JPS6363772B2 - - Google Patents

Info

Publication number
JPS6363772B2
JPS6363772B2 JP5609783A JP5609783A JPS6363772B2 JP S6363772 B2 JPS6363772 B2 JP S6363772B2 JP 5609783 A JP5609783 A JP 5609783A JP 5609783 A JP5609783 A JP 5609783A JP S6363772 B2 JPS6363772 B2 JP S6363772B2
Authority
JP
Japan
Prior art keywords
gear
shaft
external gear
support member
internal gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5609783A
Other languages
Japanese (ja)
Other versions
JPS59183144A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5609783A priority Critical patent/JPS59183144A/en
Publication of JPS59183144A publication Critical patent/JPS59183144A/en
Publication of JPS6363772B2 publication Critical patent/JPS6363772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、減速機に系り、特に、全体の小型化
を図つた状態で大きな減速比が得られるようにし
た減速機に関する。 〔発明の背景技術とその問題点〕 たとえば、モータを動力源とする装置の中に
は、モータの回転を減速機を介して負荷に伝達す
るようにしたものが多い。 ところで、このような用途の減速機としては従
来種々考えられているが、最も一般的には第1図
に示すように太陽歯車Sとリング歯車Rと遊星歯
車Pとを組合せた遊星歯車式の減速機Cが多用さ
れている。 しかしながら、このような従来の減速機にあつ
ては次のような問題があつた。すなわち、今第1
図に示した遊星歯車式のものを例にとると太陽歯
車Sの歯数をZs、リング歯車Rの歯数をZrとした
とき、各歯車と入出力および固定との関係の選び
方によつて下表に示す減速比Xが得られる。
[Technical Field of the Invention] The present invention relates to a reduction gear, and particularly to a reduction gear that is capable of obtaining a large reduction ratio while reducing the overall size. [Background Art of the Invention and Problems Therewith] For example, many devices that use a motor as a power source transmit the rotation of the motor to a load via a speed reducer. By the way, various reduction gears have been considered for this kind of use, but the most common one is a planetary gear type, which combines a sun gear S, a ring gear R, and a planetary gear P, as shown in Figure 1. Reducer C is often used. However, such a conventional reduction gear has the following problems. In other words, now the first
Taking the planetary gear type shown in the figure as an example, when the number of teeth of the sun gear S is Z s and the number of teeth of the ring gear R is Z r , how to select the relationship between each gear, input/output, and fixation. Therefore, the reduction ratio X shown in the table below is obtained.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、小型、高効率
で、しかも大減速比が得られる減速機を提供する
ことにある。 〔発明の概要〕 本発明によれば、ハイポトロコイド平行曲線歯
形を有した内歯車が固定して設けられ、この内歯
車の内側に上記内歯車の歯数より2つ歯数の少な
いエピトロコイド平行曲線歯形を有した外歯車が
入力回転軸から動力を受けて偏心回転運動する補
助軸の外周に回転自在に設けられる。上記内歯車
と外歯車との間には外歯車の歯数より1つ多い数
の転動体が介挿され、これら転動体は、これらを
自転自在にかつ共通に公転自在に支持する回転自
在な支持部材に支持される。そして、上記支持部
材の自転回転を出力回転軸に伝達する手段が設け
られている。 〔発明の効果〕 上記のようにトロコイド系内接遊星機構を構成
し、内歯車と外歯車との間に介挿される転動体を
支持する支持部材の自動回転を出力として取り出
すようにしている。したがつて、全体の大型化を
招くことなく歯数を増せば大きな減速比を設定す
ることができる。また、全ての転動体を同時に動
力伝達に関与させることができることと、ころが
り伝達で動力を伝達できることとが相俟つて、大
動力を効率よく伝達させることができる。 〔発明の実施例〕 以下、本発明の実施例を図面を参照しながら説
明する。 第2図において、1は静止状態に設けられるケ
ースであり、このケース1内には円形の部屋2が
形成されている。 しかして、ケース1の部屋2内には、内周縁に
ハイポトロコイド平行曲線歯形Hを有した内歯車
3が固定されている。この歯Hは、たとえば第3
図に示すように13個形成されている。そして、内
歯車3の内側には、外周縁にエピトロコイド平行
曲線歯形Eを有した外歯車4が補助軸5の外周に
軸受6を介して回転自在に配置されている。な
お、歯Eの数は、内歯車3の歯数から2を減じた
数、すなわち、この例では第3図に示すように1
1に設定されている。そして、上記補助軸5は内
歯車3の軸心線と同軸的にケース1の壁を貫通し
て一端側を部屋2内に位置させた入力回転軸7の
上記一端側端部に偏心状態に連結されている。な
お、ケース1の壁と入力回転軸7との間には軸受
8が装着されている。 しかして、内歯車3と外歯車4との間には、第
3図に示すように転動体、すなわち、ローラ9が
