JPS6361712A - Intake device for engine - Google Patents

Intake device for engine

Info

Publication number
JPS6361712A
JPS6361712A JP61205674A JP20567486A JPS6361712A JP S6361712 A JPS6361712 A JP S6361712A JP 61205674 A JP61205674 A JP 61205674A JP 20567486 A JP20567486 A JP 20567486A JP S6361712 A JPS6361712 A JP S6361712A
Authority
JP
Japan
Prior art keywords
intake
intake port
port
auxiliary
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61205674A
Other languages
Japanese (ja)
Inventor
Haruo Okimoto
沖本 晴男
Seiji Tajima
誠司 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61205674A priority Critical patent/JPS6361712A/en
Publication of JPS6361712A publication Critical patent/JPS6361712A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve charging efficiency by providing an auxiliary intake port which is closed to the open air and communicates with other cylinders besides and intake port for supplying intake air in each combustion chamber, and establishing the opening time of the auxiliary intake port to be earlier than that of the intake port for supplying the intake air. CONSTITUTION:The combustion chamber of each cylinder 2 has an intake port 6 which communicates with an air cleaner 14 and makes air intaking action, and is provided with an auxiliary intake port 9 which communicates mutually with other cylinders through a communicating passage 22 closed to the open air and an intake air diffusing chamber 21 besides said intake port 6 in each combustion chamber. The opening time of said port 9 is established to be earlier than that of said port 6. Thus pressure vibration generated in the communicating passage 22 can produce dynamic effect in said port 6 through the combustion chamber to improve charging efficiency through synergetic action with the dynamic effect in an intake system.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気の動的効果を利用して充填効率を向上す
るようにしたエンジンの吸気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine that utilizes the dynamic effect of intake air to improve charging efficiency.

(従来技術) 従来から、エンジンの作動に伴う吸気圧力の変動を利用
して吸気の充填効率を高めるようにしたエンジンの吸気
装置は種々知られている。例えば特開昭59−1735
20月公報に示された装置では、吸気マニホールドを吸
気順序が隣り合わない気筒群どうしにまとめて複数に分
割し、その各吸気マニホールド集合部より上流側で吸気
通路を合流させ、各吸気マニホールド集合部組り間、お
よび各吸気マニホールド集合部と上記合流部との間の吸
気通路相互間をそれぞれ容積部を介して連絡し、これら
2箇所の連絡部に第1おにび第2の開m弁をそれぞれ設
け、これらの弁をエンジンの運転条件に応じて開閉制御
するようにしている。
(Prior Art) Various engine intake devices have been known that utilize fluctuations in intake pressure as the engine operates to increase intake air filling efficiency. For example, JP-A-59-1735
In the device disclosed in the October bulletin, the intake manifold is divided into a plurality of cylinder groups whose intake order is not adjacent to each other, and the intake passages are merged upstream of each intake manifold assembly. The intake passages between the sections and between each intake manifold assembly section and the above-mentioned merging section are communicated via volume sections, and a first opening and a second opening m are provided at these two communication sections. Valves are provided, and the opening and closing of these valves are controlled according to the operating conditions of the engine.

この装置によると、両開開弁が閉じられているときと、
第2の開閉弁のみ開かれるときと、第1開閉弁が開かれ
るときとで、吸気圧力波の反%1位置が段階的に切替わ
り、圧力振動の周期に関係する通路の実質長さが変化す
るため、低速、中速、^速の名城で動的効果を高めて充
填効率の向上を図ることができる。
According to this device, when the double-opening valve is closed and
When only the second on-off valve is opened and when the first on-off valve is opened, the inverse %1 position of the intake pressure wave changes in stages, and the actual length of the passage related to the period of pressure oscillation changes. Since the speed changes, it is possible to enhance the dynamic effect and improve the filling efficiency at low speed, medium speed, and ^ speed Meijo.

ところが、このような従来装置では、あくまで、外部か
ら導入した吸気を各気筒に供給する流路となる吸気通路
(吸気マニホールドおよびその上流側の吸気通路)に、
上記のような動的効果をもたせるための構造を組込むよ
うにしているため、吸気系が複雑化するとともに、吸気
通路の長さが制約され、吸気系のレイアウト等に制限を
受番プる。
However, in such conventional devices, the intake passage (the intake manifold and the intake passage upstream of the intake manifold), which is the flow path for supplying intake air introduced from the outside to each cylinder, is
Incorporating a structure to provide the above-mentioned dynamic effects complicates the intake system, limits the length of the intake passage, and places restrictions on the layout of the intake system.

その上、吸気供給を行なう吸気通路のみで動的効果を持
たせるだけでは、要求される運転域に応じた動的効果の
調整の自由度、および充填効率の向上度合に限界がある
Furthermore, if only the intake passage through which intake air is supplied has a dynamic effect, there is a limit to the degree of freedom in adjusting the dynamic effect according to the required operating range and the degree to which the charging efficiency can be improved.

