JPS59105934A - Intake apparatus for rotary piston engine - Google Patents

Intake apparatus for rotary piston engine

Info

Publication number
JPS59105934A
JPS59105934A JP57217319A JP21731982A JPS59105934A JP S59105934 A JPS59105934 A JP S59105934A JP 57217319 A JP57217319 A JP 57217319A JP 21731982 A JP21731982 A JP 21731982A JP S59105934 A JPS59105934 A JP S59105934A
Authority
JP
Japan
Prior art keywords
intake
load
low
passage
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57217319A
Other languages
Japanese (ja)
Other versions
JPH0337012B2 (en
Inventor
Shigeo Kato
加藤 繁夫
Masanori Shibata
柴田 雅典
Naoyuki Noguchi
直幸 野口
Haruo Okimoto
沖本 晴男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57217319A priority Critical patent/JPS59105934A/en
Publication of JPS59105934A publication Critical patent/JPS59105934A/en
Publication of JPH0337012B2 publication Critical patent/JPH0337012B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/08Charging, e.g. by means of rotary-piston pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To increase the output of an engine, by raising the charging efficiency over the operational range of the engine from its medium-speed operation to high-speed operation by communicating either of low-load intake passages or high-load intake passages of each cylinder with each other on the downstream side of a throttle valve, and forming an expansion chamber on the downstream side of a throttle valve disposed in the other intake passages. CONSTITUTION:A branched portion of a main high-load intake passage 21 constitutes an expansion chamber or an enlarged chamber 26 having a connecting passage 25 on the downstream side of a high-load throttle valve 23 for communicating a first high-load intake passage 21a and a second high-load intake passage 21b with each other, while a branched portion of a main low-load intake passage 20 constitutes an enlarged chamber 28 having a connecting passage 27 for communicating a first low-load intake passage 20a and a second low-load intake passage 20b with each other on the downstream side of a low-load throttle valve 22. The volume of the enlarged chamber 28 is selected to be 0.5-2 times as large as the piston displacement of an engine. If it is smaller than one half of the piston displacement of the engine, the effect for inverting expansion wave to compression wave or vice versa cannot be obtained. On the other hand, if the volume of the chamber 28 is greater than the double of the piston displacement of the engine, the effect of natural pulsation of intake air is reduced remarkably since dispersion of compression wave is caused. Thus, since the enlarged chambers 26, 28 function as surge tanks at the time of transient operation such as acceleration or deceleration of an engine, it is enabled to obtain a good response of fuel.

Description

【発明の詳細な説明】 本発明は、ロークリピストンエンジンの吸気装置に関し
、詳しくは低負荷用と高負荷用との2系統の独立した吸
気通路を備えたサイド吸気ボー1〜式の2気筒ロータリ
ビス1〜ンエンジンにおいて吸気通路内に発生づる吸気
圧ノ〕波を4u用してエンジンの中回転域から高回転域
に亘って過給効果をi5するJ:うにしたものに関ザる
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intake system for a low-repetition piston engine, and more specifically, the present invention relates to an intake system for a low-repetition piston engine, and more specifically, a side intake bow type two-cylinder engine having two independent intake passages, one for low load and one for high load. In a rotary rev engine, the intake pressure wave generated in the intake passage is used to create a supercharging effect from the mid- to high-speed range of the engine. .

一般に、このような2系統のサイド吸気ボー1〜式の2
気筒ロータリピストンエンジンは、2節トロコイド状の
内周面を有するロータハウジングとその両側に位置する
サイドハウジングとで形成されたケーシング内にそれぞ
れ配設された略三角形状の1]−夕が、エキレントリッ
クシャフ1へに支承され該シA・フトの回転角で180
°の位相差を持って遊星回転運動し、かつ低負荷用絞り
ブ♀を備えた低負荷用吸気通路と高負荷用絞り弁をfl
iiiえた高負荷用吸気通路どが上記低負荷用絞り弁下
流にd5いて各々独立して上記各リーイドハウジングに
設りた低負荷用および高角向用吸気ボートによって作動
室に開口するものであって、固気筒間CJ:記180°
の位相差を保らながら各気筒においてロータの1(11
転に伴い吸気、圧縮、爆発、膨張J5よび排気の各行程
を順次行うものである。そし−01エンジンの低負荷時
には、上記低負荷用絞り弁のみを開作動して通路面積の
狭い低負荷用吸気通路のみから吸気を供給J−ることに
より、吸気流速を速めて燃焼安定性を向上させる一方、
エンジンの高負荷時には、高負荷用絞り弁をも開作動し
て高負荷用吸気通路からも吸気の供給を行うことにより
充填効率を高めて出力向上を図るようにした。いわゆる
デュアルインダクション方式と称されるものである。尚
、上記低負荷用絞り弁を低負荷用吸気通路内に設ける型
式の仙に、低負荷用吸気通路と高(、’、+ 7IJ用
吸気通路との分岐部上流に設(]る型式のしのし会よれ
る。
In general, these two systems of side intake bow 1 to type 2
A cylinder rotary piston engine consists of a rotor housing having a two-section trochoidal inner peripheral surface and side housings located on both sides of the rotor housing. It is supported on the lentic shaft 1 and the rotation angle of the shaft is 180.
A low-load intake passage and a high-load throttle valve that rotate planetarily with a phase difference of ° and are equipped with a low-load throttle valve
The high-load intake passage d5 is located downstream of the low-load throttle valve and opens into the working chamber through low-load and high-angle intake boats independently provided in each of the reed housings. CJ between solid cylinders: 180°
1 (11) of the rotor in each cylinder while maintaining the phase difference of
As the engine rotates, the intake, compression, explosion, expansion J5, and exhaust strokes are performed in sequence. When the load of the So-01 engine is low, only the above-mentioned low-load throttle valve is opened to supply intake air only from the low-load intake passage, which has a narrow passage area, thereby increasing the intake flow rate and improving combustion stability. While improving
When the engine is under high load, the high-load throttle valve is also opened to supply intake air from the high-load intake passage, thereby increasing filling efficiency and increasing output. This is a so-called dual induction method. In addition to the model in which the above-mentioned low-load throttle valve is installed in the low-load intake passage, there is also a model in which the low-load throttle valve is installed upstream of the branch between the low-load intake passage and the high (, ', + 7 IJ intake passage). Shinoshikai is coming.