周方向に等間隔に、この例では12個、各ローラ9
の周面2個所が内歯車3と外歯車4とにそれぞれ
接触する関係に装着されている。各ローラ9はそ
れぞれ入力回転軸7の軸心線と平行するように延
びる軸10の外周に回転自在に支持されている。
そして、各種10の一端側は支持部材11に共通
に固定されている。支持部材11は、第4図に示
すように、たとえば円板状に形成されており、そ
の中央部寄りの位置に等角度の開き角で、たとえ
ば4個の円孔12を有したものとなつている。 一方、ケース1の壁を前記入力回転軸7と同軸
的に貫通して一端側を部屋2内に位置させた出力
回転軸13が上記壁との間に軸受14を介在させ
て回転自在に設けてある。そして、この出力回転
軸14の部屋2内に位置する端部には同軸的に円
板15が固定されている。円板15の前記支持部
材11に対向する面には前記円孔12内に嵌入し
得る長さの軸16が4本突設されており、これら
の軸16の外周でかつ円孔12内に位置する部分
には円孔12より偏心量だけ小径のローラ17が
第4図に示すように回転自在に装着されている。 次に上記のように構成された減速機の動作を説
明する。 今、入力回転軸7をある方向に回転させると、
補助回転軸5もその方向に偏心回転する。補助回
転軸5の外周には軸受6を介して外歯車4が装着
されており、しかも、外歯車4と内歯車3との間
にはローラ9が介在しているので、上記のように
補助回転軸5が偏心回転すると外歯車4は入力回
転軸7の回転方向とは逆方向に自転回転する。そ
して、外歯車4の回転に伴なつて各ローラ9が軸
10を中心にして回転し、この回転によつてロー
ラ9が公転する。このため、支持部材11も回転
し、この回転が円孔12と、これに嵌入している
ローラ17と、このローラ17を支持している軸
16とを介して円板15に伝えられ、結局出力回
転軸13に伝えられることになる。したがつて、
今、円孔12の径とローラ17の径とを所定に設
定し等速変換構成としておけば入力回転軸7の回
転速度に対応した回転速度で出力回転軸13が回
転することになる。 そして、この場合の減速比は次のようになる。
すなわち、内歯車3の歯数をZh、外歯車4の歯数
をZe、ローラ9の数をZrとすると第3図のように
幾何学的に各ローラ9を介して外歯車4と内歯車
3とが接する条件から、必然的に、 Ze=Zr−1 …(2) Zh=Zr+1 …(3) に設定される。したがつて、外歯車4とローラ9
とは1枚歯数差の内接式遊星機構を構成し、また
外歯車4と内歯車3とは2枚歯数差の内接式遊星
機構を構成していることになる。ここで、たとえ
ば外歯車4と内歯車3との組合せで外歯車4から
出力を取り出した場合の減速比Xは、 X=Ze/Ze−Zh=−Ze/2 …(4) となる。しかし、本発明のように外歯車4とロー
ラ9との組合せで、ローラ9の軸10を支持する
支持部材11から出力を取り出した場合の減速比
Xは、 X=Zr/Ze−Zr=−Zr …(5) となる。すなわち、実施例のようにZe=11,Zr
12,Zh=13に設定すると、減速比XはX=12とな
る。なお、この場合、(5)式から判るように符号が
負となり、これは回転方向が逆であるとを表わし
ている。 このように、外歯車4、内歯車4の歯数および
ローラ9の数の選択によつて減速比を広い範囲に
亘つて設定できる。そして、この場合には各ロー
ラ9の全てが同時に動力伝達に関与し、また、そ
の形態がころがり伝達であることからして損失が
極めて少ない。したがつて、小型で大動力伝達が
可能でしかも大減速比に設定でき、高効率の減速
機が得られることになる。
The present invention has been made in view of the above circumstances, and its purpose is to provide a reduction gear that is small, highly efficient, and can provide a large reduction ratio. [Summary of the Invention] According to the present invention, an internal gear having a hypotrochoid parallel curve tooth profile is fixedly provided, and an epitrochoid parallel curve tooth profile having two teeth less than the number of teeth of the internal gear is provided inside the internal gear. An external gear having a curved tooth profile is rotatably provided on the outer periphery of an auxiliary shaft that receives power from an input rotating shaft and rotates eccentrically. One more rolling elements than the number of teeth of the external gear are interposed between the internal gear and the external gear. Supported by a support member. A means for transmitting the rotation of the support member to the output rotation shaft is provided. [Effects of the Invention] The trochoidal internal planetary mechanism is configured as described above, and the automatic rotation of the support member that supports the rolling elements inserted between the internal gear and the external gear is output. Therefore, a large reduction ratio can be set by increasing the number of teeth without increasing the overall size. In addition, the ability to have all the rolling elements simultaneously participate in power transmission and the ability to transmit power by rolling transmission combine to make it possible to efficiently transmit a large amount of power. [Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 2, 1 is a case provided in a stationary state, and inside this case 1, a circular room 2 is formed. In the chamber 2 of the case 1, an internal gear 3 having a hypotrochoid parallel curve tooth profile H on its inner peripheral edge is fixed. This tooth H is, for example, the third