(発明の目的) 本発明はこのような事情に鑑み、吸気供給を行なう本来
の吸気系とは別に、気筒相互間もしくは気筒と外気から
閉鎖された吸気拡大室との間で圧力伝播によって動的効
果を持たせる補助的な系を設けることにより、吸気系の
構造の簡略化、充填効率の向上等を図り、特に、上記の
補助的な系において大きな動的効果を持たせることがで
きるエンジンの吸気装置を提供するものである。
(Objective of the Invention) In view of the above circumstances, the present invention has been developed to provide a dynamic system that uses pressure propagation between cylinders or between cylinders and an intake expansion chamber that is closed from the outside air, in addition to the original intake system that supplies intake air. By providing an auxiliary system that has an effect, the structure of the intake system can be simplified, the filling efficiency can be improved, etc. The present invention provides an intake device.

(発明の構成) 本発明は、燃焼室に吸気を供給する吸気ポートに加え、
吸気行程中に開かれる補助吸気ポートと、この補助吸気
ポートを他の気筒の補助吸気ボー1へにのみ連通させ、
あるいは外気からの閉鎖された吸気拡大室に連通させる
連通路とを設けるとともに、上記補助吸気ポートの開時
期を上記吸気ポートの開時期よりも早めるように設定し
たものである。
(Structure of the Invention) The present invention provides, in addition to an intake port that supplies intake air to a combustion chamber,
An auxiliary intake port opened during the intake stroke and this auxiliary intake port communicated only with the auxiliary intake bow 1 of other cylinders,
Alternatively, a communication path is provided to communicate with the closed intake expansion chamber from the outside air, and the opening timing of the auxiliary intake port is set earlier than the opening timing of the intake port.

この構成により、吸気供給を行なう本来の吸気系とは別
に、上記補助吸気ポートに沖なる連通路内に圧力振動が
生じて動的効果が得られ、特に、補助吸気ポートが吸気
ポートより早く開かれることにより、残留排気圧の影響
で連通路内のLf力振動が強められ、動的効果が高めら
れる。
With this configuration, apart from the original intake system that supplies intake air, pressure oscillations are generated in the communication passage connected to the auxiliary intake port, producing a dynamic effect. In particular, the auxiliary intake port opens earlier than the intake port. By this, the Lf force vibration in the communication passage is strengthened due to the influence of the residual exhaust pressure, and the dynamic effect is enhanced.

(実施例) 第1図および第2図は本発明の第1実施例を示し、この
実施例では、4気筒4リイクルのレシプロエンジンに本
発明H1liを適用している。これらの図において、エ
ンジン本体1の各気筒2に【、L、ピストン3の上方に
燃焼室4が形成されている。
(Embodiment) FIGS. 1 and 2 show a first embodiment of the present invention, and in this embodiment, the present invention H1li is applied to a 4-cylinder, 4-recycle reciprocating engine. In these figures, a combustion chamber 4 is formed above a piston 3 in each cylinder 2 of an engine main body 1.

この燃焼室4には、吸気弁5により開閉されて燃焼室4
に吸気を供給する吸気ポート6と、排気弁7により開閉
される排気ポート8とが開口し、さらにこれらに加え、
吸気の動的効果を高めるための補助吸気ポート9が間口
している。この補助吸気ボー1−〇は、補助吸気弁10
によって吸気行程中に開かれるようになっている。
The combustion chamber 4 is opened and closed by an intake valve 5.
An intake port 6 that supplies intake air to the exhaust port 6 and an exhaust port 8 that is opened and closed by an exhaust valve 7 are opened.
An auxiliary intake port 9 is opened to enhance the dynamic effect of intake air. This auxiliary intake valve 1-0 is the auxiliary intake valve 10.
It is opened during the intake stroke.

各気筒2の吸気ポート6は気筒別の吸気通路11に接続
され、この気筒別の吸気通路11は、上流側吸気通路1
2から外気が導入されるサージタンク13に接続されて
いる。上流側吸気通路12にはエアクリーナ14、エア
フローメータ15およびスロットル弁16が配設されて
おり、吸気通路11には燃料噴射弁17が装備されてい
る。また、排気ポート8は排気マニホールド18に接続
されている。
The intake port 6 of each cylinder 2 is connected to an intake passage 11 for each cylinder, and this intake passage 11 for each cylinder is connected to an upstream intake passage 1
2 is connected to a surge tank 13 into which outside air is introduced. The upstream intake passage 12 is provided with an air cleaner 14, an air flow meter 15, and a throttle valve 16, and the intake passage 11 is provided with a fuel injection valve 17. Further, the exhaust port 8 is connected to an exhaust manifold 18.

