JPH0115571B2 - - Google Patents
Info
- Publication number
- JPH0115571B2 JPH0115571B2 JP21468985A JP21468985A JPH0115571B2 JP H0115571 B2 JPH0115571 B2 JP H0115571B2 JP 21468985 A JP21468985 A JP 21468985A JP 21468985 A JP21468985 A JP 21468985A JP H0115571 B2 JPH0115571 B2 JP H0115571B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- ore
- yield
- cao
- thermite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002893 slag Substances 0.000 claims description 24
- 239000003832 thermite Substances 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 15
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 12
- 229910000838 Al alloy Inorganic materials 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 239000010802 sludge Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 230000003749 cleanliness Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- -1 V = 60 to 90% Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
〔産業上の利用分野〕
この発明はチタン合金の母合金として使用され
るV―Al合金の製造方法に関する。
〔従来の技術〕
チタン合金用のV―Al母合金の製造方法とし
てAlテルミツト法と電気炉法が知られているが、
工業的にはAlテルミツト法が一般的に実施され
ている。
Alテルミツト法は、テルミツト炉に原材料で
ある五酸化バナジウム鉱石(V2O5)と還元剤と
してAl粉末及び造滓剤を装入し、大気中でテル
ミツト反応させる方法であり、その反応は、
V2O5+10/3Al+2α・Al
→2〔V1・Alα〕+5/3Al2O3−Q
<ここで、α=0.20〜1.26>
となる。
テルミツト反応炉として、水冷式Cuルツボを
使う方法と、内面にセラミツクス・ライニング材
を施した鋼製炉体を使う方法があるが、Cuルツ
ボ法はライニングが不要で合金へのライニング材
汚染がない利点がある反面、生産規模を大きくす
ることができず製造コストの低減が図れない欠点
があるため、セラミツクス・ライニング材法が最
も一般的に用いられている。
ところで上記したテルミツト反応によるV―
Al合金の製造法においては、合金の清浄度と歩
留に大きな問題があつた。即ち、V―Al合金の
ガス溶解度が液体と固体で大きな差があるため、
特に溶融メタルが凝固する時に大量のガスを放出
し、メタル上面に縦に亀裂が走り、且つ多数の気
孔が発生し、メタル上面の清浄度が悪化する問題
がある。
また、スラグとV2O5との親和力が強いため、
スラグ中のV2O5濃度が数%に達し、V2O5の〔メ
タル/スラグ〕移行比が低下するため、メタル中
のV歩留が低下する問題がある。
〔発明の概要〕
本発明は上記した従来の問題点を解決するため
になされたもので、メタルの清浄度と歩留とを向
上し得る製造方法を提供しようとするものであ
る。この目的のために本発明は、V=60〜90%,
Al=40〜10%を含有するV―Al合金を製造する
に当り、五酸化バナジウム鉱石を鉱石サイズ20mm
以下で且つ1mm以下が5〜50wt%となるように
調整し、これにスラグ組成がCaO=10〜30wt%,
Al2O3=90〜70wt%で且つ組成比がCaO/(CaO
+Al2O3)=0.1〜0.3になるように造滓剤を配合
し、更に還元剤としてAl粉末を添加し、反応炉
において下記定義するQ=600〜800Kcal/Kgで
テルミツト反応させることを基本的な特徴とする
ものである。
Q=テルミツト反応熱(Kcal)/(Al粉末+五酸化バ
ナジウム鉱石+造滓剤)の重量(Kg)
ここで本発明においては、V―Al合金として
V=60〜90%、Al=40〜10%のものを対象とす
る。本発明者らの知見によれば、メタル凝固時の
ガス放出量とV―Al合金組成との関係でV%が
50%から100%に増加するにつれ、O2,N2等のガ
ス放出量が減少する。またV中のAl%が0から
50%に増加するにつれ、スラグ中のV2O5が7%
から0.5%に減少する。このような知見からメタ
ル清浄度をおとさない範囲のガス放出量で且つス
ラグ中のV2O5%を低減できるV―Al合金組成を
選び、V=60〜90%、Al=40〜10%合金を対象
としたものである。
第1図はV2O5鉱石の粒径とV歩留との関係を
示すグラフである。粒径は細かいほど還元剤との
接触面積が拡大し、テルミツト反応が迅速に起こ
り、未反応原料ロスを小さくすることができ、V
歩留を向上させる。このグラフからわかるように
粒径20mm以下で且つ粒径1mm以下が50%で歩留向
上は飽和しはじめるが、あまり粒径を細かくする
とそのための製造コストが大きくなるため、本発
明においてはほぼ歩留90%以上を確保し得る粒径
20mm以下でなおかつ粒径1mm以下のものが5〜
50wt%の範囲に調整するものとする。
またV歩留を向上させるためには、スラグ中へ
のV2O5移行量を低下させ、V2O5が還元されてメ
タル中へVが移行するようにすることが大切であ
る。第2図はスラグ組成とスラグ中のV2O5(%)
との関係を示すもので、CaO/CaO+Al2O3=0.2 近
傍でスラグ中V2O5が最も低下することがわかる。
