JPH0115571B2 - - Google Patents

Info

Publication number
JPH0115571B2
JPH0115571B2 JP21468985A JP21468985A JPH0115571B2 JP H0115571 B2 JPH0115571 B2 JP H0115571B2 JP 21468985 A JP21468985 A JP 21468985A JP 21468985 A JP21468985 A JP 21468985A JP H0115571 B2 JPH0115571 B2 JP H0115571B2
Authority
JP
Japan
Prior art keywords
slag
ore
yield
cao
thermite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21468985A
Other languages
Japanese (ja)
Other versions
JPS6277432A (en
Inventor
Toshio Kamaya
Toshio Nayuki
Chiaki Oochi
Kenji Takahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP21468985A priority Critical patent/JPS6277432A/en
Publication of JPS6277432A publication Critical patent/JPS6277432A/en
Publication of JPH0115571B2 publication Critical patent/JPH0115571B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明はチタン合金の母合金として使用され
るV―Al合金の製造方法に関する。 〔従来の技術〕 チタン合金用のV―Al母合金の製造方法とし
てAlテルミツト法と電気炉法が知られているが、
工業的にはAlテルミツト法が一般的に実施され
ている。 Alテルミツト法は、テルミツト炉に原材料で
ある五酸化バナジウム鉱石(V2O5)と還元剤と
してAl粉末及び造滓剤を装入し、大気中でテル
ミツト反応させる方法であり、その反応は、 V2O5+10/3Al+2α・Al →2〔V1・Alα〕+5/3Al2O3−Q <ここで、α=0.20〜1.26> となる。 テルミツト反応炉として、水冷式Cuルツボを
使う方法と、内面にセラミツクス・ライニング材
を施した鋼製炉体を使う方法があるが、Cuルツ
ボ法はライニングが不要で合金へのライニング材
汚染がない利点がある反面、生産規模を大きくす
ることができず製造コストの低減が図れない欠点
があるため、セラミツクス・ライニング材法が最
も一般的に用いられている。 ところで上記したテルミツト反応によるV―
Al合金の製造法においては、合金の清浄度と歩
留に大きな問題があつた。即ち、V―Al合金の
ガス溶解度が液体と固体で大きな差があるため、
特に溶融メタルが凝固する時に大量のガスを放出
し、メタル上面に縦に亀裂が走り、且つ多数の気
孔が発生し、メタル上面の清浄度が悪化する問題
がある。 また、スラグとV2O5との親和力が強いため、
スラグ中のV2O5濃度が数%に達し、V2O5の〔メ
タル/スラグ〕移行比が低下するため、メタル中
のV歩留が低下する問題がある。 〔発明の概要〕 本発明は上記した従来の問題点を解決するため
になされたもので、メタルの清浄度と歩留とを向
上し得る製造方法を提供しようとするものであ
る。この目的のために本発明は、V=60〜90%,
Al=40〜10%を含有するV―Al合金を製造する
に当り、五酸化バナジウム鉱石を鉱石サイズ20mm
以下で且つ1mm以下が5〜50wt%となるように
調整し、これにスラグ組成がCaO=10〜30wt%,
Al2O3=90〜70wt%で且つ組成比がCaO/(CaO
+Al2O3)=0.1〜0.3になるように造滓剤を配合
し、更に還元剤としてAl粉末を添加し、反応炉
において下記定義するQ=600〜800Kcal/Kgで
テルミツト反応させることを基本的な特徴とする
ものである。 Q=テルミツト反応熱(Kcal)/(Al粉末+五酸化バ
ナジウム鉱石+造滓剤)の重量(Kg) ここで本発明においては、V―Al合金として
V=60〜90%、Al=40〜10%のものを対象とす
る。本発明者らの知見によれば、メタル凝固時の
ガス放出量とV―Al合金組成との関係でV%が
50%から100%に増加するにつれ、O2,N2等のガ
ス放出量が減少する。またV中のAl%が0から
50%に増加するにつれ、スラグ中のV2O5が7%
から0.5%に減少する。このような知見からメタ
ル清浄度をおとさない範囲のガス放出量で且つス
ラグ中のV2O5%を低減できるV―Al合金組成を
選び、V=60〜90%、Al=40〜10%合金を対象
としたものである。 第1図はV2O5鉱石の粒径とV歩留との関係を
示すグラフである。粒径は細かいほど還元剤との
接触面積が拡大し、テルミツト反応が迅速に起こ
り、未反応原料ロスを小さくすることができ、V
歩留を向上させる。このグラフからわかるように
粒径20mm以下で且つ粒径1mm以下が50%で歩留向
上は飽和しはじめるが、あまり粒径を細かくする
とそのための製造コストが大きくなるため、本発
明においてはほぼ歩留90%以上を確保し得る粒径
20mm以下でなおかつ粒径1mm以下のものが5〜
50wt%の範囲に調整するものとする。 またV歩留を向上させるためには、スラグ中へ
のV2O5移行量を低下させ、V2O5が還元されてメ
タル中へVが移行するようにすることが大切であ
る。第2図はスラグ組成とスラグ中のV2O5(%)
との関係を示すもので、CaO/CaO+Al2O3=0.2 近 傍でスラグ中V2O5が最も低下することがわかる。
そこで本発明ではスラグ組成比がCaO/CaO+Al2O3 =0.1〜0.3となるように造滓剤を配合するものと
する。 なお、CaOは添加に際して粒径5mm以下に調整
するのが望ましい。また造滓剤として上記スラグ
単体或はスラグとCaOを混合して用いる等種々態
様が可能である。 更に本発明においては、テルミツト反応に際し
てのQ値をQ=600〜800Kcal/Kgと限定する。
ここでQ値は次のように定義される。 Q=テルミツト反応熱(Kcal)/(Al粉末+五酸化バ
ナジウム鉱石+造滓剤)の重量(Kg) Q値をこの範囲とすれば、反応熱量が最適な範
囲に選ばれ、爆発的なテルミツト反応が抑制さ
れ、原料と生成物の飛散ロスを抑制できる。この
Q値とV歩留の関係を第3図に示す。Q=600〜
