-purity product with an amount of impurities not found in conventional products, and in many cases, the purity (Me + p) on a weight basis is 99% or more, and it does not induce crystallization. The total impurity metal ffi (Ca
+Mg+A1+zr+V) is 0.5% by weight or less, and C is 1.0% by weight or less.

また本発明にかかる金属リン化物は急冷すれば非晶質で
あるが徐冷した場合にはその組成によってMelMeP
lMe  P又はMe3Pあるいはこれらの混合物の各
結晶層を主成分とするものがあることがX線回折により
確認することができる。
Furthermore, if the metal phosphide according to the present invention is rapidly cooled, it becomes amorphous, but if it is slowly cooled, it becomes MelMeP due to its composition.
It can be confirmed by X-ray diffraction that there are crystal layers mainly composed of lMe P, Me3P, or a mixture thereof.

〈実施例〉 実施例1〜7 第1表に示した原料を第2表に示す配合割合で混合し、
原料混合物を調整した。
<Example> Examples 1 to 7 The raw materials shown in Table 1 were mixed in the proportions shown in Table 2,
A raw material mixture was prepared.

次いで、各混合物を500!J採取し、Arガス気流雰
囲気を保った電気炉に装入し、500℃までは10℃/
lin 、 1550℃までは30℃/11inの昇温
速度で加熱し、1550℃に還した時点において30分
間保持したのち徐冷した。
Then add 500! of each mixture! J was sampled and charged into an electric furnace maintaining an Ar gas flow atmosphere, and heated at 10°C/10°C until 500°C.
lin, heated at a temperature increase rate of 30°C/11 in up to 1550°C, and when the temperature was returned to 1550°C, it was held for 30 minutes and then slowly cooled.

昇温過程においては1100℃〜1350’Cの範囲で
リン及びCoガスの発生が始まり、昇温の進行に伴い極
めて活発なリンおよびCoガスの還元揮散が認められ、
1550℃で約10分間保持した時点で還元揮散が停止
した。
During the temperature raising process, phosphorus and Co gases began to be generated in the range of 1100°C to 1350'C, and extremely active reduction and volatilization of phosphorus and Co gas was observed as the temperature progressed.
Reduction and volatilization stopped when the temperature was maintained at 1550°C for about 10 minutes.

かくして、徐冷優、電気炉内での反応容器より上層のス
ラグ眉と下層の金属層とに分離し下層部の金属層を回収
した。僻られた金属リン化物の各成分分析結束は第3表
の通りである。
In this way, the slag was gradually cooled and separated into the upper layer of the slag and the lower metal layer from the reaction vessel in the electric furnace, and the lower metal layer was recovered. The analysis results for each component of the neglected metal phosphide are shown in Table 3.

〈発明の効果〉 本発明にかかる方法によれば、高純度の金属リン化物が
工業的に有利に製造することができ、この高純度品はそ
のまま又は更に精製操作を加えてより一層高純度化する
ことにより、近時の新素材用原料として使用することが
できる。
<Effects of the Invention> According to the method of the present invention, a highly pure metal phosphide can be industrially advantageously produced, and this high-purity product can be used as it is or further purified to achieve even higher purity. By doing so, it can be used as a raw material for new materials in recent years.

Claims (5)

