JPS6362808A - Method for recovering valuable metal in molten slag during smelting and reduction refining - Google Patents

Method for recovering valuable metal in molten slag during smelting and reduction refining

Info

Publication number
JPS6362808A
JPS6362808A JP20575186A JP20575186A JPS6362808A JP S6362808 A JPS6362808 A JP S6362808A JP 20575186 A JP20575186 A JP 20575186A JP 20575186 A JP20575186 A JP 20575186A JP S6362808 A JPS6362808 A JP S6362808A
Authority
JP
Japan
Prior art keywords
slag
converter
reduction
pulverized coal
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20575186A
Other languages
Japanese (ja)
Other versions
JPH0610295B2 (en
Inventor
Keizo Taoka
啓造 田岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20575186A priority Critical patent/JPH0610295B2/en
Publication of JPS6362808A publication Critical patent/JPS6362808A/en
Publication of JPH0610295B2 publication Critical patent/JPH0610295B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To safely and efficiently reduce and recover unreduced metal oxide by discharging a molten metal subjected to smelting and reduction from a converter, then blowing gaseous oxygen and pulverized coal through bottom blowing tuyeres to the residual molten slag in the converter. CONSTITUTION:The molten metal (crude molten steel) is discharged from the converter and the molten slag is held remaining in the converter at the point of the time when the smelting and reduction by the converter end. The oxygen and pulverized coal are blown through the bottom blowing tuyeres into the molten slag and while the slag is kept stirred, the reduction refining is executed. The oxygen and pulverized coal are required to be blown simultaneously from two systems of the bottom blowing tuyeres which can supply the oxygen and the pulverized coal simultaneously. The blowing rates thereof are adequately determined for a heat source, reduction, etc. The unreduced metal oxide is efficiently reduced and recovered by the above-mentioned method without having danger of bumping, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 近年、電力コストの削減などを含めた省エネルギーを図
るために、溶銑中にCr鉱石、ベレット等の酸化物ある
いは半還元酸化物を添加して溶融還元精錬する操業が行
われている。
[Detailed Description of the Invention] (Field of Industrial Application) In recent years, in order to save energy including reducing electricity costs, oxides or semi-reduced oxides such as Cr ore and pellets have been added to hot metal. Melting reduction and refining operations are underway.

溶融還元精錬時の溶融スラグ中の有価金属の回収方法に
関してこの明細書で述べる技術内容は、とくに転炉によ
る溶融還元精錬に際して発生する溶融スラグに含まれる
未還元の金属酸化物を、極力還元回収するのに有利な方
法についての開発成果を提案するものである。
The technical content described in this specification regarding the method for recovering valuable metals in molten slag during smelting reduction smelting is particularly focused on reducing and recovering as much as possible unreduced metal oxides contained in molten slag generated during smelting reduction smelting using a converter. This paper proposes the development results of an advantageous method for doing so.

(従来の技術) Cr鉱石等の溶融還元精錬においては、脈石等に起因し
てスラグが多量に生成しスラグ中に未還元の鉱石分が残
存する。このためこのようなスラグをそのまま廃棄する
には、省資源の面から好ましくないので該スラグより有
価金属を極力回収する必要があった。
(Prior Art) In the smelting and reduction refining of Cr ore and the like, a large amount of slag is generated due to gangue and the like, and unreduced ore remains in the slag. Therefore, since it is not preferable from the viewpoint of resource conservation to dispose of such slag as it is, it is necessary to recover as much valuable metal as possible from the slag.

これに対処した試みとして、例えば特開昭54−158
320号公報では、高クロム鋼の溶製に際して生じたス
ラグを反応容器内の残しておき、この反応容器内に次ヒ
ートの鉄源である溶銑を注入して底吹き羽口よりN2バ
ブリングしてCr、 Fe分を還元回収することが提案
されている。
As an attempt to deal with this, for example, JP-A-54-158
In Publication No. 320, slag generated during melting of high chromium steel is left in a reaction vessel, hot metal, which is the iron source for the next heat, is injected into the reaction vessel and N2 is bubbled through the bottom blowing tuyere. It has been proposed to reduce and recover the Cr and Fe components.

