JPS6296725A - Air intake device for multiple cylinder engine - Google Patents

Air intake device for multiple cylinder engine

Info

Publication number
JPS6296725A
JPS6296725A JP23677385A JP23677385A JPS6296725A JP S6296725 A JPS6296725 A JP S6296725A JP 23677385 A JP23677385 A JP 23677385A JP 23677385 A JP23677385 A JP 23677385A JP S6296725 A JPS6296725 A JP S6296725A
Authority
JP
Japan
Prior art keywords
passage
intake
communicating
passages
intake passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23677385A
Other languages
Japanese (ja)
Other versions
JPH0665849B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Yoshikuni Yada
矢田 佳邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP23677385A priority Critical patent/JPH0665849B2/en
Publication of JPS6296725A publication Critical patent/JPS6296725A/en
Publication of JPH0665849B2 publication Critical patent/JPH0665849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To enable the intake control to be performed properly all the time by providing an independent intake passage which diverges from a main intake passage and is connected to each cylinder, and then providing, on each of said independent intake passages, both the No.1 communicating passage which connects the upstream and downstream sides of the independent intake passage respectively and the No.2 communicating passage which connects each of the No.1 communicating passage respectively. CONSTITUTION:An independent intake passage 9, which is connected to the intake port 7 of each cylinder in an engine 1, is formed in such a manner that it begins to extend from a cylinder head 5 in the horizontal direction, and then curves upward in nearly a semicircular shape; and it is connected to a branch connection 16a which constitutes a part of a main intake passage 16. In addition, to the curved section of each of the independent intake passages 9 is connected each of the No.1 communicating passages 18 which extends vertically so that the upstream and downstream sides of each of the independent intake passages 9 are connected. And further, each of the No.1 communicating passages 18 is connected each other by each of the No.2 communicating passages 19 which extends horizontally, and moreover, on the downstream side of a connection between each of the No.1 communicating passages 18 and each of the No.2 communicating passages 19 is provided a closing valve 20 for opening and closing each of the No.1 communicating passages 18 respectively, and the valve 20 is caused to open and close in response to the engine load by means of an actuator.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気の動的効果を利用して、エンジンの出力
特性を向上させる多気筒エンジンの吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for a multi-cylinder engine that utilizes the dynamic effect of intake air to improve the output characteristics of the engine.

(従来技術) 従来から、吸気の動的効果を利用して、充填効率を高め
、これによって高出力を得るようにしたエンジンが知ら
れている。この形式のエンジンは、吸気弁の作動に起因
して吸気系に生じる吸気負圧波を吸気通路上流側で反転
させ、気筒の吸気タイミングに合わせて、燃焼室に正圧
波として導入し、吸気の押し込み効果を得ようとするも
のである。
(Prior Art) Engines that utilize the dynamic effect of intake air to increase charging efficiency and thereby obtain high output have been known. This type of engine reverses the intake negative pressure wave that occurs in the intake system due to the operation of the intake valve on the upstream side of the intake passage, and introduces it as a positive pressure wave into the combustion chamber in time with the intake timing of the cylinder, thereby pushing the intake air. It is intended to be effective.