As shown in the figure, 13 are formed. Inside the internal gear 3, an external gear 4 having an epitrochoid parallel curve tooth profile E on its outer periphery is rotatably disposed on the outer periphery of an auxiliary shaft 5 via a bearing 6. Note that the number of teeth E is the number of teeth of the internal gear 3 minus 2, that is, in this example, 1 as shown in FIG.
It is set to 1. The auxiliary shaft 5 passes through the wall of the case 1 coaxially with the axial center line of the internal gear 3, and is eccentrically attached to the end of the input rotation shaft 7 whose one end is located inside the room 2. connected. Note that a bearing 8 is mounted between the wall of the case 1 and the input rotating shaft 7. As shown in FIG. 3, between the internal gear 3 and the external gear 4, rolling elements, that is, rollers 9 are arranged at equal intervals in the circumferential direction, 12 in this example, each roller 9.
It is mounted in such a manner that its two circumferential surfaces are in contact with the internal gear 3 and the external gear 4, respectively. Each roller 9 is rotatably supported on the outer periphery of a shaft 10 that extends parallel to the axial center line of the input rotation shaft 7 .
One end side of each type 10 is commonly fixed to a support member 11. As shown in FIG. 4, the support member 11 is formed, for example, in the shape of a disk, and has, for example, four circular holes 12 at equal opening angles near the center thereof. ing. On the other hand, an output rotating shaft 13 that penetrates the wall of the case 1 coaxially with the input rotating shaft 7 and has one end located inside the room 2 is rotatably provided with a bearing 14 interposed between it and the wall. There is. A disk 15 is coaxially fixed to the end of the output rotating shaft 14 located inside the chamber 2. Four shafts 16 having a length that can fit into the circular hole 12 are protruded from the surface of the disc 15 facing the support member 11. A roller 17 having a smaller diameter by an eccentric amount than the circular hole 12 is rotatably mounted at the position as shown in FIG. Next, the operation of the reduction gear configured as described above will be explained. Now, when the input rotation shaft 7 is rotated in a certain direction,
The auxiliary rotating shaft 5 also rotates eccentrically in that direction. The external gear 4 is attached to the outer circumference of the auxiliary rotating shaft 5 via a bearing 6, and the roller 9 is interposed between the external gear 4 and the internal gear 3, so that the auxiliary rotation shaft 5 can be When the rotation shaft 5 rotates eccentrically, the external gear 4 rotates in a direction opposite to the rotation direction of the input rotation shaft 7. As the external gear 4 rotates, each roller 9 rotates around the shaft 10, and this rotation causes the rollers 9 to revolve. Therefore, the support member 11 also rotates, and this rotation is transmitted to the disc 15 via the circular hole 12, the roller 17 fitted therein, and the shaft 16 supporting this roller 17, and eventually This will be transmitted to the output rotating shaft 13. Therefore,
