JPS5856015B2 - Calcium alloy manufacturing method - Google Patents

Calcium alloy manufacturing method

Info

Publication number
JPS5856015B2
JPS5856015B2 JP8349678A JP8349678A JPS5856015B2 JP S5856015 B2 JPS5856015 B2 JP S5856015B2 JP 8349678 A JP8349678 A JP 8349678A JP 8349678 A JP8349678 A JP 8349678A JP S5856015 B2 JPS5856015 B2 JP S5856015B2
Authority
JP
Japan
Prior art keywords
alloy
calcium
molten
aluminum
blending ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8349678A
Other languages
Japanese (ja)
Other versions
JPS5511147A (en
Inventor
繁 松村
孝 嶋貫
敏夫 豊田
敬志 油谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP8349678A priority Critical patent/JPS5856015B2/en
Publication of JPS5511147A publication Critical patent/JPS5511147A/en
Publication of JPS5856015B2 publication Critical patent/JPS5856015B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 本発明は、溶鋼又は溶融合金鉄中に介在する非金属介在
物あるいは不純物を除去するに好適な清浄化剤としての
カルシウム系合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a calcium-based alloy as a cleaning agent suitable for removing nonmetallic inclusions or impurities present in molten steel or molten alloy iron.

本発明の説明においては、以後カルシウムをCa、アル
ミニウムをA、(−)、シリコンをSlと略記する。
In the description of the present invention, hereinafter, calcium will be abbreviated as Ca, aluminum as A and (-), and silicon as Sl.

従来、この種の清浄化剤としては、Ca−8i系合金や
、CaC2(カルシウム・カーバイト)が知られている
Conventionally, Ca-8i alloys and CaC2 (calcium carbide) are known as this type of cleaning agent.

これらの清浄化剤も当然効果的なものであるが、他面製
品中に必然的にSi又は炭素が残留することになるため
に、これら取分を嫌う鋼種あるいは合金鉄にあっては、
その使用には自ら制限がある。
These cleaning agents are naturally effective, but on the other hand, Si or carbon inevitably remains in the product, so for steel types or ferroalloys that do not want to remove these substances,
Its use has its own limitations.

又、金属Caは清浄化剤としての効果が優れているが、
蒸気圧が高いために使用時の揮散が大きいこと、酸素と
の親和力が大であるために燃焼による損失が多いこと等
があり、従って使用時の歩留りが非常に低く、更に高価
な金属であるので、工業的規模での利用が困難であった
In addition, although metallic Ca has excellent effects as a cleaning agent,
Due to its high vapor pressure, there is a large amount of volatilization during use, and because of its high affinity with oxygen, there is a large loss due to combustion, etc. Therefore, the yield during use is very low, and it is also an expensive metal. Therefore, it was difficult to use it on an industrial scale.

それゆえ、物理的、化学的に安定で且つ安価なCa系合
金の出現が望まれていた。
Therefore, the appearance of a physically and chemically stable and inexpensive Ca-based alloy has been desired.

本発明は、これら従来の欠点を除去した主としてCaと
A7とから成る合金の製造方法を提供するものである。
The present invention provides a method for producing an alloy mainly consisting of Ca and A7, which eliminates these conventional drawbacks.

本願の第1の発明は、特許請求の範囲に記載した如く、
Ca酸化物を溶融Alで還元するに際し、前記溶融Al
のCa酸化物に対する配合割合を次式を満足する化学量
論量の0.5〜30倍とし、かつ、1350〜1800
℃の温度範囲内で行い、該還元されたCaをAlとの溶
融合金として取得することを特徴とするCa系合金の製
造方法であり、第2の発明は、第1の発明においてFe
The first invention of the present application, as stated in the claims,
When reducing Ca oxide with molten Al, the molten Al
The blending ratio for Ca oxide is 0.5 to 30 times the stoichiometric amount that satisfies the following formula, and 1350 to 1800
℃, and the reduced Ca is obtained as a molten alloy with Al, the second invention is a method for producing a Ca-based alloy in the first invention.
.

