JP2002180145A - Method for producing high purity metallic vanadium - Google Patents

Method for producing high purity metallic vanadium

Info

Publication number
JP2002180145A
JP2002180145A JP2000375549A JP2000375549A JP2002180145A JP 2002180145 A JP2002180145 A JP 2002180145A JP 2000375549 A JP2000375549 A JP 2000375549A JP 2000375549 A JP2000375549 A JP 2000375549A JP 2002180145 A JP2002180145 A JP 2002180145A
Authority
JP
Japan
Prior art keywords
vanadium
hydrogen
metal
reduction
vanadium pentoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000375549A
Other languages
Japanese (ja)
Inventor
Yoshiyo Hashiguchi
佳代 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000375549A priority Critical patent/JP2002180145A/en
Publication of JP2002180145A publication Critical patent/JP2002180145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method for obtaining high purity vanadium and the powder thereof at a low cost. SOLUTION: In the method for obtaining metallic vanadium by reducing vanadium pentoxide, at first, vanadium pentoxide as the raw material is heated in the coexistence of hydrogen and is reduced into lower oxide such as vanadium trioxide and vanadium monoxide. The obtained lower oxide is mixed with calcium or magnesium, and the mixture is heated at <=690 deg.C to cause a reduction reaction, and, from the obtained reduced product, metallic vanadium is separated and recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金の原
料となる高純度バナジウムおよびその粉末を低コストで
得るための製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity vanadium used as a raw material of a hydrogen storage alloy and a method for producing the powder at a low cost.

【0002】[0002]

【従来の技術】水素吸蔵合金は将来石油代替エネルギー
として注目されている水素エネルギーの貯蔵タンクや自
動車用ニッケル水素電池の負極材として、現在多くの機
関において研究されている。この中でバナジウムは理論
水素吸蔵量が3.8wt%と非常に高く、室温で水素を
吸放出できることから、現在主流のLaNi5系合金に
変わりうる合金系として期待されている。
2. Description of the Related Art Hydrogen storage alloys are currently being studied by many organizations as storage tanks for hydrogen energy, which are attracting attention as an alternative to petroleum energy, and as anode materials for nickel-metal hydride batteries for automobiles. Of these, vanadium has a very high theoretical hydrogen storage capacity of 3.8 wt% and can absorb and release hydrogen at room temperature, and is therefore expected to be an alloy system that can be replaced with the current mainstream LaNi5 alloy.

【0003】水素吸蔵合金としてバナジウムを用いる場
合にはその不純物が問題となる。すなわちバナジウム中
の酸素やアルミニウムはその水素吸蔵量を大幅に低下さ
せることが知られている。よって、水素吸蔵合金として
バナジウムを用いる場合には高純度の金属バナジウムが
必要となる。しかし、金属バナジウムは高純度化がもっ
とも難しいものの1つであることは良く知られている。
[0003] When vanadium is used as a hydrogen storage alloy, its impurity becomes a problem. That is, it is known that oxygen and aluminum in vanadium greatly reduce the hydrogen storage capacity. Therefore, when vanadium is used as the hydrogen storage alloy, high-purity metal vanadium is required. However, it is well known that metal vanadium is one of the most difficult to purify.

【0004】従来、金属バナジウムは、まず五酸化バナ
ジウムと、アルミニウムとを混合し、得た混合物を耐火
坩堝中に入れ、坩堝ごと加熱炉内で加熱して、外部より
混合物に点火してテルミット反応を起こさせて得てい
る。得られた金属バナジウムは、テルミット反応で用い
たアルミニウムや酸素等の多くの不純物を含むため、電
子ビーム溶解法等により金属バナジウムを溶解凝固する
ことを繰り返して高純度化していた。このようにして高
純度バナジウムは得られるため、非常に高価なものとな
らざるを得なかった。こうして得られた金属バナジウム
を用いて水素吸蔵用合金を得るためには、金属バナジウ
ムを粉末とする必要があるが、これもまた価格を上昇さ
せる原因となっていた。
Conventionally, vanadium metal has been prepared by first mixing vanadium pentoxide and aluminum, placing the resulting mixture in a refractory crucible, heating the entire crucible in a heating furnace, igniting the mixture from the outside, and performing a thermite reaction. To get it up. Since the obtained metal vanadium contains many impurities such as aluminum and oxygen used in the thermite reaction, the metal vanadium was repeatedly purified by repeatedly dissolving and solidifying the metal vanadium by an electron beam melting method or the like. Since high-purity vanadium can be obtained in this way, it must be very expensive. In order to obtain a hydrogen storage alloy using the metal vanadium thus obtained, it is necessary to make the metal vanadium into a powder, which also increases the price.