一方、補助吸気ポート9は、上記サージタンク13とは
別に設けられた吸気拡大室21に連通路22を介して接
続されている。上記吸気拡大室21は、外気に対して閉
鎖され、補助吸気ポート9にのみ連通路22を介して連
通している。
On the other hand, the auxiliary intake port 9 is connected to an intake expansion chamber 21 provided separately from the surge tank 13 via a communication passage 22. The intake expansion chamber 21 is closed to outside air and communicates only with the auxiliary intake port 9 via a communication passage 22.

また、上記連通路22には、運転状態に応じてこの連通
路22を開閉するシャツタ弁23が設置ノられている。
Further, a shutter valve 23 is installed in the communication passage 22 to open and close the communication passage 22 depending on the operating state.

このシャツタ弁23は、エンジン回転数センサ24およ
びスロットル開度センサ25からの信号を受けるコント
ロールユニット26により、三方電磁弁27および負圧
応動式のアクチュエータ28等の駆動手段を介して制御
され、連通路22の圧力変動による動的効果が得られな
い低回転数域や動的効果を必要としない低負荷域では連
通路22を閉じるようになっている。
This shutter valve 23 is controlled by a control unit 26 that receives signals from an engine rotation speed sensor 24 and a throttle opening sensor 25 via driving means such as a three-way solenoid valve 27 and a negative pressure responsive actuator 28. The communication passage 22 is closed in a low rotation speed range where dynamic effects due to pressure fluctuations in the passage 22 cannot be obtained or in a low load range where dynamic effects are not required.

第3図は吸気弁5による吸気ポート6の開口エリア(線
A)、および補助吸気弁1oによる補助吸気ポート9の
開口エリア(線B)を示している。
FIG. 3 shows the opening area of the intake port 6 by the intake valve 5 (line A) and the opening area of the auxiliary intake port 9 by the auxiliary intake valve 1o (line B).

この図に示すように、吸気弁5による吸気ポート6の開
時期10および閉時期1cは従来と同様に設定され、つ
まり上死点下DCより少し前から開き始めて下死点BD
Cより少し後に閉じられる。
As shown in this figure, the opening timing 10 and closing timing 1c of the intake port 6 by the intake valve 5 are set in the same way as before, that is, it starts opening a little before the bottom dead center DC and reaches the bottom dead center BD.
Closed a little later than C.

一方、補助吸気弁10による補助吸気ポート9の開時期
10’ は吸気弁5による吸気ポート6の開時期IOよ
りも早くなるように設定されている。
On the other hand, the opening timing 10' of the auxiliary intake port 9 by the auxiliary intake valve 10 is set to be earlier than the opening timing IO of the intake port 6 by the intake valve 5.

−〇  − なお、上記連通路22の通路長さは、出力の向上を特徴
とする特定エンジン回転数で連通路22内の圧力波が共
振するように設定しておく。このようにするには、上記
連通路22内における気柱の固有振動数が上記特定エン
ジン回転数での単位時間当りのエンジン1気筒の吸入回
数の整数倍(例えば2倍または4倍)となるように、連
通路22の通路長さを設定しておけばよい。
-〇- Note that the passage length of the communication passage 22 is set so that the pressure waves in the communication passage 22 resonate at a specific engine rotation speed that is characterized by improved output. In order to do this, the natural frequency of the air column in the communication passage 22 is set to be an integral multiple (for example, twice or four times) of the number of intakes per cylinder of the engine per unit time at the specified engine speed. The length of the communication path 22 may be set in advance.

このような吸気装置の作用を第4図および第5図によっ
て説明する。
The operation of such an intake device will be explained with reference to FIGS. 4 and 5.

第4図は、特定エンジン回転数における吸気行程での吸
気ポート6付近、気筒内および補助吸気ボー1へ9付近
の圧力変動を、補助吸気ポート9の開時期を吸気ポート
6より早めた場合(線C,D。
Figure 4 shows the pressure fluctuations around intake port 6, inside the cylinder, and around auxiliary intake bow 1 to 9 during the intake stroke at a specific engine speed, when the opening timing of auxiliary intake port 9 is earlier than that of intake port 6 ( Lines C, D.

E)ど両ボー1へを同時に開くようにした場合(線Co
 、 Do 、 Eo )とについて示している。また
第5図は、吸気ボー1−6イ]近の吸気圧力波(線F)
および補助吸気ポート9付近の圧力波(線G)を数周期
にわたって概略的に示している。
E) When both lines are opened at the same time (line Co
, Do, Eo). Also, Figure 5 shows the intake pressure wave (line F) near the intake bow 1-6
and pressure waves (line G) near the auxiliary intake port 9 are schematically shown over several cycles.