従って、吸気の動的効果を利用するためには、吸気装置
に圧力波の振動系を組込み、所定のタイミングで圧力波
が燃焼室に導入されるようにする必要がある。しかし、
圧力波の振動系の固有振動数は、通常は、吸気装置ごと
に画一的に定まり、従って圧力波が燃焼室に戻るタイミ
ングは、一定となるのに対し、圧力波による吸気の押し
込み効果が望まれるタイミングは、エンジン回転数の変
化に依存する、従って吸気の動的効果が得られる回転数
、すなわち、同調回転数は、圧力波がちょうどエンジン
の吸気行程中に戻ってくる比較的狭い回転数領域に限ら
れ、出力向上効果も、同調回転数付近においてしか得ら
れないこととなる。このような事情に鑑がみ、特開昭5
5−29078号公報に開示された装置では、異なる長
さの圧力波伝播経路を有する2つの圧力波振動系を形成
し、回転速度に応じて圧力波振動系を切換え、これによ
って、低回転から高回転にわたる広い回転数領域で出力
特性を改善するように構成している。
Therefore, in order to utilize the dynamic effect of intake air, it is necessary to incorporate a pressure wave oscillation system into the intake device so that the pressure waves are introduced into the combustion chamber at a predetermined timing. but,
Normally, the natural frequency of the pressure wave vibration system is uniformly determined for each intake system, and therefore the timing at which the pressure waves return to the combustion chamber is constant, but the pushing effect of the intake air due to the pressure waves is The desired timing depends on the change in engine speed, so the speed at which the intake dynamic effect is obtained, i.e. the tuning speed, is a relatively narrow rotation at which the pressure wave returns just during the engine's intake stroke. This means that the output improvement effect can only be obtained near the tuned rotation speed. In view of these circumstances,
In the device disclosed in Japanese Patent No. 5-29078, two pressure wave vibration systems having pressure wave propagation paths of different lengths are formed, and the pressure wave vibration systems are switched depending on the rotation speed. It is designed to improve output characteristics over a wide rotational speed range over high rotational speeds.

(発明が解決しようとする問題点) 吸気の動的効果を利用するエンジンでは、圧力波の伝播
経路が長くなるように、振動系を構成すると、低回転域
で同調回転数が得られ、伝播経路を短かくすると高回転
領域で同調回転数が得られる。この場合、吸気弁の作動
に起因して、吸気系に生じる圧力波は、負圧波であるの
で、これを吸気の押し込み効果を与える正圧波として燃
焼室に導くためには、圧力波の振動系の末端に、負圧波
を正圧波に反転させる反転部を設ける必要がある。
(Problem to be solved by the invention) In an engine that utilizes the dynamic effect of intake air, if the vibration system is configured so that the propagation path of pressure waves is long, a tuned rotation speed can be obtained in the low rotation range, and the propagation By shortening the path, a synchronized rotation speed can be obtained in the high rotation region. In this case, the pressure wave generated in the intake system due to the operation of the intake valve is a negative pressure wave, so in order to guide this into the combustion chamber as a positive pressure wave that gives a pushing effect on the intake air, a pressure wave vibration system is required. It is necessary to provide an inversion section at the end of the inverter to invert the negative pressure wave into a positive pressure wave.

負圧波を反転させるためには、負圧波が伝播してきたと
き、その谷部を補填するための一定の空気量が必要とな
るがこの反転部は、一般のガソリンエンジンでは、特開
昭55−29078号に示されるようにサージタンク等
の一定の容積を有する容積部を吸気通路のスロットル弁
下流に設けることによって構成される。しかし、このよ
うにするとスロットル弁下流の吸気通路容積が増大し、
スロットル弁の開閉に対する応答が遅くなり、適正な吸
気制御ができなくなるという問題がある。
In order to reverse the negative pressure wave, a certain amount of air is required to compensate for the troughs when the negative pressure waves propagate. As shown in Japanese Patent No. 29078, a volume part having a constant volume such as a surge tank is provided downstream of the throttle valve in the intake passage. However, this increases the intake passage volume downstream of the throttle valve,
There is a problem in that the response to opening and closing of the throttle valve becomes slow, making it impossible to perform proper intake control.