Cr、Mn、Niの1種若しくは2種以上の金属又は合
金から成る比重調整用添加元素の存在下にCa酸化物を
溶融A7で還元し、該還元されたCaを前記比重調整用
添加元素及びAlとの溶融合金として取得することを特
徴とするCa系合金の製造方法である。
Ca oxide is reduced with molten A7 in the presence of an additive element for specific gravity adjustment consisting of one or more metals or alloys of Cr, Mn, and Ni, and the reduced Ca is added to the additive element for specific gravity adjustment and This is a method for producing a Ca-based alloy, which is characterized in that it is obtained as a molten alloy with Al.

本発明と類似する公知技術として、酸化CaのAlによ
る熱還元があり、その概要は次の様である。
As a known technique similar to the present invention, there is thermal reduction of Ca oxide with Al, and the outline thereof is as follows.

Mgのケイ素鉄還元法と同じレトルトおよび装置を用い
て、酸化CaをAlで還元することができる。
Ca oxide can be reduced with Al using the same retort and equipment as the Mg silicon iron reduction method.

200メツシユの削り片または粉末をCaO:Al−3
=2(モル比)の割合テ混セテブリケットにし、1O−
37IL流Hg以下の真空中で1050〜1200℃で
還元する。
CaO:Al-3
Mix briquettes with a ratio of = 2 (molar ratio) and 1O-
Reduce at 1050-1200°C in vacuum below 37IL flow Hg.

Ca蒸気の凝着部は740〜680℃に保つようにする
The Ca vapor condensation area is maintained at a temperature of 740 to 680°C.

酸化Caは石灰石を灼いてつくり不純物は3%以下、M
gOは1%以下であることを要する。
Ca oxide is made by burning limestone and contains less than 3% impurities, M
gO is required to be 1% or less.

ウラン製造用の高純度Caは揮発精製によってつくる。High-purity Ca for uranium production is produced by volatile purification.

上述熱還元法は、レトルトを用いて真空下で製造するた
めに、装置が複雑で高価であり、更には1050〜12
00℃の温度にレトルトを外部より加熱する必要がある
等の高度な技術及び操作を必要とする。
The thermal reduction method described above requires complicated and expensive equipment because it is produced under vacuum using a retort.
Requires advanced technology and operations, such as the need to externally heat the retort to a temperature of 0.000C.

そのため、製品であるCaは必然的に高価とならざるを
得ない。
Therefore, Ca as a product inevitably becomes expensive.

又、金属のCaとA7とを溶融して合金とする方法もあ
るが、これも高価なCaを原料とするので得策ではない
There is also a method of melting metallic Ca and A7 to form an alloy, but this is not a good idea as it also uses expensive Ca as a raw material.

本発明の方法は(1)式で示すAlによる還元反応を利
用したものである。
The method of the present invention utilizes the reduction reaction with Al shown in formula (1).

この反応開始温度は実測によると1350’C程度であ
る。
According to actual measurements, the reaction initiation temperature is about 1350'C.

又、反応速度は1500°C以下の低温域でも可成り高
く、高温域になる程、生成したCaの蒸気圧が高くなり
、その蒸発ロスは大きくなる。
Further, the reaction rate is quite high even in a low temperature range of 1500° C. or lower, and the higher the temperature is, the higher the vapor pressure of the Ca produced and the greater the evaporation loss.

即ち、(1)式で還元され生成したCaはその一部が蒸
発し雰囲気中の02と接触してCaOとなってスラグ中
に逆戻りするか、あるいはCa蒸気となって系外に揮散
してしまうが、その残りのCaは還元剤であるAlと金
属結合をし、CaAl4やCaA72の形のCa −A
1合金になるのである。
In other words, part of the Ca produced by reduction in equation (1) evaporates and comes into contact with 02 in the atmosphere to become CaO and return to the slag, or it becomes Ca vapor and evaporates out of the system. However, the remaining Ca forms a metallic bond with Al, which is a reducing agent, and forms Ca-A in the form of CaAl4 and CaA72.
1 alloy.

尚、ここでCa−A1合金中のCaの含有率は、還元剤
であるAAの配合比率及び他成分の混入度合いで一元的
に定まるが、前記した如<(1)式の還元反応速度とC
aの蒸発速度も関与するのである。
Here, the content of Ca in the Ca-A1 alloy is centrally determined by the blending ratio of AA, which is a reducing agent, and the degree of mixing of other components. C
The evaporation rate of a also plays a role.