【0005】これらの問題を幾ばくかでも改善する手段
として、アルミニウムの代わりにカルシウムやマグネシ
ウムを用いることが検討されているが、これらの金属は
蒸気圧がアルミニウムと比べて高く突沸しやすく、大気
開放下で還元操作を行うと、還元熱により蒸気が飛散し
て還元できず、気密容器内で行うと容器内部が高圧とな
り爆発の危険性があること等の理由により五酸化バナジ
ウムをこれらの金属のみで還元することは非常に困難で
あった。
[0005] As a means of improving these problems to some extent, the use of calcium or magnesium instead of aluminum has been studied. However, these metals have a higher vapor pressure than aluminum and are more likely to bump, and are open to the atmosphere. If the reduction operation is performed under the following conditions, steam will be scattered by the reduction heat and cannot be reduced, and if performed in an airtight container, the inside of the container will be at a high pressure and there is a danger of explosion. Was very difficult to reduce.

【0006】なお、水素ガス中でV205を加熱還元し
てもV20までしか還元されず目的とする金属バナジウ
ムは得られないことは既に知られたことである。
It is already known that even if V205 is reduced by heating in hydrogen gas, only V20 is reduced and the target metal vanadium cannot be obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は高純度バナジ
ウムおよびその粉末を低コストで得る新規な方法の提供
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel method for obtaining high-purity vanadium and its powder at low cost.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記従来技
術の問題を解決するために種々の検討を試みた結果、還
元を二段に分けることによりより安価に高純度の金属バ
ナジウムが得られることを見いだして本発明に至った。
The inventors of the present invention have made various investigations to solve the above-mentioned problems of the prior art, and as a result, it was possible to obtain a high-purity metal vanadium at a lower cost by dividing the reduction into two stages. The present invention has been found.

【0009】すなわち、上記課題を解決する本発明は、
五酸化バナジウムを還元して金属バナジウムを得る方法
において、まず原料となる五酸化バナジウムを水素共存
下で加熱して三酸化二バナジウムや一酸化一バナジウム
等の低級酸化物に還元し、得た低級酸化物をカルシウム
やマグネシウムと混合し、加熱して還元反応を起こさ
せ、得た還元生成物より金属バナジウムを分離回収する
ものである。
[0009] That is, the present invention for solving the above-mentioned problems,
In the method of reducing vanadium pentoxide to obtain metal vanadium, first, vanadium pentoxide as a raw material is heated in the presence of hydrogen to reduce it to a lower oxide such as divanadium trioxide or vanadium monoxide. The oxide is mixed with calcium or magnesium, heated to cause a reduction reaction, and metal vanadium is separated and recovered from the obtained reduction product.

【0010】なお、本発明において水素共存下で五酸化
バナジウムを加熱還元するに際して、690℃以下で加
熱して五酸化バナジウムを三酸化二バナジウムとするこ
とが好ましい。
In the present invention, when the vanadium pentoxide is reduced by heating in the coexistence of hydrogen, it is preferable that the vanadium pentoxide is heated to 690 ° C. or less to convert the vanadium pentoxide to divanadium trioxide.

【0011】[0011]

【発明の実施の形態】本発明で用いる五酸化バナジウム
の純度は特に規定されないが、水素吸蔵合金として用い
る場合の純度を考慮するとなるべく高純度のものが望ま
しい。また水素気流中で加熱する温度も特に規定されな
いが、粉末状の高純度バナジウムを得るためには、五酸
化バナジウムの融点690℃以下で加熱することが好ま
しい。ただし、一旦五酸化バナジウムが三酸化二バナジ
ウムに還元された後はこの温度以上に加熱して反応を促
進させることが可能である。というのは、三酸化二バナ
ジウムはその融点が1970℃と高温だからである。
BEST MODE FOR CARRYING OUT THE INVENTION The purity of vanadium pentoxide used in the present invention is not particularly limited, but is preferably as high as possible in consideration of the purity when used as a hydrogen storage alloy. The temperature for heating in a hydrogen stream is not particularly limited, but it is preferable to heat at a melting point of 690 ° C. or less of vanadium pentoxide in order to obtain powdery high-purity vanadium. However, once vanadium pentoxide has been reduced to divanadium trioxide, the reaction can be promoted by heating to above this temperature. This is because the melting point of vanadium trioxide is as high as 1970 ° C.