800Kcal/KgとすればV歩留を向上し得ることが
わかる。 なお、テルミツト反応炉のライニング材として
は種々のものが使用可能であるが、上記した組成
比のV―Alスラグを用いるとライニング材と反
応メタルの分離が良く、両者間の反応が抑制され
V歩留が向上する。これを下掲表に示す。
[Industrial Application Field] The present invention relates to a method for producing a V-Al alloy used as a master alloy for titanium alloys. [Prior art] Al thermite method and electric furnace method are known as methods for producing V-Al master alloys for titanium alloys.
Industrially, the Al thermite method is commonly practiced. The Al thermite method is a method in which a thermite furnace is charged with vanadium pentoxide ore (V 2 O 5 ) as a raw material, Al powder and a slag-forming agent as a reducing agent, and a thermite reaction is performed in the atmosphere. V 2 O 5 +10/3Al+2α・Al →2[V 1・Alα]+5/3Al 2 O 3 −Q <Here, α=0.20 to 1.26>. There are two methods of thermite reactor: one is to use a water-cooled Cu crucible, and the other is to use a steel furnace body with a ceramic lining on the inside. However, the Cu crucible method does not require lining and there is no contamination of the lining material on the alloy. Although it has advantages, it has the disadvantage that it cannot increase the production scale and reduce manufacturing costs, so the ceramic lining method is most commonly used. By the way, V- due to the thermite reaction mentioned above
In the manufacturing method of Al alloy, there were major problems with the cleanliness and yield of the alloy. In other words, since there is a large difference in gas solubility of V-Al alloy between liquid and solid,
In particular, when the molten metal solidifies, it emits a large amount of gas, causing vertical cracks to run on the upper surface of the metal, and a large number of pores, which deteriorates the cleanliness of the upper surface of the metal. In addition, due to the strong affinity between slag and V 2 O 5 ,
Since the V 2 O 5 concentration in the slag reaches several percent and the V 2 O 5 [metal/slag] transfer ratio decreases, there is a problem that the V yield in the metal decreases. [Summary of the Invention] The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a manufacturing method that can improve the cleanliness and yield of metal. For this purpose, the present invention provides V=60-90%,
In producing V-Al alloy containing Al = 40-10%, vanadium pentoxide ore is used to produce ore size 20 mm.
The slag composition is adjusted so that CaO=10-30wt%,
Al 2 O 3 = 90 to 70 wt% and the composition ratio is CaO/(CaO
+Al 2 O 3 ) = 0.1 to 0.3, add Al powder as a reducing agent, and perform a thermite reaction in a reactor at Q = 600 to 800 Kcal/Kg as defined below. This is a unique feature. Q = Thermite reaction heat (Kcal) / Weight of (Al powder + vanadium pentoxide ore + slag forming agent) (Kg) Here, in the present invention, as a V-Al alloy, V = 60 to 90%, Al = 40 to Targets 10%. According to the findings of the present inventors, V% is determined by the relationship between the amount of gas released during metal solidification and the V-Al alloy composition.