本発明の特徴は、上記(還元反応速度)−(Caの蒸発
速度)が最も大きくなる温度域で反応を行なわしめると
ころにあり、特に1800℃以上になるとCaの蒸発ロ
スは莫大となってしまい、得策ではない。
The feature of the present invention is that the reaction is carried out in the temperature range where the above (reduction reaction rate) - (Ca evaporation rate) is greatest, and especially at temperatures above 1800°C, the evaporation loss of Ca becomes enormous. , it's not a good idea.

したがって、本発明方法での反応温度域は1350〜1
800℃に限定するものであるが、生成スラグの流動性
あるいはCaの蒸発ロス等を考慮すれば1450〜16
50℃が好ましい。
Therefore, the reaction temperature range in the method of the present invention is 1350 to 1
The temperature is limited to 800℃, but if the fluidity of the produced slag and the evaporation loss of Ca are considered, the temperature is 1450~16
50°C is preferred.

一方、CaOはその融点が高く、特別な融剤を用いない
限り上記反応温度域において固相であるが還元剤の全属
人lは融点が低く液相であるため双方の接触面積は増大
して、(1)式の反応は固相−液相系でも充分に進行す
る。
On the other hand, CaO has a high melting point and is in a solid phase in the above reaction temperature range unless a special flux is used, but the reducing agent has a low melting point and is in a liquid phase, so the contact area between the two increases. Therefore, the reaction of formula (1) proceeds satisfactorily even in a solid phase-liquid phase system.

又、その反応によって生成するCa−A1合金及びCa
0−A7203系スラグの凝固点はその成分組成等によ
って異なるが、それぞれ概ね900〜950℃、125
0〜1300℃程度であり、生成物は液相となるのでそ
れらの処理には一般的な冶金操作を適用できる。
In addition, the Ca-A1 alloy and Ca
The freezing point of 0-A7203 series slag varies depending on its component composition, but it is approximately 900-950℃ and 125℃, respectively.
Since the temperature is about 0 to 1300°C and the products are in a liquid phase, general metallurgical operations can be applied to their treatment.

しかしながら、(1)式の反応において攪拌操作をより
容易ならしめるため、CaOの融点あるいは粘性を低下
させる目的で他の酸化物などを融剤として添加配合する
方法もあるが、本発明の方法では還元剤として強力な還
元力を有するAAを使用するので、前記目的で添加配合
された融剤をも還元し、生成するC a −A 1合金
の品位を損う恐れがあるため、CaOの融剤としてはC
a系の化合物が望ましい。
However, in order to make the stirring operation easier in the reaction of formula (1), there is also a method of adding and blending other oxides as a flux for the purpose of lowering the melting point or viscosity of CaO, but in the method of the present invention, Since AA, which has a strong reducing power, is used as a reducing agent, it may also reduce the fluxing agent added for the above purpose and impair the quality of the resulting Ca-A1 alloy. As an agent, C
A-type compounds are preferred.

したがって本発明方法におけるCaの酸化物とは、生石
灰、石灰石、螢石、カーバイトなどのCaの酸化物、炭
酸化物、水酸化物、ハロゲン化物、炭化物であって還元
反応時に酸化物の形態となるものをいい、これらの1種
あるいは2種以上の混合物を包含する。
Therefore, the oxides of Ca in the method of the present invention refer to oxides, carbonates, hydroxides, halides, and carbides of Ca such as quicklime, limestone, fluorite, and carbide, which are converted into oxides during the reduction reaction. It includes one kind or a mixture of two or more kinds of these.

但し、一般に工業的規模で入手可能な前記Caの酸化物
には不純物としてSiO2,Mg02A1203.Fe
2O3などが混入しているのが常識であるが、(1)式
の還元反応及び生成Ca−A7合金に支障のない取分あ
るいは量であれば差しつかえない。
However, the Ca oxide that is generally available on an industrial scale contains impurities such as SiO2, Mg02A1203. Fe
It is common knowledge that 2O3 and the like are mixed in, but any proportion or amount that does not interfere with the reduction reaction of formula (1) and the produced Ca-A7 alloy is acceptable.