この他、ステンレス鋼等の精錬において、精錬末期に、
jl 12 、Siを添加す゛ることによりスラグ中の
Cr酸化物を還元回収する技術が知られている(特公昭
60−7687号参照)。
In addition, in the refining of stainless steel, etc., at the final stage of refining,
A technique is known in which Cr oxides in slag are reduced and recovered by adding Si.

(発明が解決しようとする問題点) ところで上述の如き溶融スラグ中に残存する未還元の酸
化物を還元回収する従来の技術は次のような問題があっ
た。
(Problems to be Solved by the Invention) However, the conventional technique for reducing and recovering unreduced oxides remaining in molten slag as described above has the following problems.

すなわち、スラグのみを反応容器に残し、そこに次ヒー
トの溶銑を装入する場合は、溶銑の装入に際し突沸等の
危険がある。
That is, if only slag is left in the reaction vessel and the next heat of hot metal is charged therein, there is a risk of bumping or the like when charging the hot metal.

またAI!+Siを添加する場合では、少量のスラグか
らの回収に対しては有利であるが、鉱石等の酸化物を多
量に使用する溶融還元精錬では多量のスラグが生成し、
スラグの攪拌効率を向上させるのが困難で酸化物の還元
回収に長時間を要すること、また該元素は高価である等
により生産性や経済性に劣る不利があった。
AI again! When +Si is added, it is advantageous for recovery from a small amount of slag, but in smelting reduction smelting that uses a large amount of oxides such as ores, a large amount of slag is generated.
It is difficult to improve the stirring efficiency of the slag, it takes a long time to reduce and recover the oxides, and the elements are expensive, resulting in poor productivity and economic efficiency.

この発明の目的は、転炉における金属酸化物等の溶融還
元精錬に際して生成する溶融スラグに残存する未還元の
金属酸化物を、上述したような従来の問題を回避した上
で効果的に還元回収するのに有利な方法を提案するとこ
ろにある。
The purpose of this invention is to effectively reduce and recover unreduced metal oxides remaining in molten slag generated during melting reduction refining of metal oxides, etc. in a converter, while avoiding the conventional problems described above. The point is to suggest an advantageous method for doing so.

(問題点を解決するための手段) この発明は、底吹き転炉あるいは上底吹き転炉内に金属
酸化物を投入して溶融還元精錬する際に発生する溶融ス
ラグから有価金属を回収するに当り、前記転炉より溶融
還元を終えた溶湯を排出した後、該転炉内の残留溶融ス
ラグに底吹き羽目を通して酸素ガスおよび微粉炭を吹き
込むことにより、該スラグ中に残存する金属酸化物を還
元回収することを特徴とする溶融還元精錬時の溶融スラ
グ中の有価金属の回収方法である。
(Means for Solving the Problems) This invention provides a method for recovering valuable metals from molten slag generated when metal oxides are charged into a bottom blowing converter or a top and bottom blowing converter for melting and reduction refining. After discharging the molten metal that has undergone melt reduction from the converter, oxygen gas and pulverized coal are blown into the remaining molten slag in the converter through the bottom blowhole to remove metal oxides remaining in the slag. This is a method for recovering valuable metals in molten slag during smelting reduction refining, which is characterized by recovery by reduction.

(作 用) 通常、Cr鉱石の溶融還元精錬においては最終的に粗溶
!1i41を当り200〜400 kg程度のスラグが
生成し、大気圧下ではこれらのスラグ中に1〜5%の未
還元のCr、 Fe分が残存している。
(Function) Normally, in the smelting and reduction refining of Cr ore, the final result is crude melting! Approximately 200 to 400 kg of slag is produced per 1i41, and 1 to 5% of unreduced Cr and Fe remain in these slags under atmospheric pressure.

この発明は、スラグ中に残存するこのような未還元のC
rt Fe分などを、安全かつ効率よく還元回収しよう
とするものである。
This invention utilizes such unreduced C remaining in the slag.
The aim is to safely and efficiently reduce and recover rt Fe components.

以下その還元回収要領について詳細に説明する。The details of the reduction and recovery procedure will be explained below.

まず転炉による溶融還元精錬を終えた時点で溶湯すなわ
ち粗溶鋼を転炉より排出し、溶融スラグを該転炉内に残
しておく。
First, when the melting reduction refining in the converter is completed, the molten metal, that is, the crude molten steel, is discharged from the converter, leaving molten slag in the converter.

