JPS6362312A - Method of forming anode of solid electrolytic capacitor - Google Patents

Method of forming anode of solid electrolytic capacitor

Info

Publication number
JPS6362312A
JPS6362312A JP61206010A JP20601086A JPS6362312A JP S6362312 A JPS6362312 A JP S6362312A JP 61206010 A JP61206010 A JP 61206010A JP 20601086 A JP20601086 A JP 20601086A JP S6362312 A JPS6362312 A JP S6362312A
Authority
JP
Japan
Prior art keywords
voltage
forming
chemically
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61206010A
Other languages
Japanese (ja)
Inventor
秀光 竹内
井澤 幸司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Platforms Ltd
Original Assignee
Nitsuko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitsuko Corp filed Critical Nitsuko Corp
Priority to JP61206010A priority Critical patent/JPS6362312A/en
Publication of JPS6362312A publication Critical patent/JPS6362312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウム固体電解コンデンサとして、高
い定格電圧を有するコンデンサの陽極体形成方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an anode body of a capacitor having a high rated voltage as an aluminum solid electrolytic capacitor.

〔従来の技術〕[Conventional technology]

従来のアルミニウム固体電解コンデンサの陽極体(ここ
では陽極酸化膜が形成され、陽極リードを付したものを
いう)作成には、2つの方法が行なわれていた。1つは
アルミニウムのエツチド箔(エツチングにより多孔性と
した箔)を数枚重ねて打抜くことによって、箔を圧着成
形して積層体とした後、陽極リードを溶接して所定の化
成電圧で陽極酸化する。他の1つは、あらかじめ所定の
化成電圧でエツチド箔を陽極酸化した化成箔を圧着成形
して積層体とした後、陽極リードを溶接する。
Two methods have been used to produce the anode body (herein, an anode body on which an anodic oxide film is formed and an anode lead is attached) of a conventional aluminum solid electrolytic capacitor. One is to layer and punch several sheets of etched aluminum foil (foil made porous by etching), press-form the foils to form a laminate, and then weld the anode lead and attach the anode at a predetermined formation voltage. Oxidize. In the other method, etched foil is anodized at a predetermined formation voltage in advance to form a laminate by compression molding, and then the anode lead is welded.

E記の化成液としては、いずれもクエン酸1%。The chemical liquids listed in E are all 1% citric acid.

リンタングステン酸0.25%、リン酸0.0075%
(重量%)の水溶液を用いていた。
Phosphortungstic acid 0.25%, phosphoric acid 0.0075%
(% by weight) was used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

通常陽極体の化成電圧は、定格電圧の3〜4倍程度とし
ている。これは、後の工程で半導体層であるMnO□膜
を形成する際に、陽極酸化膜が劣化するので、余裕をみ
て酸化膜の厚みを厚くしておくためである。低い定格電
圧の場合は問題ないが、高い定格電圧25V・35Vの
場合は化成電圧は約90V〜135vと高くなり、エツ
チド箔・化成箔を陽極体に用いた各々の場合に対し、そ
れぞれ問題が生ずる。
Usually, the formation voltage of the anode body is about 3 to 4 times the rated voltage. This is because the anodic oxide film will deteriorate when forming the MnO□ film, which is a semiconductor layer, in a later step, so the thickness of the oxide film should be increased to allow for some margin. There is no problem with low rated voltages, but with high rated voltages of 25V and 35V, the formation voltage increases to about 90V to 135V, and there are problems in each case when etched foil and chemical formation foil are used for the anode body. arise.

エツチド箔の場合、積層体にしてから化成するので、表
面より深いところに、化成液の浸透が難しく、化成効率
がよくない。また厚い酸化膜形成のため化成時間も長く
なりアルミニウムが溶けたり、水酸化アルミニウムが厚
く形成されることなどで、耐圧不良がおこり易い欠点が
ある。
In the case of etched foil, since it is formed into a laminate and then chemically converted, it is difficult for the chemical liquid to penetrate deeper than the surface, resulting in poor chemical conversion efficiency. In addition, forming a thick oxide film requires a long formation time, which leads to melting of aluminum and the formation of thick aluminum hydroxide, which tends to cause breakdown voltage problems.