【0012】本発明において、還元反応を二段とするの
は、一段目の還元で五酸化バナジウムより高融点の低級
酸化物を得、これを用いてカルシウムやマグネシウムを
用たテルミット反応によりバナジウムに還元することに
より、五酸化バナジウムをカルシウムやマグネシウムと
直接テルミット反応により還元するより、効率よく金属
バナジウムに還元できるからである。
In the present invention, the two-stage reduction reaction is performed by obtaining a lower oxide having a higher melting point than vanadium pentoxide in the first stage reduction, and using this to form a vanadium by a thermite reaction using calcium or magnesium. This is because by reducing, vanadium pentoxide can be more efficiently reduced to metal vanadium than by directly reducing the vanadium pentoxide with calcium or magnesium by a thermite reaction.

【0013】反応終了後、反応生成物の酸化カルシウム
や酸化マグネシウム、未反応のカルシウムやマグネシウ
ムは水、あるいは弱酸性溶液で洗浄することにより効率
よく除去できる。この結果、アルミを用いた場合より容
易に高純度の金属バナジウム粉末を得ることができ、電
子ビームを用いて溶解、凝固を繰り返す精製工程や、精
製工程で得た凝固物の粉砕工程は不要となる。
After completion of the reaction, the reaction products calcium oxide and magnesium oxide and unreacted calcium and magnesium can be efficiently removed by washing with water or a weakly acidic solution. As a result, high-purity metal vanadium powder can be obtained more easily than in the case of using aluminum, and it is not necessary to perform the refining process of repeating melting and solidification using an electron beam, and the crushing process of the coagulated material obtained in the refining process. Become.

【0014】[0014]

【実施例】(実施例1)五酸化バナジウム粉末100g
を100ml/minで流れる水素気流中で表1に示す
温度、時間で水素還元した後試料を取り出し、Ca 8
0gと混合しマグネシアルツボの中に入れた。
EXAMPLES (Example 1) 100 g of vanadium pentoxide powder
Was reduced at a temperature and for a time shown in Table 1 in a hydrogen stream flowing at 100 ml / min, and a sample was taken out.
0 g and placed in a magnetic crucible.

【0015】これをさらに蓋付きのステンレス容器内に
入れ、Ar気流中で表1に示した条件で加熱した。得ら
れた還元物を、水洗液が中性になるまで水洗した。固液
分離後還元生成物である金属バナジウムの不純物分析を
行った。その結果を生成物の形態とともに表1に示し
た。
This was further placed in a stainless steel container with a lid, and heated in an Ar gas stream under the conditions shown in Table 1. The obtained reduced product was washed with water until the washing liquid became neutral. After solid-liquid separation, impurities of metallic vanadium, which is a reduction product, were analyzed. The results are shown in Table 1 together with the product morphology.

【0016】(実施例2)Caの代わりにMg 49g
を用いたこと、得られた還元物を、水洗液が中性になる
まで1N塩酸溶液で洗浄したこと以外は実施例1と同様
にして金属バナジウムを得た。固液分離後還元生成物で
ある金属バナジウムの不純物分析を行った。その結果を
生成物の形態とともに表1に示した。
Example 2 Instead of Ca, 49 g of Mg
Was used and a vanadium metal was obtained in the same manner as in Example 1 except that the obtained reduced product was washed with a 1N hydrochloric acid solution until the washing solution became neutral. After solid-liquid separation, impurities of metallic vanadium, which is a reduction product, were analyzed. The results are shown in Table 1 together with the product morphology.