そしてこの溶融スラグ中に底吹き羽目を通して酸素およ
び微粉炭を吹き込み該スラグを攪拌しつつ還元精錬する
Oxygen and pulverized coal are then blown into the molten slag through the bottom blowhole to reduce and refine the slag while stirring.

ここで酸素および微粉炭はそれぞれ転炉内に個別に供給
できる2系統の底吹き羽口より同時に吹き込み可能なこ
とが必要である。
Here, it is necessary that oxygen and pulverized coal can be simultaneously blown into the converter through two systems of bottom blowing tuyeres that can be individually supplied into the converter.

またこれらの吹き込み量は下記の条件に基づき適宜決定
する。
Further, the amount of these injections is appropriately determined based on the following conditions.

すなわち、微粉炭は、 (1)スラグを溶融状態に保つための熱源用、(2)ス
ラグ中に残存する金属酸化物の還元用、(3)還元時の
分解吸収熱の補償用、 として、また酸素については(11および(3)の合計
量の微粉炭を燃焼させるのに必要な量を供給する。
In other words, pulverized coal is used as (1) a heat source to keep the slag in a molten state, (2) a reduction of metal oxides remaining in the slag, and (3) a compensation for the heat of decomposition and absorption during reduction. Further, oxygen is supplied in an amount necessary to burn the total amount of pulverized coal in (11 and (3)).

この発明においてはとくに微粉炭を転炉の底吹き羽口よ
り吹き込むが、その理由は、転炉の上部より添加すると
、該微粉炭がスラグ上に浮遊し、反応効率が低く、また
微粉炭が排ガス中にトラップされるため添加歩留りが劣
化する等の問題があり、これらの問題を効果的に回避す
るために底吹き羽口より微粉炭を吹き込む。
In this invention, pulverized coal is injected from the bottom blowing tuyere of the converter. The reason for this is that if it is added from the top of the converter, the pulverized coal will float on the slag, resulting in low reaction efficiency. There are problems such as deterioration of the addition yield because it is trapped in the exhaust gas, and in order to effectively avoid these problems, pulverized coal is blown through the bottom blowing tuyere.

第1図は、85を底吹き転炉を用いてCr鉱石の溶融還
元精錬にて生成したスラグ30〜5Qtに対して、微粉
炭20〜25kg/スラグt、酸素ガス15〜18Nm
3/スラグ【、生石灰150〜200 kg/スラグt
、の供給条件で該スラグ中のCrzOsの減少傾向を調
べた実験結果である。
Figure 1 shows pulverized coal 20-25 kg/slag t and oxygen gas 15-18 Nm for 30-5 Qt of slag produced by melting and reducing Cr ore using a bottom-blown converter.
3/Slag [, quicklime 150-200 kg/slag t
These are the results of an experiment in which the decreasing tendency of CrzOs in the slag was investigated under the supply conditions of .

底吹き羽口より酸素および微粉炭を吹き込んでスラグ中
の酸化物を還元回収するためには、スラグを溶融状態に
保ことばもちろんであるが、この実験によりスラグの温
度を1500℃以上とした場合スラグ中のCr酸化物は
ほぼ1%以下となることが明らかであり、従って、この
温度以上に調整することが有効である。
In order to reduce and recover the oxides in the slag by blowing oxygen and pulverized coal through the bottom blowing tuyeres, it is of course necessary to keep the slag in a molten state, but in this experiment, when the temperature of the slag was raised to 1500°C or higher, It is clear that the content of Cr oxide in the slag is approximately 1% or less, and therefore it is effective to adjust the temperature to above this temperature.

(実施例) 85を上底吹き転炉に溶銑80tを装入し、ここにCr
鉱石(T、 Cr 40%)および副原料を半連続的に
投入してCrK石の溶融還元精錬を行った。
(Example) 80 tons of hot metal 85 was charged into a top-bottom blowing converter, and Cr
Ore (T, Cr 40%) and auxiliary raw materials were semi-continuously charged to perform smelting reduction refining of CrK stone.

表−1に使用したCr鉱石および副原料の投入量を示す
Table 1 shows the amounts of Cr ore and auxiliary raw materials used.