化成箔の場合は、箔表面に酸化膜が形成されているので
、箔を打抜き、圧着成形した積層体の箔相互間の圧着強
度が弱い。そのためMnO,膜形成工程で、箔相互間が
はがれ、第2図(b)に示すように、陽極リードに対向
する先端部で厚さが大きくなる。第2図(alは、低い
定格電圧のコンデンサの場合であり、このようなことは
ない。陽極体として箔相互間が開いていると、モールド
外装の際射出圧力により強い変形圧力を受け、陽極酸化
膜に亀裂を生じ、電圧印加時にショートになることが多
い。
In the case of chemically formed foils, since an oxide film is formed on the surface of the foil, the strength of the pressure bonding between the foils in a laminate formed by punching and pressure-molding the foils is weak. Therefore, during the MnO film formation process, the foils peel off from each other, and the thickness increases at the tip facing the anode lead, as shown in FIG. 2(b). Figure 2 (al) is for a capacitor with a low rated voltage, and this does not occur.If the foils are spaced apart from each other as an anode body, they will be subjected to strong deformation pressure due to injection pressure during mold exterior, and the anode Cracks occur in the oxide film, often resulting in short circuits when voltage is applied.

次に、エツチド箔・化成箔に共通なことであるが、従来
の化成液は、リンタングステン酸を水溶液に含んでいる
ので、酸化膜A l t O3にリンタングステン酸が
含まれるようになり、M n O!溶液とのなじみが悪
い、そのため容量Capが小さく、インピーダンスZが
大きくなる(頃向がある。しかしリンタングステン酸を
除(と、耐圧が不良になる欠点があった。
Next, as is common to etched foils and chemically formed foils, since conventional chemical solutions contain phosphotungstic acid in the aqueous solution, phosphotungstic acid is included in the oxide film Al t O3. MnO! It has poor compatibility with the solution, resulting in a small capacitance Cap and a large impedance Z. However, if phosphotungstic acid is removed, the breakdown voltage becomes poor.

本発明の目的は、上記の欠点を除去し、定格電圧の高い
アルミニウム固体電解コンデンサとして、耐圧・容量・
インピーダンスの良好な特性を与える陽極体形成方法を
提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, and to provide an aluminum solid electrolytic capacitor with high rated voltage, withstand voltage, capacity, and
An object of the present invention is to provide a method for forming an anode body that provides good impedance characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、エツチド箔をコンデンサの定格電圧により定
められる所定の化成電圧より低い中間電圧で、化成する
第1工程と、前記化成箔を複数枚積層し、打抜いて圧着
成形後、陽極リードを接続する第2工程と、前記リード
を接続した積層体を所定の化成電圧で化成する第3工程
とを含む。第1工程・第3工程における化成液は、前者
がリンタングステン酸を含むクエン酸水溶液、後者がリ
ンタングステン酸を含まないクエン酸水溶液と異ならし
めている。
The present invention includes a first step of chemically forming the etched foil at an intermediate voltage lower than a predetermined forming voltage determined by the rated voltage of the capacitor, laminating a plurality of sheets of the chemically forming foil, punching and crimping, and then forming an anode lead. The method includes a second step of connecting, and a third step of anodizing the stacked body to which the leads are connected at a predetermined anodizing voltage. The chemical conversion liquids used in the first and third steps are different from each other: the former is a citric acid aqueous solution containing phosphotungstic acid, and the latter is a citric acid aqueous solution not containing phosphotungstic acid.

〔作用〕[Effect]

本発明では、コンデンサの定格電圧により定められる所
定の化成電圧より低い中間電圧の化成と。
In the present invention, formation of an intermediate voltage lower than a predetermined formation voltage determined by the rated voltage of the capacitor.

所定の化成電圧の作成と2段階にわけて化成する。The chemical formation is performed in two stages: creation of a predetermined chemical formation voltage;

また陽極リードの溶接は中間に行ない、かつ各段階の化
成液の組成を変えている。実施例に示すように、このよ
うな組合わせにより従来の陽極体形成に伴う欠点を除去
する。
Additionally, the anode lead is welded in the middle, and the composition of the chemical solution at each stage is changed. As shown in the examples, such a combination eliminates the drawbacks associated with conventional anode body formation.