【0017】(実施例3)水素還元条件を表1のよう
に、650℃で1時間加熱した後、800℃で2時間加
熱したこと、Ar中での加熱条件を1000℃、2hr
とした以外は実施例1と同様にして金属バナジウムを得
た。固液分離後還元生成物である金属バナジウムの不純
物分析を行った。その結果を生成物の形態とともに表1
に示した。
(Example 3) As shown in Table 1, the hydrogen reduction conditions were as follows: heating at 650 ° C. for 1 hour, then heating at 800 ° C. for 2 hours, and heating in Ar at 1000 ° C. for 2 hours.
Metal vanadium was obtained in the same manner as in Example 1 except that the above conditions were used. After solid-liquid separation, impurities of metallic vanadium, which is a reduction product, were analyzed. Table 1 shows the results together with the product morphology.
It was shown to.

【0018】(実施例4)水素還元条件を表1のよう
に、600℃で3時間加熱とし、Ca 40gと Mg
25gとを還元剤として使用したこと、Ar中での加熱
条件を1000℃、2hrとした以外は実施例2と同様
にして金属バナジウムを得た。固液分離後還元生成物で
ある金属バナジウムの不純物分析を行った。その結果を
生成物の形態とともに表1に示した。
Example 4 As shown in Table 1, the hydrogen reduction conditions were heating at 600 ° C. for 3 hours, and 40 g of Ca and Mg
Metal vanadium was obtained in the same manner as in Example 2 except that 25 g was used as a reducing agent, and the heating conditions in Ar were changed to 1000 ° C. and 2 hours. After solid-liquid separation, impurities of metallic vanadium, which is a reduction product, were analyzed. The results are shown in Table 1 together with the product morphology.

【0019】(実施例5)水素還元条件を表1のよう
に、650℃で1時間加熱とし、Mg 100gを還元
剤として使用したこと、Ar中での加熱条件を1000
℃、6hrとした以外は実施例2と同様にして金属バナ
ジウムを得た。固液分離後還元生成物である金属バナジ
ウムの不純物分析を行った。その結果を生成物の形態と
ともに表1に示した。
Example 5 As shown in Table 1, the hydrogen reduction conditions were heating at 650 ° C. for 1 hour, 100 g of Mg was used as a reducing agent, and the heating conditions in Ar were 1000
A metal vanadium was obtained in the same manner as in Example 2 except that the temperature was set to 6 ° C. After solid-liquid separation, impurities of metallic vanadium, which is a reduction product, were analyzed. The results are shown in Table 1 together with the product morphology.

【0020】(実施例6)Caの代わりにMg 49g
を蒸気にして用い、水素還元物をステンレス容器に、M
gをマグネシア容器と別容器としたこと、得られた還元
物を、水洗液が中性になるまで1N塩酸溶液で洗浄した
こと以外は実施例1と同様にして金属バナジウムを得
た。固液分離後還元生成物である金属バナジウムの不純
物分析を行った。その結果を生成物の形態とともに表1
に示した。
(Example 6) Mg 49 g instead of Ca
Is used as steam, the hydrogen reduced product is placed in a stainless steel container, and M
g was prepared separately from the magnesia container, and the obtained reduced product was washed with a 1N hydrochloric acid solution until the washing liquid became neutral, in the same manner as in Example 1 to obtain metal vanadium. After solid-liquid separation, impurities of metallic vanadium, which is a reduction product, were analyzed. Table 1 shows the results together with the product morphology.
It was shown to.

【0021】(比較例1)水素還元を行うことなくCa
110gと五酸化バナジウム100gとを混合し、外
部点火してテルミット反応を行った以外は実施例1と同
様にして反応生成物を得た。固液分離後還元生成物を調
べたところ金属バナジウムは生成していなかった。
(Comparative Example 1) Ca without hydrogen reduction
A reaction product was obtained in the same manner as in Example 1 except that 110 g and 100 g of vanadium pentoxide were mixed and externally ignited to carry out a thermite reaction. When the reduction product was examined after solid-liquid separation, no metal vanadium was produced.

【0022】(比較例2)水素還元を行うことなくAl
75gと五酸化バナジウム100gとを混合し、外部
点火してテルミット反応を行った。その後、得られた反
応生成物を1N塩酸溶液で水洗し、塊状の金属バナジウ
ムを得た。この金属バナジウムの不純物分析を行った。
その結果を生成物の形態とともに表1に示した。
Comparative Example 2 Al was reduced without performing hydrogen reduction.
75 g and 100 g of vanadium pentoxide were mixed and externally ignited to perform a thermite reaction. Thereafter, the obtained reaction product was washed with a 1N hydrochloric acid solution to obtain a massive metal vanadium. The impurity analysis of this metal vanadium was performed.
The results are shown in Table 1 together with the product morphology.