表−1 なお精錬中、転炉の底吹き羽目(計7本:酸素ガス供給
用3本、N2ガスをキャリアガスとする微粉炭供給用4
本)から酸素ガス10100N/win、を吹き込み、
また上吹きランスからは17ONm’/minの酸素ガ
スを吹き込んで溶融還元精錬を行った。
Table 1 During refining, the bottom blowers of the converter (7 in total: 3 for oxygen gas supply, 4 for pulverized coal supply with N2 gas as carrier gas)
Blow in oxygen gas 10,100N/win from
In addition, 17 ONm'/min of oxygen gas was blown from the top blowing lance to perform melting and reduction refining.

吹錬終了(吹止め)時点における還元溶湯のCr濃度は
理論上16.0%まで上昇する筈であったが得られた溶
湯中のCr’774度は13.3%までしか上昇しなか
った。
Theoretically, the Cr concentration in the reduced molten metal at the end of blowing (stopping) should have risen to 16.0%, but the Cr'774 degree in the obtained molten metal rose only to 13.3%. .

なお、吹き止め時の溶湯成分はC:4.0χ、Cr:1
3.3%、Mn : 0.05%、p:o、o3%、S
 : 0.03%であった。また精錬中に生成したスラ
グ42.9 を中のT、Crは4.66%であった。
In addition, the molten metal composition at the time of blow-stopping is C: 4.0χ, Cr: 1
3.3%, Mn: 0.05%, p:o, o3%, S
: 0.03%. Furthermore, the T and Cr content in the slag 42.9% produced during refining was 4.66%.

そこで転炉より溶融還元精錬を終えた溶湯を排出した後
、 (1)スラグ温度上昇用の微粉炭: 12kg/スラグt (目標温度1550℃)、(2)
Cr z O:+還元用の微粉炭:2kg/スラグt (31Cr z 03分解熱補償用の微粉炭:8.5 
kg/スラグtを、また(11. (31の微粉炭を燃
焼させるために16.6Nm3/スラグtの酸素ガスを
それぞれ転炉の底吹き羽口より同時に10分間吹き込ん
だ。
After discharging the molten metal that has undergone smelting and reduction refining from the converter, (1) Pulverized coal to raise the slag temperature: 12 kg/slag t (target temperature 1550°C), (2)
Cr z O: + pulverized coal for reduction: 2 kg/slag t (31 Cr z 03 pulverized coal for decomposition heat compensation: 8.5
kg/t of slag and (11. (31) In order to burn the pulverized coal, 16.6 Nm3/t of slag was blown into each pulverized coal for 10 minutes at the same time from the bottom blowing tuyeres of the converter.

その結果、溶融スラグから3.OLの還元溶湯(C:5
.0%、Cr:57%、Fe:35%)を回収すること
ができた。
As a result, 3. Reduced molten metal of OL (C:5
.. 0%, Cr: 57%, Fe: 35%).

その後スラグを採取して分析したところT、 Crが0
.20%であることが確かめられた。
After that, the slag was collected and analyzed, and it was found that T and Cr were 0.
.. It was confirmed that it was 20%.

なお、第2図にこの実施例に用いた転炉の酸素ガスおよ
び微粉炭の供給系統を、また第3図(イ)〜(へ)にス
ラグ中に残存する金属酸化物の還元回収要領を模式で示
した。
Figure 2 shows the oxygen gas and pulverized coal supply system for the converter used in this example, and Figures 3 (a) to (e) show the reduction and recovery procedure for metal oxides remaining in the slag. Shown schematically.

