JPS6364266A - Raw material powder for gas diffusion electrode - Google Patents
Raw material powder for gas diffusion electrodeInfo
- Publication number
- JPS6364266A JPS6364266A JP61207600A JP20760086A JPS6364266A JP S6364266 A JPS6364266 A JP S6364266A JP 61207600 A JP61207600 A JP 61207600A JP 20760086 A JP20760086 A JP 20760086A JP S6364266 A JPS6364266 A JP S6364266A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- carbon black
- gas diffusion
- micropowder
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 30
- 238000009792 diffusion process Methods 0.000 title claims abstract description 18
- 239000002994 raw material Substances 0.000 title claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 32
- 239000006229 carbon black Substances 0.000 claims abstract description 19
- -1 polyethylene tetrafluoride Polymers 0.000 claims abstract description 12
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000003456 ion exchange resin Substances 0.000 claims abstract description 11
- 229920003303 ion-exchange polymer Polymers 0.000 claims abstract description 11
- 239000005871 repellent Substances 0.000 claims abstract description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 18
- 229910052697 platinum Inorganic materials 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 17
- 235000019241 carbon black Nutrition 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000002245 particle Substances 0.000 description 6
- 229920000557 Nafion® Polymers 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、燃料電池、二次電池、電気化学的リアクター
、めっき用陽極等に用いるガス拡散電極の素材である原
料粉に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to raw material powder that is a material for gas diffusion electrodes used in fuel cells, secondary batteries, electrochemical reactors, plating anodes, and the like.
(従来の技イネテ)
ガス拡散電極を作る素材である原料粉には、従来触媒を
担持した親水性カーボンブラ・ツク又は触媒の微粉末に
、ポリ四弗化エチレン微粉末と撥水性カーボンブラック
とを混合したものが用いられてきた。(Conventional technique) The raw material powder used to make gas diffusion electrodes is conventionally made of hydrophilic carbon black that supports a catalyst, or catalyst fine powder, polytetrafluoroethylene fine powder, and water-repellent carbon black. A mixture of these has been used.
(発明が解決しようとする問題点)
ところで、上記の混合粉で作ったガス拡散電極は、比較
的短い使用期間中に、親水性カーボンブランクに担持さ
れた触媒が遊離して集合凝縮し、またポリ四弗化エチレ
ン微粉末や撥水性カーボンブランクの間に介在している
触媒が流動して集合凝縮する。その結果、触媒の分散密
度力書且くなり、電解液が浸透したり、ガスが拡散透過
したりしても、集合凝縮した触媒の表面にのみ接触し、
内部の触媒には接触しないので、有効に働く触媒が少な
い。従って、触媒の単位重量当り流せる電流が少なく、
甚だ効率が悪いものである。(Problems to be Solved by the Invention) By the way, during a relatively short period of use, the gas diffusion electrode made from the above-mentioned mixed powder can cause the catalyst supported on the hydrophilic carbon blank to be liberated, aggregated, and condensed. The catalyst interposed between the polytetrafluoroethylene fine powder and the water-repellent carbon blank flows and collects and condenses. As a result, the dispersion density of the catalyst becomes low, and even if the electrolyte penetrates or the gas diffuses and permeates, it will only contact the surface of the aggregated and condensed catalyst.
Since it does not come into contact with the internal catalyst, there is less catalyst to work effectively. Therefore, the current that can be passed per unit weight of the catalyst is small,
This is extremely inefficient.
また触媒のN 離、流動による劣下が阜<、ガス拡散電
極の寿命が短いものである。Furthermore, the life of the gas diffusion electrode is shortened due to deterioration due to nitrogen separation and flow of the catalyst.
そこで本発明は、触媒が親水性カーボンブラ・ツクから
’a 4r’Jしたり、ポリ四弗化エチレン?& t5
)末や↑0水性カーボンブラックの間からLa ’L)
J シたりすることの無いガス拡散電極を作る為の原F
’l扮を提供しようとするものである。Therefore, in the present invention, the catalyst can be converted from hydrophilic carbon black or polytetrafluoroethylene. &t5
) end and ↑0 between the aqueous carbon black and La 'L)
J Original F for making a gas diffusion electrode that does not shatter
It is intended to provide a 'l costume.