(上記問題を解決するための手段) 本発明は、上記問題を解決するために設けられたもので
、本発明の吸気装置は、主吸気通路と同等の断面積を有
し、該主吸気通路の下流側端部に形成されその一部を構
成する分岐部と、該分岐部から分岐して各気筒の燃焼室
に連通ずる独立吸気通路と、各独立吸気通路に設けられ
該独立吸気通路の上流と下流を連通ずる第1連通路と、
各第1連通路を連通ずる第2連通路と、各第1連通路の
第2連通路接続部よりも下流側に運転状態に応じて該第
1連通路を開閉する開閉弁とを備えたことを特徴とする
。本発明の主吸気通路の分岐部すなわち吸気マニホルド
は、主吸気通路の流路断面積と同じ程度の比較的小さい
断面積を有するように形成される。また、本発明の好ま
しい態様では、−各気筒への独立吸気通路は、分岐部か
ら分岐して、湾曲して各気筒の吸気ポートに連通ずるよ
うになっている。そして、第1連通路は、独立吸気通路
を上下方向に連通ずるバイパス通路の形式でそれぞれの
独立吸気通路に設けられる。また、この場合には、第2
連通路は、各第1連通路を水平方向に連絡する連絡管と
して与えられる。開閉弁は各第1連通路の第2連通路が
接続される位置よりも下流側の各独立吸気通路との接続
部付近に取付けられる。
(Means for solving the above problem) The present invention was provided to solve the above problem, and the intake device of the present invention has a cross-sectional area equivalent to that of the main intake passage, and has a cross-sectional area equivalent to that of the main intake passage. a branch part formed at the downstream end of the cylinder and forming a part thereof; an independent intake passage that branches from the branch part and communicates with the combustion chamber of each cylinder; a first communication path that communicates the upstream and downstream;
A second communication passage that communicates with each of the first communication passages, and an on-off valve that opens and closes the first communication passage according to the operating state downstream of the second communication passage connection part of each of the first communication passages. It is characterized by The branch portion of the main intake passage, ie, the intake manifold, of the present invention is formed to have a relatively small cross-sectional area, which is about the same as the cross-sectional area of the main intake passage. Further, in a preferred embodiment of the present invention, - the independent intake passages to each cylinder are branched from a branch portion and curved to communicate with the intake ports of each cylinder. The first communicating passage is provided in each independent intake passage in the form of a bypass passage that vertically communicates with the independent intake passage. Also, in this case, the second
The communication passages are provided as communication pipes that horizontally communicate the first communication passages. The on-off valve is installed near the connection portion of each first communication passage with each independent intake passage on the downstream side of the position where the second communication passage is connected.

本発明の構造では、開閉弁が閉じている場合には、吸気
導入開始時に生じた負圧波は、独立吸気通路を上流側に
伝播し、次に、独立吸気通路と第1連通路との上流側接
続部から第1連通路内を下流側に伝播し、第2連通路に
到達する。第2連通路において、伝播してきた負圧波の
谷部に対しては、他の気筒への吸気経路を介して空気が
補填されることにより、この負圧波は、反転して正圧波
となる。この反転正圧波は、上記伝播経路を下流側に伝
播して、吸気工程中にある燃焼室に導入されて、吸気の
押し込み効果をもたらす。また、開閉弁が開いていると
きには、負圧波は、独立吸気通路を上流側に伝播して、
第1連通路と独立吸気通路との下流側から第1連通路に
入って該通路を上流側に伝播して第2連通路に到達する
。そして、負圧波は、第2連通路内で反転して、燃焼室
に戻り、上記同様に吸気の押し込み効果を与える。すな
わち、開閉弁の作動により、燃焼室で発生した負圧波は
、異なる長さの経路で伝播し、第2連通部で反転し、正
圧波として、燃焼室に導入される。
In the structure of the present invention, when the on-off valve is closed, the negative pressure wave generated at the start of intake air propagation propagates upstream through the independent intake passage, and then between the independent intake passage and the first communication passage. It propagates downstream in the first communication path from the side connection portion and reaches the second communication path. In the second communication path, the troughs of the negative pressure waves that have propagated are supplemented with air via the intake paths to other cylinders, so that the negative pressure waves are reversed and become positive pressure waves. This inverted positive pressure wave propagates downstream along the propagation path and is introduced into the combustion chamber during the intake stroke, producing an intake air pushing effect. Also, when the on-off valve is open, the negative pressure wave propagates upstream through the independent intake passage,
The air enters the first communicating passage from the downstream side of the first communicating passage and the independent intake passage, propagates through the passage upstream, and reaches the second communicating passage. Then, the negative pressure wave is reversed in the second communication passage and returns to the combustion chamber, providing the same effect of pushing intake air as described above. That is, the negative pressure waves generated in the combustion chamber by the operation of the on-off valve propagate along paths of different lengths, are reversed at the second communication portion, and are introduced into the combustion chamber as positive pressure waves.