As the amount increases from 50% to 100%, the amount of gases such as O 2 and N 2 released decreases. Also, Al% in V is from 0 to
As V2O5 in the slag increases to 7% as it increases to 50%
decrease from 0.5% to 0.5%. Based on this knowledge, we selected a V-Al alloy composition that can reduce V 2 O 5 % in slag while having a gas emission amount that does not impair metal cleanliness. V = 60 to 90%, Al = 40 to 10%. It targets alloys. FIG. 1 is a graph showing the relationship between the particle size of V 2 O 5 ore and the V yield. The finer the particle size, the larger the contact area with the reducing agent, the faster the thermite reaction occurs, and the loss of unreacted raw materials can be reduced.
Improve yield. As can be seen from this graph, the improvement in yield begins to be saturated when the particle size is 20 mm or less and 50% is 1 mm or less, but if the particle size is made too small, the manufacturing cost increases, so in the present invention, the yield improvement is almost saturated. Particle size that ensures retention of 90% or more
5 to 20 mm or less with a particle size of 1 mm or less
It shall be adjusted to a range of 50wt%. Furthermore, in order to improve the V yield, it is important to reduce the amount of V 2 O 5 transferred into the slag so that the V 2 O 5 is reduced and V is transferred into the metal. Figure 2 shows the slag composition and V 2 O 5 (%) in the slag.
It can be seen that V 2 O 5 in the slag decreases the most when CaO/CaO + Al 2 O 3 = 0.2.
Therefore, in the present invention, the slag forming agent is blended so that the slag composition ratio is CaO/CaO+Al 2 O 3 =0.1 to 0.3. Note that when adding CaO, it is desirable to adjust the particle size to 5 mm or less. Further, various embodiments are possible, such as using the above-mentioned slag alone or a mixture of slag and CaO as the slag forming agent. Further, in the present invention, the Q value during the thermite reaction is limited to Q=600 to 800 Kcal/Kg.
Here, the Q value is defined as follows. Q = heat of thermite reaction (Kcal) / weight of (Al powder + vanadium pentoxide ore + slag-forming agent) (Kg) If the Q value is in this range, the reaction heat will be selected in the optimal range, and explosive thermite will be produced. Reactions are suppressed, and scattering loss of raw materials and products can be suppressed. The relationship between this Q value and V yield is shown in FIG. Q=600~
It can be seen that the V yield can be improved by setting it to 800 Kcal/Kg. Various materials can be used as the lining material for the thermite reactor, but when V-Al slag with the above-mentioned composition ratio is used, the lining material and the reaction metal are separated well, and the reaction between the two is suppressed. Yield is improved. This is shown in the table below.