(発明の効果) この発明によれば、Cr鉱石、Mn鉱石、Mo+ Vな
どの金属酸化物を用いる溶融還元精錬で生じるスラグに
残存する未還元の金属酸化物を還元回収する際、突沸等
の危険を伴うことなく、効率よく還元回収することが可
能であり、また還元回収に要する処理時間を大幅に短縮
して生産性の向上を図ることができる。
(Effects of the Invention) According to the present invention, when reducing and recovering unreduced metal oxides remaining in slag produced in smelting reduction refining using metal oxides such as Cr ore, Mn ore, Mo+V, etc., bumping etc. It is possible to carry out reduction and recovery efficiently without any danger, and it is also possible to significantly shorten the processing time required for reduction and recovery, thereby improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、スラグ中のCr酸化物とスラグ温度の関係を
示すグラフ、 第2図は転炉における酸素ガスおよび微粉炭の供給系統
図、 第3図はスラグ中の有価金属の回収要領を示した図であ
る。 第1図 スラデ1度(′C) 第2図 (イ) オ婁呟東 (ニ) 第3図
Figure 1 is a graph showing the relationship between Cr oxide in slag and slag temperature, Figure 2 is a diagram of the supply system of oxygen gas and pulverized coal in the converter, and Figure 3 is a graph showing the recovery procedure for valuable metals in slag. FIG. Fig. 1 Slade 1 degree ('C) Fig. 2 (A) Omutsu East (d) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 1、底吹き転炉あるいは上底吹き転炉内に金属酸化物を
投入して溶融還元精錬する際に発生する溶融スラグから
有価金属を回収するに当り、前記転炉より溶融還元を終
えた溶湯を排出した後、該転炉内の残留溶融スラグに底
吹き羽口を通じ酸素ガスおよび微粉炭を吹き込むことに
より、該スラグ中に残存する金属酸化物を還元回収する
ことを特徴とする溶融還元精錬時の溶融スラグ中の有価
金属の回収方法。
1. When recovering valuable metals from the molten slag generated when metal oxides are charged into a bottom-blown converter or a top-bottom-blown converter for smelting and refining, the molten metal that has been smelted and reduced from the converter. smelting reduction smelting characterized by reducing and recovering metal oxides remaining in the slag by blowing oxygen gas and pulverized coal into the remaining molten slag in the converter through a bottom blowing tuyere after discharging the slag. Method for recovering valuable metals from molten slag.
JP20575186A 1986-09-03 1986-09-03 Recovery method of valuable metal in molten slag during smelting reduction refining Expired - Lifetime JPH0610295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20575186A JPH0610295B2 (en) 1986-09-03 1986-09-03 Recovery method of valuable metal in molten slag during smelting reduction refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20575186A JPH0610295B2 (en) 1986-09-03 1986-09-03 Recovery method of valuable metal in molten slag during smelting reduction refining

Publications (2)

Publication Number Publication Date
JPS6362808A true JPS6362808A (en) 1988-03-19
JPH0610295B2 JPH0610295B2 (en) 1994-02-09

Family

ID=16512053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20575186A Expired - Lifetime JPH0610295B2 (en) 1986-09-03 1986-09-03 Recovery method of valuable metal in molten slag during smelting reduction refining

Country Status (1)

Country Link
JP (1) JPH0610295B2 (en)

Also Published As

Publication number Publication date
JPH0610295B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US6039787A (en) Process for reclaiming combustion residues
JPS6123245B2 (en)
JPH0791600B2 (en) Ni ore smelting reduction method
JP5132155B2 (en) Steel and steel making
JPS6362808A (en) Method for recovering valuable metal in molten slag during smelting and reduction refining
JPS61279608A (en) Production of high-chromium alloy by melt reduction
JPH03183719A (en) Method for accelerating reduction of manganese ore in steel making stage
JPH10219330A (en) Refining method into stainless steel
JP3063537B2 (en) Stainless steel manufacturing method
JP2587286B2 (en) Steelmaking method
JPH0967608A (en) Production of stainless steel
JPH1025507A (en) Method for refining stainless steel
JPS6250543B2 (en)
JPH0723495B2 (en) Operation method of smelting reduction furnace
JPS63176403A (en) Low si operation method for blast furnace
JPH01316407A (en) Production of chromium-containing molten iron
JPH01275711A (en) Smelt-reduction method
JPS62230908A (en) Melt reducing method for iron ore
JPH0723490B2 (en) Batch production method of hot metal
JPH01215913A (en) Manufacture of stainless steel by smelting reduction
JPS5855504A (en) Manufacture for pig and steel
JPH01142009A (en) Steel making method
JPS6342351A (en) Manufacture of chromium-containing molten iron
JPH01168806A (en) Production of chromium-contained molten iron
JPH01195214A (en) Operation of iron bath type melting and reducing furnace