Now, if the diameter of the circular hole 12 and the diameter of the roller 17 are set to predetermined values and a constant velocity conversion configuration is established, the output rotation shaft 13 will rotate at a rotation speed corresponding to the rotation speed of the input rotation shaft 7. The reduction ratio in this case is as follows.
That is, if the number of teeth of the internal gear 3 is Z h , the number of teeth of the external gear 4 is Z e , and the number of rollers 9 is Z r , the external gear 4 is geometrically connected via each roller 9 as shown in FIG. From the condition that the and the internal gear 3 are in contact with each other, it is inevitably set as follows: Z e =Z r -1...(2) Z h =Z r +1...(3). Therefore, the external gear 4 and the roller 9
constitutes an internal planetary mechanism with a difference in the number of teeth by one, and the external gear 4 and internal gear 3 constitute an internal planetary mechanism with a difference in the number of teeth by two. Here, for example, when the output is extracted from the external gear 4 in a combination of the external gear 4 and the internal gear 3, the reduction ratio X is: X=Z e /Z e -Z h = -Z e /2...(4) becomes. However, when the output is taken out from the support member 11 that supports the shaft 10 of the roller 9 in a combination of the external gear 4 and the roller 9 as in the present invention, the reduction ratio X is as follows: X=Z r /Z e −Z r = −Z r …(5). That is, as in the example, Z e = 11, Z r =
12, Z h =13, the reduction ratio X becomes X=12. In this case, as can be seen from equation (5), the sign is negative, which indicates that the direction of rotation is opposite. In this way, by selecting the number of teeth of the external gear 4 and internal gear 4 and the number of rollers 9, the reduction ratio can be set over a wide range. In this case, all of the rollers 9 are involved in power transmission at the same time, and since the form is rolling transmission, the loss is extremely small. Therefore, it is possible to obtain a highly efficient speed reducer that is small in size, capable of transmitting large amounts of power, and can also be set at a large reduction ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の代表的な減速機を説明するため
の図、第2図は本発明の一実施例に係る減速機の
縦断面図、第3図は同減速機を第2図におけるA
―A線に沿つて切断し矢印方向に見た図第4図は
同減速機を第2図におけるB―B線に沿つて切断
し矢印方向に見た図である。 1…ケース、3…内歯車、4…外歯車、5…補
助軸、6…軸受、7…入力回転軸、9…ローラ、
10,16…軸、11…支持部材、12…円孔、
13…出力回転軸。
FIG. 1 is a diagram for explaining a typical conventional speed reducer, FIG. 2 is a vertical cross-sectional view of a speed reducer according to an embodiment of the present invention, and FIG. 3 shows the speed reducer shown in FIG.
FIG. 4 is a view of the reducer taken along line B--B in FIG. 2 and viewed in the direction of the arrow. 1... Case, 3... Internal gear, 4... External gear, 5... Auxiliary shaft, 6... Bearing, 7... Input rotating shaft, 9... Roller,
10, 16... shaft, 11... support member, 12... circular hole,
13...Output rotation axis.