(発明の効果) 本発明によれば、燃焼室で吸気導入開始時に生じた負圧
波は、開閉弁の作動に応じて異なる2つの経路を伝播す
る。従って、吸気の押し込み効果は、異なる2つの回転
数領域において得ることができ、広い範囲で出力特性を
改善することができる。この場合、本発明では、各独立
吸気通路を相互に連通ずる連通管として構成された第2
連通邪において、負圧波を反転させ、正圧波を得るよう
にしている。この構成では、負圧波を反転させるために
必要な吸気は、吸気工程になっていない他気筒の吸気通
路から第2連通部を介して確保できるので、サージタン
ク等の容積を有する反転部を特別に設ける必要がなく、
スロットル弁下流の吸気通路容積を小さく抑えることが
できる。従って、スロットル弁の高精度の作動応答性を
確保することができ、適正な吸気制御を行うことができ
る。
(Effects of the Invention) According to the present invention, the negative pressure wave generated in the combustion chamber at the start of intake air propagation travels through two different paths depending on the operation of the on-off valve. Therefore, the effect of pushing the intake air can be obtained in two different rotational speed regions, and the output characteristics can be improved over a wide range. In this case, in the present invention, the second intake passage is configured as a communication pipe that communicates each independent intake passage with each other.
In the communication mode, the negative pressure wave is reversed to obtain a positive pressure wave. With this configuration, the intake air necessary to reverse the negative pressure wave can be secured from the intake passages of other cylinders that are not in the intake process via the second communication section, so the inversion section with the volume of the surge tank or the like can be specially There is no need to provide
The volume of the intake passage downstream of the throttle valve can be kept small. Therefore, highly accurate operational response of the throttle valve can be ensured, and appropriate intake control can be performed.

(実施例の説明) 以下、本発明の実施例につき、図面を参照しつつ説明す
る。
(Description of Examples) Examples of the present invention will be described below with reference to the drawings.

第1図から第3図を参照すれば、本例のエンジン1は、
4気筒エンジンであり、シリンダブロック2には4つの
シリンダボア3が形成、され各シリンダボア3にはピス
トン4が往復動自在に配置される。シリンダブロック2
の上方にはシリンダヘッド5が結合されており、シリン
ダボア3のピストン上方部空間とシリンダヘッド5の下
部凹部とによって形成される空間は、燃焼室6を構成す
る。
Referring to FIGS. 1 to 3, the engine 1 of this example is as follows:
It is a four-cylinder engine, and a cylinder block 2 has four cylinder bores 3 formed therein, and a piston 4 is arranged in each cylinder bore 3 so as to be able to reciprocate. cylinder block 2
A cylinder head 5 is connected above, and a space formed by a space above the piston of the cylinder bore 3 and a lower recess of the cylinder head 5 constitutes a combustion chamber 6 .

燃焼室6には、吸気ボート7及び排気ボート8が開口し
ており、シリンダヘッド5には該吸気ポート7、排気ボ
ート8に通じるように独立吸気通路9、排気通路10が
それぞれ形成される。そして、吸気ポート7には、吸気
弁11が、排気ボート8には排気弁8aがそれぞれ組合
わされる。
An intake boat 7 and an exhaust boat 8 are open to the combustion chamber 6, and an independent intake passage 9 and an exhaust passage 10 are formed in the cylinder head 5 so as to communicate with the intake port 7 and the exhaust boat 8, respectively. The intake port 7 is associated with an intake valve 11, and the exhaust boat 8 is associated with an exhaust valve 8a.