これらの図に示すJ:うに、吸気行程における気筒内に
は、容積変化率が大きい吸気行程途中の所定時期に負圧
が最大となる圧力変動が生じ、これに応じて吸気ポート
6付近に吸気圧力振動が生じるとともに、連通路22内
にも、気WJ2と吸気拡大室21との間の圧力伝播によ
って圧力振動が生じる。この圧力振動が補助吸気ポート
9に作用するとともに、気筒内の圧力変動および吸気ポ
ート6付近の吸気圧力振動に影響を及ぼし、vJ的効果
が与えられる。特に、連通路22内に共振が([じたと
き、例えば第5図に示すように連通路22内における気
柱の固有振動の周期Tが吸入周期T−。
J shown in these figures: In the cylinder during the intake stroke, a pressure fluctuation occurs in which the negative pressure reaches its maximum at a predetermined time in the middle of the intake stroke when the rate of change in volume is large, and in response to this, the intake air is increased near the intake port 6. Pressure oscillations occur, and pressure oscillations also occur within the communication path 22 due to pressure propagation between the air WJ2 and the intake expansion chamber 21. This pressure vibration acts on the auxiliary intake port 9, and also influences the pressure fluctuation within the cylinder and the intake pressure vibration near the intake port 6, giving a vJ effect. In particular, when resonance occurs within the communicating passage 22, for example, as shown in FIG. 5, the period T of the natural vibration of the air column within the communicating passage 22 becomes the suction period T-.

の1/4(固有振動数が吸入回数の4倍)となったとき
に、動的効果が高められる。
The dynamic effect is enhanced when the natural frequency is 1/4 of the number of inhalations (4 times the number of inhalations).

つまり、連通路22内に共振による大きな圧力振動が生
じると、その影響で吸気行程途中にa; I=jる気筒
内の負圧が大きくなって吸入力が増大し、これによって
吸気圧力波が強化される(第4図参照)。このため、吸
気行程終期の吸気圧力が高められて吸気ポート6からの
吸気供給量が増加し、また補助吸気ポート9からも吸気
拡大室21に貯えられた吸気が燃焼室4に押し込まれ、
これらの作用で充填効率が高められる。
In other words, when large pressure vibrations occur in the communication passage 22 due to resonance, the negative pressure in the cylinder a; (See Figure 4). Therefore, the intake pressure at the end of the intake stroke is increased and the amount of intake air supplied from the intake port 6 is increased, and the intake air stored in the intake expansion chamber 21 is also pushed from the auxiliary intake port 9 into the combustion chamber 4.
These effects enhance filling efficiency.

そして、特に補助吸気ポート9の開時期IO’を吸気ポ
ート6の開時期10よりも早めるように設定しておくと
、補助吸気ポート9付近の連通路22内の圧力波(第4
図の線E)が、補助吸気ボー1−9を吸気ポート6と同
時に開く場合(線Eo)よりもさらに強められる。つま
り、補助吸気ポート9の開時期10’ が早められるこ
とにより、補助吸気ポート9付近の圧力波は、補助吸気
ポート間時期Io′の直後に気筒内の残留排気圧の影響
で圧力が高められ(E+部分)、その揺り返しで吸気行
程途中での最大負圧が大きくなり(E2部分)、さらに
その揺り返しで吸気行程終期の圧力が高められる(F3
部分)。このようにして補助吸気ポート9付近の圧力波
の振幅が大きくなり、これに伴い、気筒内の圧力変動(
線D)および吸気ポート6付近の吸気圧力波〈線C)も
、それぞれ、補助吸気ポート9を吸気ポート6と同時に
開く場合(線Doおにび線Co )と比べて強められ−
〇 − る。従って、動的効果がより一層高められることとなる
In particular, if the opening timing IO' of the auxiliary intake port 9 is set earlier than the opening timing 10 of the intake port 6, pressure waves in the communication passage 22 near the auxiliary intake port 9 (the fourth
Line E) in the figure is further strengthened than when the auxiliary intake bow 1-9 is opened at the same time as the intake port 6 (line Eo). In other words, by advancing the opening timing 10' of the auxiliary intake port 9, the pressure wave near the auxiliary intake port 9 increases due to the influence of the residual exhaust pressure in the cylinder immediately after the auxiliary intake port interval Io'. (E+ part), the oscillation increases the maximum negative pressure in the middle of the intake stroke (E2 part), and the oscillation also increases the pressure at the end of the intake stroke (F3).
part). In this way, the amplitude of the pressure wave near the auxiliary intake port 9 increases, and along with this, the pressure fluctuation inside the cylinder (
Line D) and the intake pressure wave near the intake port 6 (line C) are also strengthened compared to when the auxiliary intake port 9 is opened at the same time as the intake port 6 (line Do and line Co).
〇-ru. Therefore, the dynamic effect will be further enhanced.