【0023】 表1 金属還元 不純物濃度/wt% 水素還元条件 元素 重量/g 加熱温度 酸素 還元金属 生成物 の形態 実施例1 650℃×1hr Ca 80 1200℃×3hr 0.05 <0.01 粉末 実施例2 650℃×1hr Mg 49 1200℃×3hr 0.05 0.02 〃 実施例3 650℃×1hr Ca 50 1000℃×2hr 0.04 <0.01 〃 →800℃×2hr 実施例4 600℃×3hr Ca 40 1150℃×2hr 0.05 0.02 〃 Mg 25 実施例5 650℃×1hr Mg 100 1000℃×6hr 0.07 0.02 粉末 実施例6 650℃×1hr Mg 50 1200℃×6hr 0.06 0.01 粉末 (蒸気) 比較例1 なし Ca 110 外部点火 金属バナジウム 生成せず 比較例2 なし A1 75 外部点火 1.00 0.10 塊Table 1 Metal reduction Impurity concentration / wt% Hydrogen reduction condition Element weight / g Heating temperature Oxygen reduced metal Product form Example 1 650 ° C. × 1 hr Ca 80 1200 ° C. × 3 hr 0.05 <0.01 Powder Example 2 650 ° C. × 1hr Mg 49 1200 ° C × 3hr 0.05 0.02〃 Example 3 650 ° C × 1hr Ca 50 1000 ° C × 2hr 0.04 <0.01〃 → 800 ° C × 2hr Example 4 600 ° C × 3hr Ca 40 1150 ° C × 2hr 0.05 0.02〃 Mg 25 Example 5 650 ° C. × 1 hr Mg 100 1000 ° C. × 6 hr 0.07 0.02 powder Example 6 650 ° C. × 1 hr Mg 50 1200 ° C. × 6 hr 0.06 0.01 Powder (steam) Comparative Example 1 None Ca 110 External ignition Metal vanadium not generated Compare Example 2 None A1 75 External ignition 1.00 0.10 lump

【0024】[0024]

【発明の効果】以上のごとく水素とCaおよびMgとの
還元を併用することで高純度のバナジウム金属を得るこ
とが可能となった。またA1還元のようにその後の電子
ビーム溶解による精製工程が不要であるので従来の1/
20のコストで高純度バナジウムおよびその粉末を製造
する事が可能となった。
As described above, high-purity vanadium metal can be obtained by using hydrogen and reduction of Ca and Mg together. In addition, since a subsequent purification step by electron beam melting as in the case of A1 reduction is not required, the conventional 1/1
It became possible to produce high-purity vanadium and its powder at a cost of 20.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】五酸化バナジウムを還元して金属バナジウ
ムを得る方法において、まず原料となる五酸化バナジウ
ムを水素共存下で加熱して三酸化二バナジウムや一酸化
一バナジウム等の低級酸化物に還元し、得た低級酸化物
をカルシウムやマグネシウムと混合し、加熱して還元反
応を起こさせ、得た還元生成物より金属バナジウムを分
離回収することを特徴とする高純度金属バナジウムの製
造方法。
In a method for obtaining metal vanadium by reducing vanadium pentoxide, first, vanadium pentoxide as a raw material is heated in the presence of hydrogen to reduce it to a lower oxide such as divanadium trioxide or monadium monoxide. A method for producing high-purity metal vanadium, comprising mixing the obtained lower oxide with calcium or magnesium, heating to cause a reduction reaction, and separating and recovering metal vanadium from the obtained reduction product.
【請求項2】水素共存下で五酸化バナジウムを加熱還元
するに際して、690℃以下で加熱して五酸化バナジウ
ムを三酸化二バナジウムとする請求項1記載の製造方
法。
2. The method according to claim 1, wherein the vanadium pentoxide is heated and reduced at 690 ° C. or less to convert the vanadium pentoxide to divanadium trioxide in the presence of hydrogen.
JP2000375549A 2000-12-11 2000-12-11 Method for producing high purity metallic vanadium Pending JP2002180145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000375549A JP2002180145A (en) 2000-12-11 2000-12-11 Method for producing high purity metallic vanadium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000375549A JP2002180145A (en) 2000-12-11 2000-12-11 Method for producing high purity metallic vanadium