又、本発明で使用するA7とはその純度が高い程好まし
いが、純アルミニウムに限らず、A190〜98%程度
でその他に若干のM g + S t %あるいは場合
によってはAI!203等を含有する、いわゆる相製ア
ルミニウムや再生アルミニウムも包含するものである。
Further, the higher the purity of A7 used in the present invention, the more preferable it is, but it is not limited to pure aluminum, and may contain about 90 to 98% of A1 and some M g + S t % or in some cases AI! It also includes so-called phased aluminum and recycled aluminum containing 203 and the like.

次に実用的な加熱方法としては、大別して誘導加熱方式
とアーク加熱方式がある。
Next, practical heating methods can be roughly divided into induction heating methods and arc heating methods.

本願第1の発明で得られるCa−A1合金はスラグより
比重が小さく、ために溶融状態では生成メタルが上でス
ラグが下という格好になるが、誘導加熱方式を用いる場
合には操業上の問題は全くない。
The Ca-A1 alloy obtained in the first invention of the present application has a lower specific gravity than slag, so in the molten state, the formed metal is on top and the slag is on the bottom, but there are operational problems when using the induction heating method. Not at all.

アーク加熱方式では電力の負荷状態が非常に不安定にな
りがちとなり、その操業の継続が困難になる恐れがある
が、本願第2の発明方法によればこの問題も解消するこ
とができる。
In the arc heating method, the power load state tends to become very unstable, and there is a possibility that it becomes difficult to continue the operation, but this problem can also be solved according to the second invention method of the present application.

すなわち、Ca−A1合金の使用対象とする鋼あるいは
合金鉄に対し汚染とならない比重調整用添加元素を添加
してCa−A1合金の比重をスラグの比重より犬に調整
することにより、アーク加熱方式の操作を容易にならし
めることが出来る。
That is, by adding additive elements for specific gravity adjustment that do not cause contamination to the steel or ferroalloy for which the Ca-A1 alloy is used, and adjusting the specific gravity of the Ca-A1 alloy to be lower than that of slag, the arc heating method can be applied. can be easily operated.

ここで比重調整用添加元素としてはFe、Cr。Here, the additive elements for specific gravity adjustment include Fe and Cr.

Mn、Ni、の1種若しくは2種以上の金属又は合金が
採用される。
One or more metals or alloys of Mn and Ni are used.

次に、Ca酸化物に対するA7の配合割合につ**いて
説明する。
Next, the blending ratio of A7 to Ca oxide will be explained.

純度93%の生石灰と純度98.5%のAlとを種々割
合で配合して25KVA高周波誘導加熱炉で1500℃
及び16000Cの温度でそれぞれ常圧下の大気中で反
応せしめ、得られた溶融金属中のCa分とAlの配合割
合との関係を求めた結果は図の通りであった。
Quicklime with a purity of 93% and Al with a purity of 98.5% were mixed in various proportions and heated to 1500°C in a 25KVA high frequency induction heating furnace.
and 16,000C in the atmosphere under normal pressure, and the relationship between the Ca content and the blending ratio of Al in the resulting molten metal was determined as shown in the figure.

ここで、Alの配合割合は、前記(1)式を満足する化
学量論量のAA量を1尚量として示した。
Here, the blending ratio of Al is shown assuming that the stoichiometric amount of AA satisfying the above formula (1) is 1 equivalent.

図において、Al配合割合が0.5当量未満ではグラフ
の実線が表示されていないが、これはCa−A7合金の
生成が認められなかった為である。
In the figure, the solid line in the graph is not displayed when the Al blending ratio is less than 0.5 equivalent, but this is because the formation of Ca-A7 alloy was not observed.

本発明方法は、清浄化効果の犬なるCa系合金を提供す
る製造方法であるので、製品中のCa含有量は犬なる程
好ましく、Ca含有量が2〜3%であっても実用性は有
るが5%以上が好ましい。
Since the method of the present invention is a manufacturing method that provides a Ca-based alloy with a cleaning effect, the Ca content in the product is preferably as high as possible, and even if the Ca content is 2 to 3%, it is not practical. Although it does exist, it is preferably 5% or more.