〔実施例〕〔Example〕

以下、本発明の実施例につき説明する。実施例は、35
V定格で、所定の化成電圧は135vとする。先ず、第
1工程としては、エツチド箔を、クエン酸1%、リンタ
ングステン酸0.25%。
Examples of the present invention will be described below. Examples are 35
V rating, and the predetermined formation voltage is 135V. First, in the first step, etched foil was mixed with 1% citric acid and 0.25% phosphotungstic acid.

リン酸0.0075%(重量%)の水溶液(化成液A)
を用い、35Vの電圧で化成する0次に通常のとおり、
中間処理としては470℃で2分間熱処理を行なう。こ
れは形成した皮膜<Altos・nHzo)を脱水し、
ろうえい電流を減少させるためである。このあと再び3
5Vで再化成後、第2工程として、化成箔を数枚重ねて
、打抜きプレスにより箔同志を圧着成形し、陽極リード
を溶接する。第3工程は、前記リードを接続した積層体
をクエン酸2%(重量%)の水溶液(化成液B)中で、
135vで化成を行なう。
Aqueous solution of phosphoric acid 0.0075% (wt%) (chemical liquid A)
As usual, the 0th order is formed at a voltage of 35V using
As an intermediate treatment, heat treatment is performed at 470° C. for 2 minutes. This dehydrates the formed film <Altos・nHzo),
This is to reduce the leakage current. After this again 3
After reconversion at 5 V, as a second step, several sheets of chemically conductive foil are stacked, the foils are pressed together using a punching press, and the anode lead is welded. In the third step, the laminate to which the leads are connected is placed in an aqueous solution (chemical liquid B) containing 2% (wt%) citric acid.
Perform chemical conversion at 135v.

上記工程で形成された陽極体は、以後周知の方法により
、その上に、M n O、半導体層・カーボン、銀の導
電層を順次形成した後、5外部電極を取り出し、樹脂外
装を行なうことで、アルミニウム固体電解コンデンサが
製作される。
On the anode body formed in the above process, after sequentially forming conductive layers of MnO, semiconductor layer/carbon, and silver on the anode body by a well-known method, the five external electrodes are taken out and resin exterior is applied. In this process, aluminum solid electrolytic capacitors are manufactured.

本発明により製作されたコンデンサと、他の方法でつく
られたコンデンサとの特性比較について以下説明する。
Comparison of characteristics between capacitors manufactured according to the present invention and capacitors manufactured by other methods will be described below.

比較コンデンサのアルミ箔の形状・枚数は全く同一であ
る。
The shape and number of aluminum foils in the comparison capacitors are exactly the same.

先ず従来例として、エツチド箔を化成電圧135V、化
成液Aで化成した化成箔を積層して打抜きプレスし、陽
極リードを取り付けた場合との比較として、樹脂外装後
のろうえい電流(LC)を第1表に示す、試料は各10
個無差別にデータを記載している。次に、本発明と同じ
く中間電圧での化成を含む2段階化成を行なうが、化成
液は変えず、化成液Aのみ、あるいは化成液Bのみで化
成した場合との比較を第2表で、容11Cap、インピ
ーダンスZについて示す、データは無差別に各10個の
サンプルについてのデータを記載している。
First, as a conventional example, the electrolytic current (LC) after resin sheathing was compared with the case where etched foils were laminated with chemically formed foils formed with chemically formed liquid A at a chemically formed voltage of 135 V, and then punched and pressed, and an anode lead was attached. Table 1 shows 10 samples each.
Data is recorded indiscriminately. Next, as in the present invention, a two-step chemical conversion including chemical conversion at an intermediate voltage is performed, but the chemical conversion liquid is not changed, and a comparison is made in Table 2 with the case of chemical conversion using only chemical liquid A or only chemical liquid B. The data shown for capacitance 11Cap and impedance Z are written for each of 10 samples indiscriminately.

第1表 * * 35V印加2分後の値 第2表  Cap(μF) 2(Ω):@100KH。Table 1 * *Value after 2 minutes of 35V application Table 2 Cap (μF) 2 (Ω): @100KH.