シリンダヘッド5の上方部には、カムシャフト12、ロ
ッカーシャフト13、ロッカーアーム14を備えた動弁
機構が配置され、この動弁機構は、シリンダヘッドカバ
ー15により外部と遮断され、保護されている。各気筒
の独立吸気通路9はシリンダヘッド5からまず水平方向
に延び次に、その上方に湾曲して延び、その後、折り返
すように水平方向に延びて主吸気通路16の1部として
構成される分岐部16aにそれぞれ接続されている。
A valve mechanism including a camshaft 12, a rocker shaft 13, and a rocker arm 14 is arranged above the cylinder head 5, and this valve mechanism is protected from the outside by a cylinder head cover 15. The independent intake passage 9 of each cylinder first extends horizontally from the cylinder head 5, then curves upward, and then extends horizontally in a folded manner to form a branch that forms part of the main intake passage 16. 16a, respectively.

各独立吸気通路9には、シリンダヘッド5の近くに、燃
料噴射弁17が取付けられ、独立吸気通路9内に所定の
タイミングで燃料を噴射供給するようになっている。ま
た、各独立吸気通路9には、上下方向に延びる第1連通
路18が接続され、上記湾曲した経路よりも短かい経路
で独立吸気通路9の上下流を連絡している。第1連通路
18は、上流側の接続部18aは、分岐部の下流の独立
吸気通路9の上流側水平部9aに位置しており、下流側
の接続部18bは、独立吸気通路9の燃料噴射弁17の
上流の下流側水平部9bに形成されている。また、第1
連通路18には、各連通路18を水平方向に連通ずるよ
うに第2連通路19が接続される。さらに、各第1連通
路18の第2連通路19の接続部19aの下流側には、
該第1連通路18を開閉する開閉弁20が設けられてい
る。
A fuel injection valve 17 is attached to each independent intake passage 9 near the cylinder head 5 to inject and supply fuel into the independent intake passage 9 at a predetermined timing. Further, each independent intake passage 9 is connected to a first communication passage 18 extending in the vertical direction, and communicates the upstream and downstream sides of the independent intake passage 9 through a shorter route than the above-mentioned curved route. In the first communication passage 18, the upstream connecting part 18a is located at the upstream horizontal part 9a of the independent intake passage 9 downstream of the branching part, and the downstream connecting part 18b is located at the upstream side horizontal part 9a of the independent intake passage 9. It is formed in the downstream horizontal portion 9b upstream of the injection valve 17. Also, the first
A second communication path 19 is connected to each communication path 18 so as to communicate with each communication path 18 in the horizontal direction. Further, on the downstream side of the connection portion 19a of the second communication path 19 of each first communication path 18,
An on-off valve 20 that opens and closes the first communication passage 18 is provided.