なお、上記の動的効果を与える補助吸気ポート9、連通
路22等が吸気供給のための本来の吸気系とは別に設け
られているので、本来の吸気系はレイアウトなどの都合
に応じて比較的自由に設則することができる。また、本
来の吸気系に43いても上記特定エンジン回転数で動的
効果を高めるように吸気通路11の長さ等を設定してお
けば、これと上記連通路22での共振作用とによって相
乗的に動的効果が高められる。
Note that the auxiliary intake port 9, communication passage 22, etc. that provide the above-mentioned dynamic effect are provided separately from the original intake system for supplying intake air, so the original intake system may be compared depending on the layout etc. You can set the rules as you like. Furthermore, even if the intake passage 11 is in the original intake system, if the length of the intake passage 11 is set so as to enhance the dynamic effect at the specified engine speed, this and the resonance effect in the communication passage 22 can synergize. dynamic effect is enhanced.

第6図は本発明の第2実施例を示し、この実施例では、
サージタンク13から吸気ポート6に至る気筒別の吸気
通路11の実質的な通路長さを可変にしている。すなわ
ち、上記吸気通路11には、その上流側部分で2又に分
岐してそれぞれサージタンク13に接続された比較的長
い通路部11aと短い通路部11bとが形成され、その
短い通路部11bに吸気通路長変更用のシャツタ弁30
が設けられている。31は上記シャツタ弁30を開−1
0= 閉作動する負圧応動式のアクチユエータ、32はコント
ロールユニット26からの信号を受けて上記アクチュエ
ータ31への負圧の供給を1lllllする三方電磁弁
である。また、補助吸気ポート9、連通路22、吸気拡
大室21等の構造、および補助吸気ポート9の開時期の
設定等は第1実施例と同様である。
FIG. 6 shows a second embodiment of the invention, in which:
The substantial passage length of the intake passage 11 for each cylinder from the surge tank 13 to the intake port 6 is made variable. That is, the intake passage 11 is formed with a relatively long passage part 11a and a short passage part 11b which are bifurcated into two at the upstream side and connected to the surge tank 13, respectively. Shatta valve 30 for changing intake passage length
is provided. 31 opens the shirt valve 30 -1
0=Negative pressure responsive actuator that operates to close; 32 is a three-way solenoid valve that receives a signal from the control unit 26 and controls the supply of negative pressure to the actuator 31; Further, the structure of the auxiliary intake port 9, the communication passage 22, the intake expansion chamber 21, etc., the setting of the opening timing of the auxiliary intake port 9, etc. are the same as in the first embodiment.

そして、コントロールユニット26により、上記連通路
22のシャツタ弁23および吸気通路長変更用シャツタ
弁30がそれぞれ運転状態に応じて制御され、例えば、
連通路22のシャツタ弁23が低回転域や低負荷域以外
の適当な運転域において開かれる一方、吸気通路長変更
用シャツタ弁30が所定回転数より高回転側で比較的高
負荷の運転域において開かれるようになっている。
Then, the control unit 26 controls the shatter valve 23 of the communication passage 22 and the shatter valve 30 for changing the length of the intake passage, respectively, depending on the operating state, for example,
While the shatter valve 23 of the communication passage 22 is opened in an appropriate operating range other than the low rotation range or low load range, the intake passage length changing shatter valve 30 is opened in a relatively high-load operating range at a rotation speed higher than a predetermined rotation speed. It is scheduled to be held at

この第2実施例の装胃によると、吸気の供給を行なう吸
気通路11側においては、低回転域では上記シャツタ弁
30が閉じられて実質的に吸気通路長が長くされ、高回
転域では上記シャツタ弁30が聞かれて実質的に吸気通
路長が短くされることにより、低回転側と高回転側とで
それぞれ吸気通路の圧力振動自体による動的効果が高め
られる。
According to the stomach filling of the second embodiment, on the side of the intake passage 11 that supplies intake air, the above-mentioned shutter valve 30 is closed in the low rotation range, and the length of the intake passage is substantially lengthened, and in the high rotation range, the above-mentioned intake passage length is substantially lengthened. Since the intake passage length is substantially shortened by operating the shatter valve 30, the dynamic effect of the pressure vibration itself in the intake passage is enhanced on both the low rotation side and the high rotation side.

そしてこの場合も、」−2吸気通路11とは別に、補助
吸気ポート9と吸気工大室21との間の連通路22によ
っても動的効果が得られ、特に、補助吸気ポート9の開
時期を吸気ポート6の開時期より早めることにより、残
留排気圧の影響で動的効果が高められる。
In this case as well, apart from the ``-2 intake passage 11, a dynamic effect can also be obtained by the communication passage 22 between the auxiliary intake port 9 and the intake engineering chamber 21, and in particular, the opening timing of the auxiliary intake port 9 can be controlled. By opening the intake port 6 earlier than the opening timing, the dynamic effect is enhanced due to the influence of the residual exhaust pressure.