【特許請求の範囲】[Claims] (1)2種以上の金属とPとの合計量が99重量%以上
であって、かつPが10〜30重量%、不純物金属の合
計量が0.5重量%以下およびCが1.0重量%以下で
あることを特徴とする高純度金属リン化物。
(1) The total amount of two or more metals and P is 99% by weight or more, and P is 10 to 30% by weight, the total amount of impurity metals is 0.5% by weight or less, and C is 1.0% by weight. A high-purity metal phosphide characterized by a content of % by weight or less.
(2)2種以上の金属がFe、Mn、Cr、Ni、Co
及びCuから選ばれた2種以上の金属である特許請求の
範囲第1項記載の高純度金属リン化物。
(2) Two or more metals are Fe, Mn, Cr, Ni, Co
The high-purity metal phosphide according to claim 1, which is two or more metals selected from Cu and Cu.
(3)リン酸カルシウム、シリカ含有物、2種以上の金
属原料および炭素からなる混合物を還元雰囲気下で加熱
溶融することを特徴とする高純度金属リン化物の製造方
法。
(3) A method for producing a high-purity metal phosphide, which comprises heating and melting a mixture consisting of calcium phosphate, a silica-containing material, two or more metal raw materials, and carbon in a reducing atmosphere.
(4)金属原料がFe、Mn、Cr、Ni、Co又はC
uの金属粉若しくは還元するとこれらの金属となる金属
化合物である特許請求の範囲第3項記載の高純度リン化
物の製造方法。
(4) Metal raw material is Fe, Mn, Cr, Ni, Co or C
The method for producing a high purity phosphide according to claim 3, which is a metal powder of u or a metal compound that becomes these metals when reduced.
(5)金属化合物が酸化物又は水酸化物である特許請求
の範囲第4項記載の高純度リン化物の製造方法。
(5) The method for producing a high-purity phosphide according to claim 4, wherein the metal compound is an oxide or a hydroxide.
JP20595486A 1986-09-03 1986-09-03 High-purity metal phosphide and production thereof Pending JPS6364903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20595486A JPS6364903A (en) 1986-09-03 1986-09-03 High-purity metal phosphide and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20595486A JPS6364903A (en) 1986-09-03 1986-09-03 High-purity metal phosphide and production thereof

Publications (1)

Publication Number Publication Date
JPS6364903A true JPS6364903A (en) 1988-03-23

Family

ID=16515451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20595486A Pending JPS6364903A (en) 1986-09-03 1986-09-03 High-purity metal phosphide and production thereof

Country Status (1)

Country Link
JP (1) JPS6364903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541391A (en) * 2005-05-18 2008-11-20 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Method for manufacturing anode of lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541391A (en) * 2005-05-18 2008-11-20 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク Method for manufacturing anode of lithium ion battery

Similar Documents

Publication Publication Date Title
KR20160010874A (en) Process for manufacturing metal containing powder
JP2020502025A (en) Method for producing lithium oxide
CN110612269B (en) Method for producing commercial grade silicon
CN104195355A (en) Zirconium and method for preparing zirconium
JP4132526B2 (en) Method for producing powdered titanium
US2829961A (en) Producing aluminum
CN112250080B (en) Method for preparing refractory metal boride in two steps
JPS6364903A (en) High-purity metal phosphide and production thereof
JPS61201753A (en) High purity phosphor iron and its manufacture
CN115821083A (en) Aluminum-niobium intermediate alloy and preparation method thereof
JPS6364902A (en) Production of high-purity metal phosphide
JPH01278403A (en) Method for manufacturing powder-like fire-resistant inorganic compound and metal composition
JPS6357738A (en) Manufacture of high-purity phosphoric iron
JPS6351965B2 (en)
US3979206A (en) Process for the preparation of magnesium
JP2002180145A (en) Method for producing high purity metallic vanadium
US3685985A (en) Method for the removal of impurities from metallic zinc
JPS5926909A (en) Preparation of powder
KR960012709B1 (en) Process for producing tungsten monocarbide
JPH0192338A (en) High purity niobium-titanium alloy sponge and its manufacture
JPH0543210A (en) Production of high purity phosphorus
JPS5843456B2 (en) Rare earth↓-silicon alloy manufacturing method
JPH0364423A (en) Method for melting intermetallic compound ti-al-base alloy
NO142313B (en) PROCEDURE FOR THE PREPARATION OF FERROSILISIUM AND CALCIUM PHOSPHIDE FROM FERROPHOSPHOSE
JPS6280249A (en) Production of amorphous alloy