そこで本発明ではスラグ組成比がCaO/CaO+Al2O3
=0.1〜0.3となるように造滓剤を配合するものと
する。
なお、CaOは添加に際して粒径5mm以下に調整
するのが望ましい。また造滓剤として上記スラグ
単体或はスラグとCaOを混合して用いる等種々態
様が可能である。
更に本発明においては、テルミツト反応に際し
てのQ値をQ=600〜800Kcal/Kgと限定する。
ここでQ値は次のように定義される。
Q=テルミツト反応熱(Kcal)/(Al粉末+五酸化バ
ナジウム鉱石+造滓剤)の重量(Kg)
Q値をこの範囲とすれば、反応熱量が最適な範
囲に選ばれ、爆発的なテルミツト反応が抑制さ
れ、原料と生成物の飛散ロスを抑制できる。この
Q値とV歩留の関係を第3図に示す。Q=600〜
800Kcal/KgとすればV歩留を向上し得ることが
わかる。
なお、テルミツト反応炉のライニング材として
は種々のものが使用可能であるが、上記した組成
比のV―Alスラグを用いるとライニング材と反
応メタルの分離が良く、両者間の反応が抑制され
V歩留が向上する。これを下掲表に示す。
[Industrial Application Field] The present invention relates to a method for producing a V-Al alloy used as a master alloy for titanium alloys. [Prior art] Al thermite method and electric furnace method are known as methods for producing V-Al master alloys for titanium alloys.
Industrially, the Al thermite method is commonly practiced. The Al thermite method is a method in which a thermite furnace is charged with vanadium pentoxide ore (V 2 O 5 ) as a raw material, Al powder and a slag-forming agent as a reducing agent, and a thermite reaction is performed in the atmosphere. V 2 O 5 +10/3Al+2α・Al →2[V 1・Alα]+5/3Al 2 O 3 −Q <Here, α=0.20 to 1.26>. There are two methods of thermite reactor: one is to use a water-cooled Cu crucible, and the other is to use a steel furnace body with a ceramic lining on the inside. However, the Cu crucible method does not require lining and there is no contamination of the lining material on the alloy. Although it has advantages, it has the disadvantage that it cannot increase the production scale and reduce manufacturing costs, so the ceramic lining method is most commonly used. By the way, V- due to the thermite reaction mentioned above
In the manufacturing method of Al alloy, there were major problems with the cleanliness and yield of the alloy. In other words, since there is a large difference in gas solubility of V-Al alloy between liquid and solid,
In particular, when the molten metal solidifies, it emits a large amount of gas, causing vertical cracks to run on the upper surface of the metal, and a large number of pores, which deteriorates the cleanliness of the upper surface of the metal. In addition, due to the strong affinity between slag and V 2 O 5 ,
Since the V 2 O 5 concentration in the slag reaches several percent and the V 2 O 5 [metal/slag] transfer ratio decreases, there is a problem that the V yield in the metal decreases. [Summary of the Invention] The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a manufacturing method that can improve the cleanliness and yield of metal. For this purpose, the present invention provides V=60-90%,
In producing V-Al alloy containing Al = 40-10%, vanadium pentoxide ore is used to produce ore size 20 mm.