(問題点を解決するための手段)
上記問題点を解決するための本発明のガス拡散電極用原
料粉は、触媒を担持した親水性カーボンブランク又は触
媒’Ri F’tl末に、イオン交換樹脂をコーティン
グして成る微粉末と、ポリ四弗化エチレン微粉末と、撥
水性カーボンブラックとが混合されて成るものである。(Means for Solving the Problems) In order to solve the above problems, the raw material powder for gas diffusion electrodes of the present invention is a hydrophilic carbon blank carrying a catalyst or a catalyst 'Ri F'tl powder, and an ion exchange resin. It is a mixture of a fine powder coated with polytetrafluoroethylene, a fine powder of polytetrafluoroethylene, and water-repellent carbon black.
(作用)
上記構成の原料粉でガス拡散電極を作ると、親水性カー
ボンブラックに担持された触媒は、イオン交換樹脂がコ
ーティングされている為、長期間使用しても親水性カー
ボンブラックからNmせず、またイオン交換樹脂がコー
ティングされた触媒は、ポリ四弗化エチレン微粉末やi
Ω水性カーボンブラックの間に介在したまま流動しない
。従って、触媒:よ集合凝縮せず、均−微細に分散した
ままで、触媒の分散密度が箱かく、電力7液が浸透した
り、ガスが拡散mAしたりすると、陽、イオンがイオン
交換樹脂を透過して殆んどの触媒に接触して活発に反応
が行われる。かくして触媒の単位重量当り流せる電流が
多くなり、著しく効率が向上するものである。(Function) When a gas diffusion electrode is made from the raw material powder with the above configuration, the catalyst supported on the hydrophilic carbon black is coated with an ion exchange resin, so even if used for a long period of time, the catalyst supported on the hydrophilic carbon black will be Moreover, the catalyst coated with ion-exchange resin is polytetrafluoroethylene fine powder or i
Ω It remains between the aqueous carbon blacks and does not flow. Therefore, the catalyst does not collect and condense, but remains uniformly and finely dispersed, and the dispersion density of the catalyst is low. When the power 7 liquid permeates or the gas diffuses mA, cations and ions are transferred to the ion exchange resin. It permeates through and comes into contact with most of the catalysts, and the reaction takes place actively. In this way, a large amount of current can be passed per unit weight of the catalyst, resulting in a marked improvement in efficiency.
また触媒の遊離、流動S:よる劣化が防止されるので、
ガス拡散型(]の寿命が著しく長くなるのである。In addition, deterioration due to catalyst release and flow S: is prevented.
The life of the gas diffusion type ( ) is significantly longer.
(実施例1)
本発明のガス拡散電極用原料粉の一実格例について説明
する。平均粒径30人の白金微粉末を担持した平均粒径
420人の親水性カーボンブランクに、イオン交換樹脂
、本例ではナフィオンで商品名)を厚さ0.05μコー
テイングして成る微粉末と、平均粒径0.3μのポリ四
弗化エチレン微粉末と、平均粒径420人のIΩ水性カ
ーボンブラック微粉末とを3:4:3の割合で混合して
成る。(Example 1) An actual example of the raw material powder for gas diffusion electrodes of the present invention will be described. A fine powder formed by coating a hydrophilic carbon blank with an average particle size of 420 mm on which platinum fine powder with an average particle size of 30 mm is supported, and coated with an ion exchange resin (trade name: Nafion in this example) to a thickness of 0.05 μm. It is made by mixing polytetrafluoroethylene fine powder with an average particle size of 0.3μ and fine aqueous carbon black powder with an average particle size of 420 IΩ in a ratio of 3:4:3.
(実施例2)
30人の白金微粉末に、イオン交換樹脂、本例ではナフ
ィオン(商品名)を厚さO0引μコーティングして成る
徽扮宋と、平均粒径o、3μのポリ四弗化エチレン微粉
末と、平均粒径420人のtΩ水性カーボンブランクと
を4:4:3の割合で混合じて成る。(Example 2) Thirty platinum fine powders are coated with an ion exchange resin, in this example Nafion (trade name), to a thickness of 00 μm, and polytetrafluorocarbons with an average particle size of 0 and 3 μm are coated. It is made by mixing ethylene chloride fine powder and an aqueous carbon blank with an average particle size of 420 tΩ in a ratio of 4:4:3.
これら実施例1.2の混合微粉末の原料粉を、夫々ベー
スプレート上に0.45IImの厚さに配し、プレスし
て結着し、厚さ0,1mmの反応層により成るガス拡散
電極を作った。The raw material powders of the mixed fine powders of Example 1.2 were each placed on a base plate to a thickness of 0.45 IIm, and pressed and bonded to form a gas diffusion electrode consisting of a reaction layer of 0.1 mm thickness. Had made.