第2図に示すように開閉弁20を作動するためにアクチ
ュエータ20aが設けられており、該アクチュエータ2
0aは、吸気負正によって作動させられるようになって
いる。この場合、開閉弁20作動用の負圧は、独立吸気
通路9の湾曲部9に接続された負圧管21によって取出
され、チェック弁22、バキュームタンク23、及びソ
レノイド弁24を介してアクチュエータ20Hの作動部
に導入される。この負圧の供給、遮断は、ソレノイド弁
24によって制御されるようになっており、該ソレノイ
ド弁はエンジン回転の変化に応じてエンジンの低回転域
では開閉弁20を閉じ高回転域では開くように作動する
。主吸気通路13の上流端にはエアクリーナ25が設置
され、エアクリーナ25の下流には吸気流遣を計量する
エアフローメータ26が設けられるとともに、その下流
には、スロットル弁27が配置される。本例では、主吸
気通路13、独立吸気通路9、第1連通路18、及び第
2連通路19はいずれも同じ程度の流路断面積を有する
管状部材によって構成される。
As shown in FIG. 2, an actuator 20a is provided to operate the on-off valve 20.
0a is adapted to be activated by intake negative and positive. In this case, the negative pressure for operating the on-off valve 20 is taken out by the negative pressure pipe 21 connected to the curved part 9 of the independent intake passage 9, and is applied to the actuator 20H via the check valve 22, the vacuum tank 23, and the solenoid valve 24. introduced into the working part. The supply and cutoff of this negative pressure is controlled by a solenoid valve 24, which closes the on-off valve 20 in the low engine speed range and opens in the high engine speed range, depending on changes in engine speed. It operates. An air cleaner 25 is installed at the upstream end of the main intake passage 13, an air flow meter 26 for measuring intake airflow is installed downstream of the air cleaner 25, and a throttle valve 27 is installed downstream of the air flow meter 26. In this example, the main intake passage 13, the independent intake passage 9, the first communication passage 18, and the second communication passage 19 are all constructed of tubular members having approximately the same flow passage cross-sectional area.

以上の構造において、吸気弁11の開弁時には、燃焼室
6内に吸気の負圧波が生じ、この負圧波は、独立吸気通
路9内を上流側に伝播する。そして、開閉弁20が閉じ
ている場合には、負圧波は、独立吸気通路9内を下流側
水平部9bS湾曲部9c及び上流側水平部9aの順で伝
播し、第1連通路18の上流側接続部18aから第1連
通路18内に入り、第1連通路18内を下方に伝播して
第2連通路19に達する。第2連通路19において、負
圧波は正圧波に反転する。負圧波と正圧波に反転させる
場合には、負圧波の谷部に吸気を補填するために一定の
吸気量が必要となるが、本例の構造では、この吸気は、
主として、吸気を行っていない他気筒の吸気通路から、
第2連通路19を介して、導入される。第2連通路内で
生じた反転正圧波は、上流第2連通路12への伝播経路
を逆にたどって下流側に伝播し、最終的に燃焼室6に到
達する。このとき、当該気筒が吸気行程中である場合に
は、この反転正圧波は、吸気の充填量増大効果をもたら
す。開閉弁20が閉じている場合の圧力波の伝播経路は
、比較的長く、従って、圧力波が燃焼室に戻る時間が長
くなる。このため、圧力波による吸気の充填効率増大効
果による出力の改善は、第4図に破線aで示すように、
開弁時間が長い比較的低回転において、ピークを有する
ような特性で与えられる。また、開閉弁20が開いてい
る場合には、負圧波は、独立吸気通路9の下流側水平部
9bを上流側に伝播し、第1連通路18の下流側接続部
18bから第1連通路18内に入り、該通路18を上流
側に伝播して、第2連通路19に到達する。第2連通路
19に到達した負圧波は、上記と同様に反転し、伝播経
路を逆にたどって、燃焼室6に反転正圧波として戻って
くる。この場合には、圧力波の伝播経路が開閉弁20が
閉じている場合に比して短かくなる。従って、開閉弁2
0が開いている場合には、比較的高回転域で吸気の押し
込み効果が得られ、出力特性を改善することができる。
In the above structure, when the intake valve 11 is opened, a negative pressure wave of intake air is generated in the combustion chamber 6, and this negative pressure wave propagates upstream in the independent intake passage 9. When the on-off valve 20 is closed, the negative pressure wave propagates within the independent intake passage 9 in the order of the downstream horizontal portion 9bS, the curved portion 9c, and the upstream horizontal portion 9a, and the negative pressure wave propagates within the independent intake passage 9 in the order of It enters the first communicating path 18 from the side connecting portion 18a, propagates downward within the first communicating path 18, and reaches the second communicating path 19. In the second communication path 19, the negative pressure wave is reversed to a positive pressure wave. When reversing negative pressure waves and positive pressure waves, a certain amount of intake air is required to supplement the troughs of the negative pressure waves, but in the structure of this example, this intake air is
Mainly from the intake passages of other cylinders that are not taking air,
It is introduced via the second communication path 19. The inverted positive pressure wave generated within the second communication passage reversely follows the propagation path to the upstream second communication passage 12, propagates downstream, and finally reaches the combustion chamber 6. At this time, if the cylinder is in the intake stroke, this inverted positive pressure wave has the effect of increasing the intake air filling amount. The propagation path of the pressure wave when the on-off valve 20 is closed is relatively long, and therefore the time for the pressure wave to return to the combustion chamber is longer. Therefore, the improvement in output due to the effect of increasing the filling efficiency of intake air due to pressure waves is as shown by the broken line a in Fig. 4.
It is given a characteristic that has a peak at relatively low rotation speeds where the valve opening time is long. Further, when the on-off valve 20 is open, the negative pressure wave propagates upstream through the downstream horizontal portion 9b of the independent intake passage 9, and from the downstream connecting portion 18b of the first communicating passage 18 to the first communicating passage. 18 , propagates upstream through the passage 18 and reaches the second communication passage 19 . The negative pressure wave that has reached the second communication passage 19 is reversed in the same manner as described above, follows the propagation path in the opposite direction, and returns to the combustion chamber 6 as a reversed positive pressure wave. In this case, the propagation path of the pressure wave becomes shorter than when the on-off valve 20 is closed. Therefore, the on-off valve 2
When 0 is open, a pushing effect of intake air can be obtained in a relatively high rotation range, and output characteristics can be improved.