The slag composition is adjusted so that CaO=10-30wt%,
Al 2 O 3 = 90 to 70 wt% and the composition ratio is CaO/(CaO
+Al 2 O 3 ) = 0.1 to 0.3, add Al powder as a reducing agent, and perform a thermite reaction in a reactor at Q = 600 to 800 Kcal/Kg as defined below. This is a unique feature. Q = Thermite reaction heat (Kcal) / Weight of (Al powder + vanadium pentoxide ore + slag forming agent) (Kg) Here, in the present invention, as a V-Al alloy, V = 60 to 90%, Al = 40 to Targets 10%. According to the findings of the present inventors, V% is determined by the relationship between the amount of gas released during metal solidification and the V-Al alloy composition.
As the amount increases from 50% to 100%, the amount of gases such as O 2 and N 2 released decreases. Also, Al% in V is from 0 to
As V2O5 in the slag increases to 7% as it increases to 50%
decrease from 0.5% to 0.5%. Based on this knowledge, we selected a V-Al alloy composition that can reduce V 2 O 5 % in slag while having a gas emission amount that does not impair metal cleanliness. V = 60 to 90%, Al = 40 to 10%. It targets alloys. FIG. 1 is a graph showing the relationship between the particle size of V 2 O 5 ore and the V yield. The finer the particle size, the larger the contact area with the reducing agent, the faster the thermite reaction occurs, and the loss of unreacted raw materials can be reduced.
Improve yield. As can be seen from this graph, the improvement in yield begins to be saturated when the particle size is 20 mm or less and 50% is 1 mm or less, but if the particle size is made too small, the manufacturing cost increases, so in the present invention, the yield improvement is almost saturated. Particle size that ensures retention of 90% or more
5 to 20 mm or less with a particle size of 1 mm or less
It shall be adjusted to a range of 50wt%. Furthermore, in order to improve the V yield, it is important to reduce the amount of V 2 O 5 transferred into the slag so that the V 2 O 5 is reduced and V is transferred into the metal. Figure 2 shows the slag composition and V 2 O 5 (%) in the slag.
It can be seen that V 2 O 5 in the slag decreases the most when CaO/CaO + Al 2 O 3 = 0.2.
Therefore, in the present invention, the slag forming agent is blended so that the slag composition ratio is CaO/CaO+Al 2 O 3 =0.1 to 0.3. Note that when adding CaO, it is desirable to adjust the particle size to 5 mm or less. Further, various embodiments are possible, such as using the above-mentioned slag alone or a mixture of slag and CaO as the slag forming agent. Further, in the present invention, the Q value during the thermite reaction is limited to Q=600 to 800 Kcal/Kg.
Here, the Q value is defined as follows. Q = heat of thermite reaction (Kcal) / weight of (Al powder + vanadium pentoxide ore + slag-forming agent) (Kg) If the Q value is in this range, the reaction heat will be selected in the optimal range, and explosive thermite will be produced. Reactions are suppressed, and scattering loss of raw materials and products can be suppressed. The relationship between this Q value and V yield is shown in FIG. Q=600~
It can be seen that the V yield can be improved by setting it to 800 Kcal/Kg. Various materials can be used as the lining material for the thermite reactor, but when V-Al slag with the above-mentioned composition ratio is used, the lining material and the reaction metal are separated well, and the reaction between the two is suppressed. Yield is improved. This is shown in the table below.