第7図は本発明の第3実施例を示し、この実施例では、
補助吸気ボー1−9と吸気拡大室21との間の連通路2
2中に、エンジンと同期して開閉作動するロータリ式の
タイミング弁34が設けられ、このタイミング弁34に
よって補助吸気ポート9の実質開時期が調節されるよう
になっている。すなわち、予め補助吸気弁10の開時1
11を充分に早くしておいて、補助吸気弁10が開かれ
てからタイミング弁34が開かれるようにすることによ
り、タイミング弁34の開時期が補助吸気ボー1−〇の
実質開時期となるようにされ、このタイミング弁34の
開閉タイミングが図外の位相調節手段によ−12〜 っで調整可能となっている。そして、第8図に示すよう
に、タイミング弁34による補助吸気ボー1−9の実質
開時期[0’ を、吸気ポート6の開時II I Oよ
りは進角させつつ、エンジン低回転側では進角度を小さ
くし、高回転側では進角度を大きくでるようにタイミン
グ弁34が制御されている。
FIG. 7 shows a third embodiment of the invention, in which:
Communication path 2 between the auxiliary intake bow 1-9 and the intake expansion chamber 21
A rotary timing valve 34 that opens and closes in synchronization with the engine is provided in the engine 2, and the actual opening timing of the auxiliary intake port 9 is adjusted by this timing valve 34. That is, when the auxiliary intake valve 10 is opened 1
11 is set early enough so that the timing valve 34 is opened after the auxiliary intake valve 10 is opened, so that the opening timing of the timing valve 34 becomes the actual opening timing of the auxiliary intake valve 1-0. The opening/closing timing of the timing valve 34 can be adjusted from -12 to -12 by a phase adjusting means (not shown). As shown in FIG. 8, the actual opening timing [0' of the auxiliary intake bow 1-9 by the timing valve 34 is advanced from the opening time IIIO of the intake port 6, but on the low engine speed side. The timing valve 34 is controlled to make the advance angle small and to increase the advance angle on the high rotation side.

この実施例によると、低回転側では上記進角度が小さく
されることによって連通路22への排気ガスの吸込みが
抑制され、高回転側では上記進角度が大きくされること
によって残留排気圧の[1が連通路22内の圧力に充分
に及ぶこととなる。
According to this embodiment, on the low rotation side, the advance angle is made small, thereby suppressing the suction of exhaust gas into the communication passage 22, and on the high rotation side, the advance angle is made large, thereby reducing the residual exhaust pressure. 1 is sufficiently applied to the pressure within the communication path 22.

第9図は本発明の第4実施例を示す。この実施例では、
2気筒のロータリビスI〜ンエンジンにおいて、気筒相
互間で圧力波が伝播されるようにしている。すなわち、
各気筒のロータハウジング41内には遊星回転運動する
略三角形状のロータ42が装備され、このロータ42に
よって燃焼室に相当する三つの作lll室43が区画形
成されている。
FIG. 9 shows a fourth embodiment of the invention. In this example,
In a two-cylinder rotary rev engine, pressure waves are propagated between the cylinders. That is,
A rotor housing 41 of each cylinder is equipped with a substantially triangular rotor 42 that rotates planetarily, and this rotor 42 defines three chambers 43 corresponding to combustion chambers.

また、各気筒のサイドハウジング44には、吸気を供給
する吸気ポート45に加えて補助吸気ポート46が形成
され、これらのポー1〜45.46がロータ42の回転
に伴って開閉されるようになっている。
Further, in addition to the intake port 45 that supplies intake air, an auxiliary intake port 46 is formed in the side housing 44 of each cylinder, and these ports 1 to 45 and 46 are opened and closed as the rotor 42 rotates. It has become.

各気筒の吸気ポート45に連trる吸気通路48は、サ
ージタンク47より下流で合流し、その合流部がサージ
タンク47に連通している。また、補助吸気ポート46
は連通路49を介して他の気筒の補助吸気ポート46に
連通されており、この連通路49は吸気通路48には直
接連通せずに両気筒の補助吸気ポート46のみを相互に
連通している。その他の第1実施例と同等の部分tま同
−旬月を付して説明を省略Jる。
Intake passages 48 connected to the intake ports 45 of each cylinder merge downstream of the surge tank 47, and the merged portion communicates with the surge tank 47. In addition, the auxiliary intake port 46
is communicated with the auxiliary intake port 46 of the other cylinder via a communication passage 49, and this communication passage 49 does not directly communicate with the intake passage 48, but communicates only the auxiliary intake ports 46 of both cylinders with each other. There is. Other parts equivalent to those of the first embodiment will be omitted with the same numerals as ``t'' and their explanations will be omitted.

第10図はこの実施例による場合の吸気ポート45の開
口エリア(線1」)および補助吸気ポート46の開口エ
リア(線I)を示しており、吸気ポート45および補助
吸気ポート46はそれぞれロータ42の回転に伴い、各
作動室43に対して順次1lVllWlされるが、特に
補助吸気ポート46の開開mto’ は吸気ポート45
の開時)[110よりも早められるように、ポート形状
が設定されている。
FIG. 10 shows the opening area of the intake port 45 (line 1'') and the opening area of the auxiliary intake port 46 (line I) in this embodiment. With the rotation of
The port shape is set so that it can be opened earlier than [110].