このように作ったガス拡散電極を、夫々空気極として、
電解液20%硫酸の燃料電池に使用した処、空気極中の
親水性カーボンブランクに担持された白金微粉末は、1
000時間経過しても親水性カーボンブランクからは&
Wflせず、イオン交換樹脂により白金微粉末の集合凝
縮が防止され、白金微粉末は均一微細に分散したままで
、白金微粉末の分散密度が綱かかった。従って、浸透し
た電解液は、陽イオンがイオン交換樹脂を透過して殆ん
どの白金微粉末に接触して活発に反応が行われる結果、
白金微粉末の単位重量当り流せる電流が従来のものより
1.5倍、程度多くなり、著しく効率が向上した。The gas diffusion electrodes made in this way were used as air electrodes, respectively.
When used in a fuel cell with a 20% sulfuric acid electrolyte, the platinum fine powder supported on the hydrophilic carbon blank in the air electrode was 1
Even after 1,000 hours, the hydrophilic carbon blank still shows &
Without Wfl, the ion exchange resin prevented the agglomeration and condensation of the fine platinum powder, and the fine platinum powder remained uniformly and finely dispersed, and the dispersion density of the fine platinum powder was maintained. Therefore, in the permeated electrolyte, the cations permeate through the ion exchange resin and come into contact with most of the platinum fine powder, resulting in an active reaction.
The current that can be passed per unit weight of fine platinum powder is 1.5 times higher than that of conventional products, significantly improving efficiency.
また白金微粉末の遊離、流動による劣化が防止されたの
で、ガス拡散電極の寿命は、従来のものより2倍程度長
くなった。Furthermore, since deterioration due to release and flow of the platinum fine powder was prevented, the life of the gas diffusion electrode was approximately twice as long as that of conventional electrodes.
尚、上記実施例では触媒が白金であるが、これに限るも
のではなく、他の貴金属或いはその合金、卑金属或いは
その合金であっても良いものである。Although the catalyst is platinum in the above embodiments, it is not limited to this, and may be other noble metals or alloys thereof, base metals, or alloys thereof.
また、と記実施例におけるナフィオンをコーティングし
た親水性カーボンブラックは、液体ナフィオンをアルコ
ールでうすめ、これに現水性カーボンブラックを混ぜた
後、溶媒を蒸発して除去したものである。In addition, the hydrophilic carbon black coated with Nafion in Examples described above was obtained by diluting liquid Nafion with alcohol, mixing it with aqueous carbon black, and then removing the solvent by evaporation.
(発明の効果)
以上の説明で判るように本発明のガス拡散電極陽原料粉
によれば、使用中に触媒が親水性カーボンブランクから
遊離したり、或いはポリ四弗化エチレンや1B水性カー
ボンブランクの間から流動したすせず、従って触媒が集
合凝縮することが無く、均一微細に分散したままで、触
媒の単位重量当りの流せる電流が大きくて、著しく効率
の高いガス拡散電極を得ることができる。(Effects of the Invention) As can be seen from the above explanation, according to the gas diffusion electrode positive raw material powder of the present invention, the catalyst may be released from the hydrophilic carbon blank during use, or the catalyst may be released from the hydrophilic carbon blank or from polytetrafluoroethylene or 1B aqueous carbon blank. Therefore, the catalyst does not aggregate and condense, and remains uniformly and finely dispersed, allowing a large current to flow per unit weight of catalyst, making it possible to obtain a highly efficient gas diffusion electrode. can.
また触媒の遊離、流動が無く、従って機能の劣化を抑制
できて長寿命のガス拡散電極を得ることができる。In addition, there is no separation or flow of the catalyst, so deterioration of function can be suppressed and a long-life gas diffusion electrode can be obtained.