実施例 1
下掲第1表に示す原料を、V―Alスラグ/
CaO/Al2O3=20/80)をライニングした反応炉
に投入し、Q=700Kcal/Kgでテルミツト反応さ
せ、65V−35Al合金を製造した。
その結果得られた生成物とスラグの組成を第2
表に示す。V歩留は99.2%と非常に高い値を示し
た。また表面性状も良好であつた。
Example 1 The raw materials shown in Table 1 below were mixed into V-Al slag/
CaO/Al 2 O 3 = 20/80) was charged into a lined reactor and subjected to a thermite reaction at Q = 700 Kcal/Kg to produce a 65V-35Al alloy. The composition of the resulting product and slag was
Shown in the table. The V yield was extremely high at 99.2%. The surface properties were also good.
【表】【table】
【表】
実施例 2
下掲第3表に示す材料を実施例1と同じ反応炉
に装入し、Q=750Kcal/Kgでテルミツト反応さ
せ85V―15Al合金を製造した。
得られた生成物、スラグの組成を第4表に示
す。V歩留は98.4%と高い値を示した。また表面
清浄度も良好であつた。[Table] Example 2 The materials shown in Table 3 below were charged into the same reactor as in Example 1, and subjected to a thermite reaction at Q=750Kcal/Kg to produce an 85V-15Al alloy. The composition of the obtained product, slag, is shown in Table 4. The V yield was as high as 98.4%. The surface cleanliness was also good.
【表】【table】
第1図はV2O5鉱石の粒径とV歩留との関係を
示すグラフ、第2図はスラグ組成とスラグ中
V2O5との関係を示すグラフ、第3図はQ値とV
歩留との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the grain size of V 2 O 5 ore and the V yield, and Figure 2 is a graph showing the relationship between the slag composition and the V yield in the slag.
A graph showing the relationship between V 2 O 5 and Figure 3 is the Q value and V
It is a graph showing the relationship with yield.
Claims (1)
で且つ1mm以下が5〜50wt%となるように調整
し、これにスラグ組成比がCaO/(CaO+
Al2O3)=0.1〜0.3になるように造滓剤を配合し、
更に還元剤としてAl粉末を添加し、反応炉にお
いて下記定義するQ=600〜800Kcal/Kgでテル
ミツト反応させることを特徴とするV=60〜90
%、Al=40〜10%を含有するV―Al合金の製造
方法。 Q=テルミツト反応熱(Kcal)/(Al粉末+五酸化バ
ナジウム鉱石+造滓剤)の重量(Kg)[Claims] 1. Vanadium pentoxide ore is adjusted so that the ore size is 20 mm or less and the ore size is 5 to 50 wt%, and the slag composition ratio is CaO/(CaO +
Add a sludge forming agent so that Al 2 O 3 ) = 0.1 to 0.3,
Furthermore, Al powder is added as a reducing agent, and thermite reaction is carried out in a reactor at Q=600 to 800 Kcal/Kg defined below, V=60 to 90.
%, a method for producing a V-Al alloy containing Al=40 to 10%. Q = Thermite reaction heat (Kcal) / Weight of (Al powder + vanadium pentoxide ore + slag forming agent) (Kg)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21468985A JPS6277432A (en) | 1985-09-30 | 1985-09-30 | Manufacture of v-al alloy containing 60-90% v and 40-10% al |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21468985A JPS6277432A (en) | 1985-09-30 | 1985-09-30 | Manufacture of v-al alloy containing 60-90% v and 40-10% al |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6277432A JPS6277432A (en) | 1987-04-09 |
JPH0115571B2 true JPH0115571B2 (en) | 1989-03-17 |
Family
ID=16659961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21468985A Granted JPS6277432A (en) | 1985-09-30 | 1985-09-30 | Manufacture of v-al alloy containing 60-90% v and 40-10% al |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6277432A (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01165731A (en) * | 1987-12-22 | 1989-06-29 | Nkk Corp | Manufacture of v-al alloy |
CN102031402A (en) * | 2011-01-06 | 2011-04-27 | 攀钢集团钢铁钒钛股份有限公司 | Preparation method of vanadium-aluminum alloy |
CN104195399B (en) * | 2014-09-12 | 2016-06-08 | 江苏圣亚有色金属材料有限公司 | A kind of high purity vanadium aluminium alloy and preparation method thereof |