この結果、開閉弁20が開いている場合には、第4図の
実線すで示すように比較的高回転側にピークを有するよ
うな出力特性が得られる。本例では、第4図における特
性曲線a、bが交差するCにおける回転数を越えるとき
には開閉弁20を開くように制御される。これによって
、本例の構造では、低回転から高回転にわたる広い領域
で出力特性を改善することができる。また、本例の構造
では、負圧波の反転部を大きな容積部を設けることなく
、他気筒への吸気通路からの吸気補給を利用する比較的
小断面積の第2連通路19を設けることによって構成し
たので、スロットル弁27下流の吸気通路容積の増加を
有効に抑えることができ、優れたスロットル弁27の応
答性を確保することができる。
As a result, when the on-off valve 20 is open, an output characteristic having a peak on the relatively high rotation side is obtained, as shown by the solid line in FIG. In this example, the opening/closing valve 20 is controlled to be opened when the rotational speed exceeds a point C where the characteristic curves a and b in FIG. 4 intersect. As a result, with the structure of this example, the output characteristics can be improved over a wide range from low rotation to high rotation. In addition, in the structure of this example, the inversion part of the negative pressure wave is not provided with a large volume part, but by providing the second communication passage 19 with a relatively small cross-sectional area that utilizes intake air supply from the intake passage to other cylinders. With this configuration, an increase in the intake passage volume downstream of the throttle valve 27 can be effectively suppressed, and excellent responsiveness of the throttle valve 27 can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の1実施例に係るエンジンの概略図、
第2図は、第1図のエンジンの部分断面図、第3図は、
第1図のエンジンの吸気装置の斜視図、第4図は、第1
図のエンジンの出力特性を表わすグラフである。 1・・・・・・エンジン、2・・・・・・シリンダブロ
ック、4・・・・・・ピストン、5・・・・・・シリン
ダヘッド、6・・・・・・燃焼室、 9・・・・・・独
立吸気通路、16・・・・・・主吸気通路、18・・・
・・・第1連通路、19・・・・・・第2連通路、20
・・・・・・開閉弁。 第1図
FIG. 1 is a schematic diagram of an engine according to an embodiment of the present invention;
FIG. 2 is a partial sectional view of the engine in FIG. 1, and FIG. 3 is a partial sectional view of the engine in FIG.
Fig. 1 is a perspective view of the engine intake system, and Fig. 4 is a perspective view of the engine intake system.
3 is a graph showing the output characteristics of the engine shown in the figure. 1... Engine, 2... Cylinder block, 4... Piston, 5... Cylinder head, 6... Combustion chamber, 9. ...Independent intake passage, 16...Main intake passage, 18...
...First communication path, 19...Second communication path, 20
・・・・・・Opening/closing valve. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 主吸気通路と同等の断面積を有し、該主吸気通路の一部
を構成する分岐部と、該分岐部から分岐して各気筒の燃
焼室に連通する独立吸気通路と、各独立吸気通路に設け
られ、各独立吸気通路の上流と下流を連通する第1連通
路と、各第1連通路を連通する第2連通路と、各第1連
通路の第2連通路接続部よりも下流側に設けられ運転状
態に応じて該第1連通路を開閉する開閉弁とを備えたこ
とを特徴とする多気筒エンジンの吸気装置。
A branch part that has the same cross-sectional area as the main intake passage and constitutes a part of the main intake passage, an independent intake passage that branches from the branch part and communicates with the combustion chamber of each cylinder, and each independent intake passage. a first communication passage that communicates the upstream and downstream sides of each independent intake passage; a second communication passage that communicates each first communication passage; and a second communication passage downstream of the second communication passage connection portion of each first communication passage. An intake device for a multi-cylinder engine, comprising an on-off valve provided on the side and opening/closing the first communication passage depending on the operating state.
JP23677385A 1985-10-23 1985-10-23 Multi-cylinder engine intake system Expired - Lifetime JPH0665849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23677385A JPH0665849B2 (en) 1985-10-23 1985-10-23 Multi-cylinder engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23677385A JPH0665849B2 (en) 1985-10-23 1985-10-23 Multi-cylinder engine intake system