Claims (1)
に、イオン交換樹脂をコーティングして成る微粉末と、
ポリ四弗化エチレン微粉末と、撥水性カーボンブラック
とが混合されて成るガス拡散電極用原料粉。A fine powder formed by coating hydrophilic carbon black or catalyst fine powder supporting a catalyst with an ion exchange resin;
A raw material powder for gas diffusion electrodes, which is a mixture of polytetrafluoroethylene fine powder and water-repellent carbon black.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61207600A JPH0766809B2 (en) | 1986-09-03 | 1986-09-03 | Raw material powder for gas diffusion electrode |
US07/034,499 US4816431A (en) | 1986-04-03 | 1987-04-03 | Process for preparing materials for reaction layer of gas permeable electrode |
US07/283,782 US5124018A (en) | 1986-04-03 | 1988-12-13 | Process for preparing raw materials for reaction layer of gas permeable electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61207600A JPH0766809B2 (en) | 1986-09-03 | 1986-09-03 | Raw material powder for gas diffusion electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6364266A true JPS6364266A (en) | 1988-03-22 |
JPH0766809B2 JPH0766809B2 (en) | 1995-07-19 |
Family
ID=16542458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61207600A Expired - Lifetime JPH0766809B2 (en) | 1986-04-03 | 1986-09-03 | Raw material powder for gas diffusion electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0766809B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04202792A (en) * | 1990-11-30 | 1992-07-23 | Shinei Kk | Sheet for electrode |
JP2004335282A (en) * | 2003-05-08 | 2004-11-25 | Sony Corp | Catalyst, catalyst electrode and manufacturing method of the same, membrane-electrode assembly, and electrochemical device |
US7407722B2 (en) | 2001-03-08 | 2008-08-05 | Sony Corporation | Gas diffusing electrode body, method of manufacturing the same and electrochemical device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8266266B2 (en) | 1998-12-08 | 2012-09-11 | Nomadix, Inc. | Systems and methods for providing dynamic network authorization, authentication and accounting |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6167788A (en) * | 1984-09-10 | 1986-04-07 | Japan Storage Battery Co Ltd | Production of joined body of ion exchange resin film and electrode |
-
1986
- 1986-09-03 JP JP61207600A patent/JPH0766809B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6167788A (en) * | 1984-09-10 | 1986-04-07 | Japan Storage Battery Co Ltd | Production of joined body of ion exchange resin film and electrode |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04202792A (en) * | 1990-11-30 | 1992-07-23 | Shinei Kk | Sheet for electrode |
US7407722B2 (en) | 2001-03-08 | 2008-08-05 | Sony Corporation | Gas diffusing electrode body, method of manufacturing the same and electrochemical device |
JP2004335282A (en) * | 2003-05-08 | 2004-11-25 | Sony Corp | Catalyst, catalyst electrode and manufacturing method of the same, membrane-electrode assembly, and electrochemical device |
JP4501357B2 (en) * | 2003-05-08 | 2010-07-14 | ソニー株式会社 | Catalyst electrode and method for producing the same, membrane-electrode assembly, and electrochemical device |
Also Published As
Publication number | Publication date |
---|---|
JPH0766809B2 (en) | 1995-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0569062B1 (en) | Method of making membrane-electrode assemblies for electrochemical cells and assemblies made thereby | |
EP2273590B1 (en) | Fuel cell | |
US6238534B1 (en) | Hybrid membrane electrode assembly | |
DE102008009114A1 (en) | Fluorine treatment of polyelectrolyte membranes | |
JP2003157857A (en) | Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity | |
JPH06196171A (en) | Solid high polymer type fuel cell | |
JPH06203852A (en) | Manufacture of bonded body of electrode-polyelectrolyte film | |
US3668014A (en) | Electrode and method of producing same | |
JPS6364266A (en) | Raw material powder for gas diffusion electrode | |
JPH06103984A (en) | Electrode structure for fuel cell | |
JPH09180730A (en) | Electrode for solid high molecular fuel cell and manufacture thereof | |
JPH07176310A (en) | Electrode and junction body between electrode and ion exchange membrane | |
JPH027399B2 (en) | ||
JPH06203849A (en) | Manufacture of solid high polymer fuel cell | |
JPH06203848A (en) | Manufacture of solid high polymer fuel cell | |
JPH0529005A (en) | Electrode/electrolyte joined body, manufacture thereof and fuel cell using the same | |
JP4087651B2 (en) | Electrocatalyst for solid polymer electrolyte fuel cell | |
JPS6167787A (en) | Production of joined body of ion exchange resin film and electrode | |
US3737344A (en) | Process for increasing the activity of porous fuel cell electrodes | |
JPH10189002A (en) | Electrode for fuel cell and its manufacture | |
JPH07130377A (en) | Manufacture of solid polymer fuel cell electrode | |
JPH0722020B2 (en) | Method for manufacturing gas diffusion electrode | |
JPS6128856A (en) | Moisture sensor | |
JPH07130374A (en) | Water repellent treating method for carbon paper in fuel cell electrode | |
JP2007018801A (en) | Manufacturing method of catalyst mixture for solid polymer fuel cell, and solid polymer fuel cell using electrode containing catalyst mixture obtained by the above manufacturing method |