間より、上述条件を考慮すると好ましいAl配合割合は
0.5〜30尚量であることが解る。
From the above, it can be seen that the preferable Al blending ratio is 0.5 to 30% when the above conditions are taken into consideration.

反応雰囲気の条件は、常圧下の大気中であっても良いが
、Al及びCaの燃焼損失を考慮すれば中性若しくは不
活性雰囲気が好ましい。
The reaction atmosphere may be in the air under normal pressure, but a neutral or inert atmosphere is preferable in consideration of combustion loss of Al and Ca.

又、生成合金中のCaの蒸発揮散を考慮すれば、大気圧
下よりも加圧下の方が好ましい。
Further, in consideration of evaporation and transpiration of Ca in the formed alloy, it is preferable to operate under pressure rather than under atmospheric pressure.

実施例 1 本実施例で使用した原料の化学成分組成を第1表に示す
Example 1 Table 1 shows the chemical composition of the raw materials used in this example.

2SKVA高周波炉を用い、人造黒鉛製の坩堝にて生石
灰50gを1600’Cに加熱した後、金属AA 31
.9を装入した。
After heating 50 g of quicklime to 1600'C in an artificial graphite crucible using a 2SKVA high frequency furnace, metal AA 31
.. 9 was charged.

適宜攪拌を施しながら1600℃で10分間保持し、第
2表に示すメタル28.0gとスラグ51.2gを得た
The mixture was maintained at 1600° C. for 10 minutes with appropriate stirring to obtain 28.0 g of metal and 51.2 g of slag shown in Table 2.

尚、 このメタルをX線解析した結果、A I34 Ca及び
A72Ca が確認出来た。
Furthermore, as a result of X-ray analysis of this metal, AI34Ca and A72Ca were confirmed.

実施例 2 25KVA高周波炉を用いArガス雰囲気中、人造黒鉛
製の坩堝に生石灰300g、螢石90g、金属A158
0g及び鋼屑95gを混合して1500′Cで5分間溶
解保持し、第3表に示すメタル685gとスラグ315
gを得た。
Example 2 300 g of quicklime, 90 g of fluorite, and A158 metal were placed in an artificial graphite crucible in an Ar gas atmosphere using a 25 KVA high frequency furnace.
0g and 95g of steel scrap were mixed and melted and held at 1500'C for 5 minutes to form 685g of metal and 315g of slag shown in Table 3.
I got g.

このメタルをX線回析した結果A14Ca。The result of X-ray diffraction of this metal was A14Ca.

A lsF’e、Alが認められた。AlsF'e, Al was recognized.

実施例 3 330 KVA高周波炉を用い、生石灰128ky、螢
石128kg、金属A793kgを同時に溶解し、15
00〜1600℃で約10分間株持した。
Example 3 Using a 330 KVA high frequency furnace, 128 ky of quicklime, 128 kg of fluorite, and 793 kg of metal A were melted at the same time.
The strain was maintained at 00 to 1600°C for about 10 minutes.

その結果、第4表に示すメタルとスラグをそれぞれ91
ky、 159ky得た。
As a result, the metals and slag shown in Table 4 were each 91
ky, gained 159ky.

以上の実施例に示す如く本発明の方法によれば工業的規
模においても極めて容易にしかも安価なCa系合金が得
られることになり、本発明方法の技術的、経済的効果は
非常に大きなものである。
As shown in the above examples, according to the method of the present invention, Ca-based alloys can be obtained extremely easily and inexpensively even on an industrial scale, and the technical and economical effects of the method of the present invention are extremely large. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、Al配合割合と生成合金中のCa含有量との関係
を示すグラフである。
The figure is a graph showing the relationship between the Al blending ratio and the Ca content in the produced alloy.