第1表に示すように、エツチド箔を積層して陽穫体を形
成する方法は、35V印加で大部分ショート状態になる
が、本発明ではろうえい電流はきわめて少なく良好であ
る。
As shown in Table 1, in the method of laminating etched foils to form a sunscreen, most of the parts are short-circuited when 35V is applied, but in the present invention, the leakage current is extremely small and is satisfactory.

第2表に示す、化成液を1種類のみとする場合、化成液
入では容fcapが小さく、またインピーダンスが高い
ことがわかる。これは、前述したように、Altos中
にリンタングステン酸が含まれ、Mn0t溶液とのなじ
みが良くないためである。
Table 2 shows that when only one type of chemical liquid is used, the volume fcap is small and the impedance is high when the chemical liquid is included. This is because, as described above, Altos contains phosphotungstic acid and is not compatible with the Mn0t solution.

化成液Bのみの場合には、容量Cap、インピーダンス
Zとも良好な特性を示す。
In the case of only the chemical liquid B, both the capacitance Cap and the impedance Z show good characteristics.

しかじ化成箔を露出した状態で、1時間純水ボイルする
と、以下に示すように化成液Bのみの場合は耐圧が極端
に劣化する。第1図は、本発明。
However, if the chemically converted foil is boiled in pure water for one hour in an exposed state, the withstand pressure will be extremely degraded in the case of using only chemically formed liquid B, as shown below. Figure 1 shows the present invention.

化成液Aのみで化成したもの、化成液Bのみで化成した
ものについて、電圧印加後の耐圧特性を示すもので、化
成液A、Bにより大きな差が生ずる。
This shows the breakdown voltage characteristics after voltage application for those chemically formed with only chemical liquid A and those chemically formed only with chemical liquid B, and there is a large difference between chemical liquids A and B.

これは化成液Bを用いたときの絶縁性の酸化皮膜は純水
ボイルにより水和し、絶縁の低下がおこるのに対し、化
成液Aを用いたときの絶縁性の酸化皮膜は、皮膜中にと
りこまれたリンタングステン酸の効果により水和がおこ
りにくいためである。
This is because the insulating oxide film when chemical liquid B is used is hydrated by pure water boiling, resulting in a decrease in insulation, whereas the insulating oxide film when chemical liquid A is used is This is because hydration is difficult to occur due to the effect of phosphotungstic acid incorporated in the phosphotungstic acid.

本発明は化成液Aを第1段階で用いるので、耐圧特性は
良好である。なお樹脂モールドした完成品の耐湿性は、
第1図と同一傾向を示す。
In the present invention, since the chemical liquid A is used in the first stage, the pressure resistance characteristics are good. The moisture resistance of the resin molded finished product is as follows:
It shows the same tendency as Fig. 1.

〔発明の効果〕〔Effect of the invention〕

以上の実験例に示すように、本発明の2段階の化成と、
化成液の組合わせが、高い定格電圧のアルミニウム固体
電解コンデンサに最適であることがわかる。第1工程の
化成では、化成電圧は低く、箔表面酸化膜も薄く、打抜
き圧着の際の圧着強度も充分あるので、M n O、膜
形成工程で、厚さが大きくなることがない。また化成液
を第1工程。
As shown in the above experimental examples, the two-stage chemical formation of the present invention,
It can be seen that the combination of chemical liquids is optimal for high rated voltage aluminum solid electrolytic capacitors. In the first step of formation, the formation voltage is low, the oxide film on the foil surface is thin, and the pressure bonding strength during punching and pressure bonding is sufficient, so the thickness does not increase in the M n O film forming step. Also, the chemical liquid is used as the first step.

第2工程で成分を変えることによって、電気的特性とし
て容量が大きく、インピーダンスが低い良好な特性を有
し、耐湿性に優れたアルミニウム固体電解コンデンサを
得ることができた。
By changing the components in the second step, it was possible to obtain an aluminum solid electrolytic capacitor with good electrical characteristics such as large capacity and low impedance, and excellent moisture resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例、および参照した他の方法
で得られた陽極体についての耐湿試験の結果を示す図、
第2図は化成箔を積層して打抜くことで製作した陽極体
をMnO,含浸を行なう際の欠点を説明するための図で
ある。
FIG. 1 is a diagram showing the results of a moisture resistance test for anode bodies obtained by an embodiment of the present invention and other methods referred to;
FIG. 2 is a diagram for explaining the drawbacks when impregnating an anode body manufactured by laminating and punching chemically formed foils with MnO.