〔実施例〕〔Example〕

実施例 1 下掲第1表に示す原料を、V―Alスラグ/
CaO/Al2O3=20/80)をライニングした反応炉
に投入し、Q=700Kcal/Kgでテルミツト反応さ
せ、65V−35Al合金を製造した。 その結果得られた生成物とスラグの組成を第2
表に示す。V歩留は99.2%と非常に高い値を示し
た。また表面性状も良好であつた。
Example 1 The raw materials shown in Table 1 below were mixed into V-Al slag/
CaO/Al 2 O 3 = 20/80) was charged into a lined reactor and subjected to a thermite reaction at Q = 700 Kcal/Kg to produce a 65V-35Al alloy. The composition of the resulting product and slag was
Shown in the table. The V yield was extremely high at 99.2%. The surface properties were also good.

【表】【table】

【表】 実施例 2 下掲第3表に示す材料を実施例1と同じ反応炉
に装入し、Q=750Kcal/Kgでテルミツト反応さ
せ85V―15Al合金を製造した。 得られた生成物、スラグの組成を第4表に示
す。V歩留は98.4%と高い値を示した。また表面
清浄度も良好であつた。
[Table] Example 2 The materials shown in Table 3 below were charged into the same reactor as in Example 1, and subjected to a thermite reaction at Q=750Kcal/Kg to produce an 85V-15Al alloy. The composition of the obtained product, slag, is shown in Table 4. The V yield was as high as 98.4%. The surface cleanliness was also good.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図はV2O5鉱石の粒径とV歩留との関係を
示すグラフ、第2図はスラグ組成とスラグ中
V2O5との関係を示すグラフ、第3図はQ値とV
歩留との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the grain size of V 2 O 5 ore and the V yield, and Figure 2 is a graph showing the relationship between the slag composition and the V yield in the slag.
A graph showing the relationship between V 2 O 5 and Figure 3 is the Q value and V
It is a graph showing the relationship with yield.

Claims (1)

【特許請求の範囲】 1 五酸化バナジウム鉱石を鉱石サイズ20mm以下
で且つ1mm以下が5〜50wt%となるように調整
し、これにスラグ組成比がCaO/(CaO+
Al2O3)=0.1〜0.3になるように造滓剤を配合し、
更に還元剤としてAl粉末を添加し、反応炉にお
いて下記定義するQ=600〜800Kcal/Kgでテル
ミツト反応させることを特徴とするV=60〜90
%、Al=40〜10%を含有するV―Al合金の製造
方法。 Q=テルミツト反応熱(Kcal)/(Al粉末+五酸化バ
ナジウム鉱石+造滓剤)の重量(Kg)
[Claims] 1. Vanadium pentoxide ore is adjusted so that the ore size is 20 mm or less and the ore size is 5 to 50 wt%, and the slag composition ratio is CaO/(CaO +
Add a sludge forming agent so that Al 2 O 3 ) = 0.1 to 0.3,
Furthermore, Al powder is added as a reducing agent, and thermite reaction is carried out in a reactor at Q=600 to 800 Kcal/Kg defined below, V=60 to 90.
%, a method for producing a V-Al alloy containing Al=40 to 10%. Q = Thermite reaction heat (Kcal) / Weight of (Al powder + vanadium pentoxide ore + slag forming agent) (Kg)
JP21468985A 1985-09-30 1985-09-30 Manufacture of v-al alloy containing 60-90% v and 40-10% al Granted JPS6277432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21468985A JPS6277432A (en) 1985-09-30 1985-09-30 Manufacture of v-al alloy containing 60-90% v and 40-10% al

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21468985A JPS6277432A (en) 1985-09-30 1985-09-30 Manufacture of v-al alloy containing 60-90% v and 40-10% al

Publications (2)

Publication Number Publication Date
JPS6277432A JPS6277432A (en) 1987-04-09
JPH0115571B2 true JPH0115571B2 (en) 1989-03-17

Family

ID=16659961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21468985A Granted JPS6277432A (en) 1985-09-30 1985-09-30 Manufacture of v-al alloy containing 60-90% v and 40-10% al

Country Status (1)