Claims (1)

【特許請求の範囲】[Claims] 1 入力回転軸と、この入力回転軸に上記入力回
転軸とは偏心して軸方向に連結された補助軸と、
この補助軸の外周に回転自在に装着されたエピト
ロコイド平行曲線歯形を有する外歯車と、この外
歯車の外側にその軸心線を前記入力回転軸の軸心
線に一致させて固定されたハイポトロコイド平行
曲線歯形を有する内歯車と、この内歯車と前記外
歯車との間に介挿された複数の転動体と、これら
転動体を自転自在に、かつ共通に公転自在に支持
する回転自在な支持部材と、この支持部材の回転
を出力回転軸に伝達する手段とを具備してなるこ
とを特徴とする減速機。
1. an input rotation shaft; an auxiliary shaft connected to the input rotation shaft eccentrically in the axial direction;
An external gear having an epitrochoid parallel curve tooth profile is rotatably mounted on the outer periphery of the auxiliary shaft, and a hypo gear is fixed to the outside of the external gear with its axis aligned with the axis of the input rotating shaft. An internal gear having a trochoidal parallel curve tooth profile, a plurality of rolling elements interposed between the internal gear and the external gear, and a rotatable gear that supports these rolling elements so that they can rotate freely and in common. A speed reducer comprising a support member and means for transmitting rotation of the support member to an output rotating shaft.
JP5609783A 1983-03-31 1983-03-31 Speed reduction gear Granted JPS59183144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5609783A JPS59183144A (en) 1983-03-31 1983-03-31 Speed reduction gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5609783A JPS59183144A (en) 1983-03-31 1983-03-31 Speed reduction gear

Publications (2)

Publication Number Publication Date
JPS59183144A JPS59183144A (en) 1984-10-18
JPS6363772B2 true JPS6363772B2 (en) 1988-12-08

Family

ID=13017599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5609783A Granted JPS59183144A (en) 1983-03-31 1983-03-31 Speed reduction gear

Country Status (1)

Country Link
JP (1) JPS59183144A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024312A1 (en) * 2019-08-02 2021-02-11 日鍛バルブ株式会社 Reduction gear

Also Published As

Publication number Publication date
JPS59183144A (en) 1984-10-18

Similar Documents

Publication Publication Date Title
US6508737B2 (en) Eccentric orbiting type speed reducer
JP2866246B2 (en) Speed reducer series with internal meshing planetary gear structure
JPS6334343A (en) Differential planetary gear device
US4484496A (en) Servo drive, particularly for driving output shafts of slide valves
JPS5891949A (en) Transmission gear for motion
JPH01312250A (en) Differential gear mechanism using planetary gear speed reducer of internal engagement type
US4096763A (en) Hypocycloidal reduction gearing
JPH0150778B2 (en)
JPS6363772B2 (en)
JPS6388346A (en) Differential epicyclic gearing
JPS62101943A (en) Reducer
JPH0270305A (en) Roll stand for three way rolling
US4112788A (en) Torque transmission device
JPS6091043A (en) Inner gearing planetary reduction gear
JPS5899549A (en) Differential planet rotary type reduction gear
JPH08285017A (en) Hollow shaft type planetary reduction device, and centrifugal separator using it
JPH01150044A (en) Gear mechanism
JPS63199944A (en) High reduction gear device
JPH06103059B2 (en) Differential planetary gear unit
JPS61270537A (en) Reduction gear
JPS6332441Y2 (en)
JPH0754946A (en) Multi-step planetary roller reduction machine
KR100289995B1 (en) Reduction gear
JPS6283532A (en) Continuously variable transmission
JP2525597B2 (en) Planetary gearbox