Claims (1)

【特許請求の範囲】[Claims] アルミニウム固体電解コンデンサの陽極体形成において
、アルミニウムエッチド箔をコンデンサの定格電圧によ
り定められる所定の化成電圧より低い中間電圧で、リン
タングステン酸を含むクエン酸水溶液中で化成する第1
工程と、前記化成箔を複数枚積層し、打抜いて圧着成形
後、陽極リードを接続する第2工程と、前記リードを接
続した積層体を所定の化成電圧で、クエン酸水溶液中で
化成する第3工程とを含むことを特徴とするアルミニウ
ム固体電解コンデンサの陽極体形成方法。
In forming the anode body of an aluminum solid electrolytic capacitor, the first step is to chemically form an aluminum etched foil in an aqueous citric acid solution containing phosphotungstic acid at an intermediate voltage lower than a predetermined chemically forming voltage determined by the rated voltage of the capacitor.
a second step of laminating a plurality of sheets of the chemically formed foil, punching and press-molding, and then connecting an anode lead; and chemically forming the laminate to which the leads are connected in a citric acid aqueous solution at a predetermined forming voltage. A method for forming an anode body of an aluminum solid electrolytic capacitor, the method comprising: a third step.
JP61206010A 1986-09-03 1986-09-03 Method of forming anode of solid electrolytic capacitor Pending JPS6362312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61206010A JPS6362312A (en) 1986-09-03 1986-09-03 Method of forming anode of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61206010A JPS6362312A (en) 1986-09-03 1986-09-03 Method of forming anode of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS6362312A true JPS6362312A (en) 1988-03-18

Family

ID=16516412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61206010A Pending JPS6362312A (en) 1986-09-03 1986-09-03 Method of forming anode of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6362312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222333A (en) * 2005-02-14 2006-08-24 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
CN107967996A (en) * 2017-11-15 2018-04-27 广西贺州市桂东电子科技有限责任公司 A kind of chemical synthesizing method of mash welder capacitor anode foils

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222333A (en) * 2005-02-14 2006-08-24 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
US7852614B2 (en) 2005-02-14 2010-12-14 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and process for fabricating same
JP4660222B2 (en) * 2005-02-14 2011-03-30 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
CN107967996A (en) * 2017-11-15 2018-04-27 广西贺州市桂东电子科技有限责任公司 A kind of chemical synthesizing method of mash welder capacitor anode foils

Similar Documents

Publication Publication Date Title
TWI416558B (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001185460A (en) Solid electrolytic capacitor and its manufacturing method and substrate of an integrated circuitfor it
TWI284335B (en) Anode member for solid electrolytic condenser and solid electrolytic condenser using the anode member
JPH10144573A (en) Solid electrolytic capacitor and its manufacture
JPH11219861A (en) Electrolytic capacitor and manufacture thereof
KR20210061616A (en) Solid Electrolyte Capacitor and fabrication method thereof
JPS6362312A (en) Method of forming anode of solid electrolytic capacitor
JP2007180328A (en) Stacked solid electrolytic capacitor and capacitor module
JP3441088B2 (en) Method for manufacturing solid electrolytic capacitor
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2859940B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP3433478B2 (en) Solid electrolytic capacitors
JPH05175085A (en) Chip-shaped solid electrolytic capacitor
JP3546451B2 (en) Method for manufacturing solid electrolytic capacitor
JP3826153B1 (en) Multilayer solid electrolytic capacitor and method for forming cathode lead layer in multilayer solid electrolytic capacitor
JP2003197471A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2004281749A (en) Solid electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JP2000306782A (en) Electrode member for solid electrolytic capacitor, the solid electrolytic capacitor using the same and manufacture of them
JPH10335187A (en) Solid electrolytic capacitor and its manufacturing method
JP3401447B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JP3505763B2 (en) Chip-shaped solid electrolytic capacitor
JP2003272958A (en) Solid electrolytic capacitor electrode member and solid electrolytic capacitor using the same