CN110331321A (en) * | 2019-07-31 | 2019-10-15 | 江苏美特林科特殊合金股份有限公司 | A kind of aluminium vanadium intermediate alloy and preparation method thereof |
CN110819834A (en) * | 2019-11-20 | 2020-02-21 | 河钢股份有限公司承德分公司 | Preparation method of vanadium-aluminum alloy and reactor |
CN111549224B (en) * | 2020-06-10 | 2021-09-28 | 攀钢集团研究院有限公司 | Method for improving quality of AlV55 alloy finished product |
CN111519077A (en) * | 2020-06-10 | 2020-08-11 | 攀钢集团研究院有限公司 | Method for improving yield of AlV55 alloy |
CN111647765A (en) * | 2020-06-10 | 2020-09-11 | 攀钢集团研究院有限公司 | Method for improving apparent mass of AlV55 alloy |
CN112080660A (en) * | 2020-09-28 | 2020-12-15 | 攀钢集团研究院有限公司 | Preparation method of low-impurity AlV55 alloy |
CN113957274A (en) * | 2021-09-24 | 2022-01-21 | 攀钢集团攀枝花钢铁研究院有限公司 | Vanadium-aluminum alloy and preparation method thereof |
CN114411033B (en) * | 2021-12-20 | 2022-11-22 | 中色(宁夏)东方集团有限公司 | Vanadium-aluminum alloy and preparation method thereof |
CN116287804A (en) * | 2023-03-20 | 2023-06-23 | 承德天大钒业有限责任公司 | Vanadium-aluminum alloy and preparation method thereof |
-
1985
- 1985-09-30 JP JP21468985A patent/JPS6277432A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6277432A (en) | 1987-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0115571B2 (en) | ||
US3625676A (en) | Vanadium-aluminum-titanium master alloys | |
JPH01165731A (en) | Manufacture of v-al alloy | |
US2481599A (en) | Alloy addition agent | |
JPS61264143A (en) | Manufacture of aluminum-vanadium mother alloy for use in manufacture of titanium alloy | |
US3304175A (en) | Nitrogen-containing alloy and its preparation | |
US3801311A (en) | Method of introducing rare earth metals into addition alloys | |
US4581065A (en) | Process for the metallo-thermic reduction of beryllium oxide, beryllium minerals, as well as mixtures of beryllium containing metal oxides | |
US2616797A (en) | Alloy for the preparation of titanium-boron steel | |
US4581203A (en) | Process for the manufacture of ferrosilicon or silicon alloys containing strontium | |
US2653867A (en) | Reduction of metal oxides | |
RU2206628C2 (en) | Charge for production of nitrogen-containing master alloys on base of refractory metals | |
RU2549820C1 (en) | Method for aluminothermic obtainment of ferroalloys | |
JPS59208050A (en) | Manufacture of ferrotitanium | |
JPS62158835A (en) | Refining method for al-li alloy | |
US2631936A (en) | Process for the production of a ferrochrome-silicon-aluminum alloy | |
US3930842A (en) | Method of producing alloys based on calcium, silicon and iron | |
JPS62170438A (en) | Manufacture of metallic vanadium | |
KR900700387A (en) | Method of producing Sic, MnC and ferroalloy | |
SU1759891A1 (en) | Charge for processing scrap of alloy steel and alloys | |
SU1548237A1 (en) | Alloy for deoxidizing and alloying steel | |
SU1211299A1 (en) | Method of producing aluminium cast iron with compact graphite | |
JPH07252518A (en) | Method for raising temperature of molten steel and temperature raising agent | |
Ikornikov et al. | MILL SCALE WASTE REPROCESSING BY CENTRIFUGAL METALLOTHERMIC SHS FOR PRODUCTION OF CAST FERROALLOYS Fe−(Si; Si–Al; B; B–Al) | |
JPS6011099B2 (en) | Production method of low phosphorus manganese ferroalloy |