この実施例によると、連通路49を通しての気筒間の圧
力波伝播時間が特定エンジン回転数での両気筒の作動間
隔に対応するように連通路49の長さを設定しておけば
、上記特定エンジン回転数において動的効果が高められ
る。
According to this embodiment, if the length of the communication passage 49 is set so that the pressure wave propagation time between the cylinders through the communication passage 49 corresponds to the operating interval of both cylinders at a specific engine speed, the specified The dynamic effect is increased at engine speed.

すなわち、第11図のように、吸気ポート45付近には
吸気ポート45の開閉に伴って線Jで示す吸気圧力波が
生じる一方、補助吸気ポート46付近にも補助吸気ポー
ト46の開閉に伴って線にで示す圧力波が生じる。この
圧力波が連通路49を通って両気筒相互間で伝播される
ことにより動的効果が得られ、殊に両気筒の作動間隔に
対応する時間を持って圧力波が伝播されると、共振が生
じて連通v849内の圧力変動が大きくなり、その影響
で吸気圧力波も強化される。そしてこの場合も、補助吸
気ポート46の開時期10’ を吸気ボー1〜45の開
時期IOより早めておくことにより、残留排気圧の影響
で補助吸気ポート46付近の圧力波および吸気圧力波が
さらに強められ、動的効果がより一層高められることと
なる。
That is, as shown in FIG. 11, an intake pressure wave shown by line J is generated near the intake port 45 as the intake port 45 opens and closes, while an intake pressure wave shown by line J is generated near the auxiliary intake port 46 as the auxiliary intake port 46 opens and closes. A pressure wave is generated as shown by the line. A dynamic effect is obtained by propagating this pressure wave between the two cylinders through the communication passage 49. In particular, when the pressure wave is propagated with a time corresponding to the operating interval of both cylinders, resonance occurs. As a result, the pressure fluctuation in the communication v849 becomes large, and the intake pressure wave is also strengthened due to its influence. Also in this case, by setting the opening timing 10' of the auxiliary intake port 46 earlier than the opening timing IO of the intake bows 1 to 45, the pressure waves near the auxiliary intake port 46 and the intake pressure waves are reduced due to the influence of the residual exhaust pressure. This will further enhance the dynamic effect.

なお、これら実施例のほかに、レシプロエンジンにおい
て各気筒の補助吸気ボー1−を連通路で連通し、あるい
はロータリピストンエンジンにおいて補助吸気ポートと
外気から閉鎖された吸気拡大室とを連通路で連通ずるよ
うにしてもよい。
In addition to these embodiments, in a reciprocating engine, the auxiliary intake ports of each cylinder are connected through a communication passage, or in a rotary piston engine, the auxiliary intake port and the intake expansion chamber, which is closed from the outside air, are connected through a communication passage. It may be possible to communicate.