Country Link
JP (1) JPS6277432A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165731A (en) * 1987-12-22 1989-06-29 Nkk Corp Manufacture of v-al alloy
CN102031402A (en) * 2011-01-06 2011-04-27 攀钢集团钢铁钒钛股份有限公司 Preparation method of vanadium-aluminum alloy
CN104195399B (en) * 2014-09-12 2016-06-08 江苏圣亚有色金属材料有限公司 A kind of high purity vanadium aluminium alloy and preparation method thereof
CN110331321A (en) * 2019-07-31 2019-10-15 江苏美特林科特殊合金股份有限公司 A kind of aluminium vanadium intermediate alloy and preparation method thereof
CN110819834A (en) * 2019-11-20 2020-02-21 河钢股份有限公司承德分公司 Preparation method of vanadium-aluminum alloy and reactor
CN111549224B (en) * 2020-06-10 2021-09-28 攀钢集团研究院有限公司 Method for improving quality of AlV55 alloy finished product
CN111519077A (en) * 2020-06-10 2020-08-11 攀钢集团研究院有限公司 Method for improving yield of AlV55 alloy
CN111647765A (en) * 2020-06-10 2020-09-11 攀钢集团研究院有限公司 Method for improving apparent mass of AlV55 alloy
CN112080660A (en) * 2020-09-28 2020-12-15 攀钢集团研究院有限公司 Preparation method of low-impurity AlV55 alloy
CN113957274A (en) * 2021-09-24 2022-01-21 攀钢集团攀枝花钢铁研究院有限公司 Vanadium-aluminum alloy and preparation method thereof
CN114411033B (en) * 2021-12-20 2022-11-22 中色(宁夏)东方集团有限公司 Vanadium-aluminum alloy and preparation method thereof
CN116287804A (en) * 2023-03-20 2023-06-23 承德天大钒业有限责任公司 Vanadium-aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS6277432A (en) 1987-04-09

Similar Documents

Publication Publication Date Title
JPH0115571B2 (en)
US3625676A (en) Vanadium-aluminum-titanium master alloys
JPH01165731A (en) Manufacture of v-al alloy
US2481599A (en) Alloy addition agent
JPS61264143A (en) Manufacture of aluminum-vanadium mother alloy for use in manufacture of titanium alloy
US3304175A (en) Nitrogen-containing alloy and its preparation
US3801311A (en) Method of introducing rare earth metals into addition alloys
US4581065A (en) Process for the metallo-thermic reduction of beryllium oxide, beryllium minerals, as well as mixtures of beryllium containing metal oxides
US2616797A (en) Alloy for the preparation of titanium-boron steel
US4581203A (en) Process for the manufacture of ferrosilicon or silicon alloys containing strontium
US2653867A (en) Reduction of metal oxides
RU2206628C2 (en) Charge for production of nitrogen-containing master alloys on base of refractory metals
RU2549820C1 (en) Method for aluminothermic obtainment of ferroalloys
JPS59208050A (en) Manufacture of ferrotitanium
JPS62158835A (en) Refining method for al-li alloy
US2631936A (en) Process for the production of a ferrochrome-silicon-aluminum alloy
US3930842A (en) Method of producing alloys based on calcium, silicon and iron
JPS62170438A (en) Manufacture of metallic vanadium
KR900700387A (en) Method of producing Sic, MnC and ferroalloy
SU1759891A1 (en) Charge for processing scrap of alloy steel and alloys
SU1548237A1 (en) Alloy for deoxidizing and alloying steel
SU1211299A1 (en) Method of producing aluminium cast iron with compact graphite
JPH07252518A (en) Method for raising temperature of molten steel and temperature raising agent
Ikornikov et al. MILL SCALE WASTE REPROCESSING BY CENTRIFUGAL METALLOTHERMIC SHS FOR PRODUCTION OF CAST FERROALLOYS Fe−(Si; Si–Al; B; B–Al)
JPS6011099B2 (en) Production method of low phosphorus manganese ferroalloy