Publications (1)

Publication Number Publication Date
JP2002180145A true JP2002180145A (en) 2002-06-26

Family

ID=18844549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000375549A Pending JP2002180145A (en) 2000-12-11 2000-12-11 Method for producing high purity metallic vanadium

Country Status (1)

Country Link
JP (1) JP2002180145A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451777B1 (en) * 2012-12-24 2014-10-17 한국기계연구원 Producing method of vanadium with high purity using magnesium vapor and the device thereof
WO2018214830A1 (en) * 2017-05-23 2018-11-29 东北大学 Method for preparing high melting point metal powder via multi-stage deep reduction
CN111733337A (en) * 2020-07-06 2020-10-02 攀钢集团研究院有限公司 Method for preparing vanadium oxide by reducing vanadium solution
CN112779447A (en) * 2020-12-16 2021-05-11 河钢承德钒钛新材料有限公司 Method for preparing vanadium-aluminum alloy by using vanadium trioxide
CN113732297A (en) * 2021-09-04 2021-12-03 湖南众鑫新材料科技股份有限公司 High-purity vanadium purification process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101451777B1 (en) * 2012-12-24 2014-10-17 한국기계연구원 Producing method of vanadium with high purity using magnesium vapor and the device thereof
WO2018214830A1 (en) * 2017-05-23 2018-11-29 东北大学 Method for preparing high melting point metal powder via multi-stage deep reduction
US11241740B2 (en) 2017-05-23 2022-02-08 Northeastern University Method for preparing high-melting-point metal powder through multi-stage deep reduction
CN111733337A (en) * 2020-07-06 2020-10-02 攀钢集团研究院有限公司 Method for preparing vanadium oxide by reducing vanadium solution
CN112779447A (en) * 2020-12-16 2021-05-11 河钢承德钒钛新材料有限公司 Method for preparing vanadium-aluminum alloy by using vanadium trioxide
CN113732297A (en) * 2021-09-04 2021-12-03 湖南众鑫新材料科技股份有限公司 High-purity vanadium purification process

Similar Documents

Publication Publication Date Title
KR101965121B1 (en) Method for deoxygenating a metal in which oxygen is dissolved in solid solution state
US4241037A (en) Process for purifying silicon
JP7437813B2 (en) Production method of high-purity metallic lithium using vacuum thermal reduction method
Miyauchi et al. Production of metallic vanadium by preform reduction process
US2992095A (en) Process of separating niobium and tantalum values in oxidic ores and of producing pure niobium
CN110612269B (en) Method for producing commercial grade silicon
CN104195355A (en) Zirconium and method for preparing zirconium
EP0079487B1 (en) Hydriding body-centered cubic phase alloys at room temperature
US2443253A (en) Process for producing zirconium chloride
JP2002180145A (en) Method for producing high purity metallic vanadium
Mirji et al. Technological challenges in extractive metallurgy and refining of Nb, Ta and preparation of their compounds & alloys
KR20130133376A (en) Fabrication method of low oxygen titanium powders by self-propagating high-temperature synthesis
US5284639A (en) Method for the preparation of niobium nitride
GB2621958A (en) Preparation method for aluminum nitride
JPS63500389A (en) chemical method
US2522679A (en) Method of producing titanium alloys
RU128874U1 (en) TECHNOLOGICAL COMPLEX FOR PRODUCING SINGLE CRYSTAL SILICON
US5234674A (en) Process for the preparation of metal carbides
US2848315A (en) Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium
Lee et al. Production of HigH-Purity tantalum metal Powder for caPacitors using self-ProPagating HigH-temPerature syntHesis
US5188810A (en) Process for making niobium oxide
JPS6148506A (en) Refining method of fine particle by gaseous phase process
US3287109A (en) Oxygen removal from alkali metals
CN110699561B (en) Method for producing high-purity metal vanadium by adopting directional solidification
US2497583A (en) Preparation of magnesium nitride