Publications (2)

Publication Number Publication Date
JPS6296725A true JPS6296725A (en) 1987-05-06
JPH0665849B2 JPH0665849B2 (en) 1994-08-24

Family

ID=17005579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23677385A Expired - Lifetime JPH0665849B2 (en) 1985-10-23 1985-10-23 Multi-cylinder engine intake system

Country Status (1)

Country Link
JP (1) JPH0665849B2 (en)

Also Published As

Publication number Publication date
JPH0665849B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US4671217A (en) Intake system for internal combustion engine
JPS6263127A (en) Suction device for engine
JPH01106922A (en) Intake apparatus of v-shaped engine
JPS6296725A (en) Air intake device for multiple cylinder engine
JPS6296726A (en) Air intake device for multiple cylinder engine
JPS61157717A (en) Air intake device of multicylinder engine
JPS63215822A (en) Intake device for v-type engine
JP3747586B2 (en) Intake control device for internal combustion engine
JPH0315779Y2 (en)
JP2808312B2 (en) Valve Noise Prevention Method for Multi-Cylinder Internal Combustion Engine
JP2543906B2 (en) Engine intake system
JPS61116020A (en) Engine intake-air device
JP2583527B2 (en) Engine intake system
JPH0649864Y2 (en) Intake device for V-type multi-cylinder internal combustion engine
JPH0343378Y2 (en)
JPS62101829A (en) Intake device for engine
JPS61157716A (en) Air intake device of multicylinder engine
JPH048823A (en) Air suction device for engine
JPH01346A (en) Engine exhaust gas recirculation device
JPH0745811B2 (en) Engine intake system
JPH0583738B2 (en)
JPS6241922A (en) Intake-air device for v-type engine
JPH0353453B2 (en)
JPS6357820A (en) Suction device for engine
JPH0380966B2 (en)