Claims (1)

【特許請求の範囲】 1 カルシウム酸化物を溶融アルミニウムで還元するに
際し、前記溶融アルミニウムのカルシウム酸化物に対す
る配合割合を次式を満足する化学量論量の0.5〜30
倍とし、 3 Ca O+ 2 A l→3 Ca + A 12
03かつ、1350〜1800℃の温度範囲内で行い、
該還元されたカルシウムをアルミニウムとの溶融合金と
して取得することを特徴とするカルシウム系合金の製造
方法。 2 カルシウム酸化物を溶融アルミニウムで還元するに
際し、前記溶融アルミニウムのカルシウム酸化物に対す
る配合割合を次式を満足する化学量論量の0.5〜30
倍とし、 さらに鉄、クロム、マンガン、ニッケルの1種若しくは
2種以上の金属又は合金から成る比重調整用添加元素を
共存させ、かつ1350〜1800°Cの温度範囲内で
行い、該還元されたカルシウムを前記比重調整用添加元
素及びアルミニウムとの溶融合金として取得することを
特徴とするカルシウム系合金の製造方法。
[Scope of Claims] 1. When reducing calcium oxide with molten aluminum, the blending ratio of the molten aluminum to calcium oxide is 0.5 to 30% of the stoichiometric amount that satisfies the following formula.
Double, 3 Ca O+ 2 A l → 3 Ca + A 12
03 and within a temperature range of 1350 to 1800°C,
A method for producing a calcium-based alloy, characterized in that the reduced calcium is obtained as a molten alloy with aluminum. 2. When reducing calcium oxide with molten aluminum, the blending ratio of the molten aluminum to calcium oxide is 0.5 to 30% of the stoichiometric amount that satisfies the following formula.
double, and in the presence of an additive element for specific gravity adjustment consisting of one or more metals or alloys of iron, chromium, manganese, and nickel, and carried out within a temperature range of 1350 to 1800°C, and the reduced A method for producing a calcium-based alloy, characterized in that calcium is obtained as a molten alloy with the additive element for adjusting specific gravity and aluminum.
JP8349678A 1978-07-11 1978-07-11 Calcium alloy manufacturing method Expired JPS5856015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8349678A JPS5856015B2 (en) 1978-07-11 1978-07-11 Calcium alloy manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8349678A JPS5856015B2 (en) 1978-07-11 1978-07-11 Calcium alloy manufacturing method

Publications (2)

Publication Number Publication Date
JPS5511147A JPS5511147A (en) 1980-01-25
JPS5856015B2 true JPS5856015B2 (en) 1983-12-13

Family

ID=13804079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8349678A Expired JPS5856015B2 (en) 1978-07-11 1978-07-11 Calcium alloy manufacturing method

Country Status (1)

Country Link
JP (1) JPS5856015B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390577A (en) * 1986-10-03 1988-04-21 Okitsumo Kk Heat-resistant coating material composition

Also Published As

Publication number Publication date
JPS5511147A (en) 1980-01-25

Similar Documents

Publication Publication Date Title
US3591367A (en) Additive agent for ferrous alloys
US4363657A (en) Process for obtaining manganese- and silicon-based alloys by silico-thermal means in a ladle
JPH0115571B2 (en)
US4033758A (en) Process for producing magnesium utilizing aluminum-silicon alloy reductant
US3304175A (en) Nitrogen-containing alloy and its preparation
US4361442A (en) Vanadium addition agent for iron-base alloys
JPS5856015B2 (en) Calcium alloy manufacturing method
US3979206A (en) Process for the preparation of magnesium
IE39456L (en) Slag conditioner - steel production
US4282032A (en) Direct method for production of high-grade, high-purity ferromanganese
US4053307A (en) Process for manufacture of high-chromium iron alloy
US3094412A (en) Preparation of magnesium-containing silicon alloys
US1820998A (en) Smelting of ores
US3138455A (en) Process for the production of low silicon, medium-to-low carbon ferromanganese
JPS5934767B2 (en) Method for removing impurities from metals or alloys
KR100224635B1 (en) Slag deoxidation material for high purity steel making
JPS6012408B2 (en) Method for dephosphorizing metals or alloys
US2653867A (en) Reduction of metal oxides
JPH0215618B2 (en)
RU2058414C1 (en) Alloy for production of low-silicon ferromanganese
RU2116371C1 (en) Cast iron
JPS6011099B2 (en) Production method of low phosphorus manganese ferroalloy
RU2206628C2 (en) Charge for production of nitrogen-containing master alloys on base of refractory metals
SU576182A1 (en) Welding flux composition
JPS5843456B2 (en) Rare earth↓-silicon alloy manufacturing method