(発明の効果) 以上のように本発明は、吸気供給のための吸気ポートお
よびこれにつながる吸気系とは別に、補助吸気ポートと
、これを他の気筒の補助吸気ポートもしくは外気からの
閉鎖された吸気拡大室に連通ずる連通路とを設け、この
連通路内に生じる圧力振動により動的効果を高めるよう
にしているため、吸気供給のための本来の吸気系のM4
造を簡略化し、あるいは本来の吸気系と」−記述通路等
とで相乗的に動的効果を高めることができる。その」−
特に、上記補助吸気ポートの開時期を吸気ポートの開時
期よりも早めることにJ:す、吸気ポー1〜間時期前の
気筒内の残留排気圧を有効に利用して上記連通路内の圧
力変動を強めているため、補助吸気ポートおよび連通路
による動的効果をJ:り一層−16= 高め、充填効率を向−1ニすることができるものである
(Effects of the Invention) As described above, the present invention provides an auxiliary intake port and an auxiliary intake port that is connected to the auxiliary intake port of another cylinder or is closed from the outside air, in addition to the intake port for supplying intake air and the intake system connected thereto. A communication passage is provided that communicates with the intake expansion chamber, and the dynamic effect is enhanced by the pressure vibrations generated within this communication passage, so the M4 of the original intake system for supplying intake air is
The structure can be simplified, or the dynamic effect can be enhanced synergistically with the original intake system and the passage. That'-
In particular, the opening timing of the auxiliary intake port is made earlier than the opening timing of the intake port, and the residual exhaust pressure in the cylinder before the intake port 1 to 1 interval is effectively used to increase the pressure in the communication passage. Since the fluctuation is strengthened, the dynamic effect of the auxiliary intake port and the communication passage can be further enhanced, and the filling efficiency can be improved by -1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す概略平面図、第2図
は同側面図、第3図は吸気ポートおよび補助吸気ポート
の開口エリアを示す図、第4図は特定エンジン回転数で
の吸気ポート付近、気筒内および補助吸気ポート付近の
圧力変動を示す図、第概略側面図、第8図は第3実施例
における補助吸気ポート実質問時期とエンジン回転数と
の関係を示す図、第9図は第4実施例を示す概略側面図
、第10図は第4実施例におりる吸気ポートおよび補助
吸気ポー1への開口エリアを示す図、第11図は第4実
施例による場合の圧力変動状態を示す図である。 1・・・エンジン本体、2・・・気筒、4・・・燃焼室
、5゜45・・・吸気ボーl〜、9.46・・・補助吸
気ポート、21・・・吸気拡大室、22.49・・・連
通路。 = 17− 第  1   図 第  7  図 第  8  図
Fig. 1 is a schematic plan view showing the first embodiment of the present invention, Fig. 2 is a side view of the same, Fig. 3 is a view showing the opening area of the intake port and auxiliary intake port, and Fig. 4 is a specific engine rotation speed. Fig. 8 is a diagram showing pressure fluctuations near the intake port, in the cylinder, and near the auxiliary intake port, a schematic side view, and Fig. 8 is a diagram showing the relationship between the auxiliary intake port actual interrogation timing and the engine rotation speed in the third embodiment. , FIG. 9 is a schematic side view showing the fourth embodiment, FIG. 10 is a diagram showing the opening area to the intake port and auxiliary intake port 1 in the fourth embodiment, and FIG. 11 is according to the fourth embodiment. It is a figure which shows the pressure fluctuation state in case. DESCRIPTION OF SYMBOLS 1...Engine body, 2...Cylinder, 4...Combustion chamber, 5゜45...Intake ball l~, 9.46...Auxiliary intake port, 21...Intake expansion chamber, 22 .49...Communication path. = 17- Figure 1 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼室に吸気を供給する吸気ポートに加え、吸気行
程中に開かれる補助吸気ポートと、この補助吸気ポート
を他の気筒の補助吸気ポートにのみ連通させ、あるいは
外気から閉鎖された吸気拡大室に連通させる連通路とを
設けるとともに、上記補助吸気ポートの開時期を上記吸
気ポートの開時期よりも早めるように設定したことを特
徴とするエンジンの吸気装置。
1. In addition to the intake port that supplies intake air to the combustion chamber, there is also an auxiliary intake port that is opened during the intake stroke, and an intake expansion that communicates only with the auxiliary intake ports of other cylinders or is closed from the outside air. What is claimed is: 1. An intake system for an engine, comprising: a communication path communicating with a chamber; and an opening timing of the auxiliary intake port is set earlier than an opening timing of the intake port.
JP61205674A 1986-09-01 1986-09-01 Intake device for engine Pending JPS6361712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61205674A JPS6361712A (en) 1986-09-01 1986-09-01 Intake device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61205674A JPS6361712A (en) 1986-09-01 1986-09-01 Intake device for engine

Publications (1)

Publication Number Publication Date
JPS6361712A true JPS6361712A (en) 1988-03-17

Family

ID=16510815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61205674A Pending JPS6361712A (en) 1986-09-01 1986-09-01 Intake device for engine

Country Status (1)

Country Link
JP (1) JPS6361712A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105934A (en) * 1982-12-10 1984-06-19 Mazda Motor Corp Intake apparatus for rotary piston engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105934A (en) * 1982-12-10 1984-06-19 Mazda Motor Corp Intake apparatus for rotary piston engine

Similar Documents

Publication Publication Date Title
JPH0353452B2 (en)
JPS6361712A (en) Intake device for engine
JPS61157717A (en) Air intake device of multicylinder engine
JPS6357820A (en) Suction device for engine
JPS6361713A (en) Intake device for engine
JPS6361714A (en) Intake device for engine
JP3624540B2 (en) Engine intake system
JPS6357819A (en) Suction device for engine
JPH10299491A (en) Intake device for internal combustion engine
JPH0343380Y2 (en)
JPS6296726A (en) Air intake device for multiple cylinder engine
JP3747586B2 (en) Intake control device for internal combustion engine
JPS6241922A (en) Intake-air device for v-type engine
JPH0315779Y2 (en)
JP2529548B2 (en) Multi-cylinder engine intake system
JPH01317A (en) engine intake system
JPS6296725A (en) Air intake device for multiple cylinder engine
JPH0343378Y2 (en)
JP3492114B2 (en) Intake control device for internal combustion engine
JPS6357818A (en) Suction device for engine
JPH04214923A (en) Intake device for multiple cylinder engine
JPS63195318A (en) Intake device for engine
JPS6282228A (en) Suction device for multicylinder engine
JPH0819850B2 (en) Engine intake system
JPH0380966B2 (en)