ところで、従来、このJ:うなロークリピストンエンジ
ンにおいて、吸気通路に過給機を設(プて吸気の過給を
(−jうことにJ:す、充填効率を高めて出力向上を図
るようにり−ることはよく知られているが、過給)幾を
要り゛るため、)f!t ;告が大がかりどなるととも
にロス1〜アツプとなる嫌いがあった。
By the way, conventionally, in this J: Eel low-return piston engine, a supercharger was installed in the intake passage to supercharge the intake air. It is well known that supercharging (supercharging) is required, so f! t; There was a fear that the announcement would be loud and loud and the loss would be 1~up.

J:た、従来、吸気圧力波ににり過給効果をjrJる技
術どして、実公tin 45 2321号公報に開示さ
れているように、11i−気筒のロータリピストンエン
ジ〕/において、吸気管を寸法の異なる2本の通路に分
け、それぞれ別の吸気ボートを有し、エンジン高回転時
は2木の吸気通路を用い、低回転時は閉塞位置の遅い方
の吸気通路を閉止し、吸気を早目に閉塞することにより
、吸気管の司法やエンジン回転数の関数である吸気の最
大圧力時点での吸気の閉塞による過給作用を利用して広
範囲のエンジン回転域に亙って好適な充填効率を得るよ
うにしたものが提案されている。しかし、このものは、
1ii−気筒のロークリビス1ヘンエンジンに対づるし
のであって、吸気通路内で発生りる吸気圧力波をどのよ
うに利用するのか、その椙成1作用が定かでなく、直ち
に実用に供し1りないものであった。しかも、吸気ボー
1〜としてペリフェラルボー1〜を用いているため、吸
気ボー1〜は吸気作動室が閉じる前に排気作動室と連通
することになり、排気作動室からの排気ガスの吹き返し
により過給効果を得ることが困難であった。特に、近年
の市販中では、騒音低減や排気ガス浄化のためにコーン
ジン排圧が上昇し、高回転高負荷時、通常のエンジンで
400〜600mTnHg (ゲージ11)程度に、タ
ーボ過給機付エンジンでは1000100O以上になっ
てJ5す、上記ペリフェラルボーI・方式による充填効
率向上は期待できないものとlI−っている。
J: Conventionally, as disclosed in Japanese Utility Model Application No. 45 2321, a technology has been used to increase the supercharging effect using intake pressure waves. The pipe is divided into two passages with different dimensions, each with a separate intake boat, and when the engine is running at high speeds, two intake passages are used, and when the engine is running at low speeds, the intake passage with the slower closing position is closed. By blocking the intake air early, it is suitable over a wide range of engine speeds by utilizing the supercharging effect caused by the intake air blockage at the maximum pressure of the intake air, which is a function of the intake pipe control and engine speed. A system has been proposed that achieves a high filling efficiency. But this one is
It is designed for a 12-cylinder low revitalization engine, and it is unclear how it will utilize the intake pressure waves generated in the intake passage, so it will not be put into practical use immediately. It was something that didn't exist. Moreover, since the peripheral bow 1~ is used as the intake bow 1~, the intake bow 1~ will communicate with the exhaust working chamber before the intake working chamber closes, and the exhaust gas will be blown back from the exhaust working chamber. It was difficult to obtain the effect of the supply. In particular, in recent years on the market, cone engine exhaust pressure has increased to reduce noise and purify exhaust gas, and at high speeds and loads, normal engines can reach around 400 to 600 mTnHg (gauge 11), and engines with turbochargers. If it exceeds 1,000,100 O, it is assumed that no improvement in filling efficiency can be expected by the above-mentioned peripheral bow method.

fこで、本発明者等は、ロータリピストンエンジンにお
けるサイド吸気ポートの吸気特性を検討づ“るに、 (i)  吸気ボー1〜閉口時には吸気の慣性により吸
気か圧縮され、吸気通路内の吸気ボー1〜部分に圧縮波
か光生すること、 (1;)  吸気ボー)〜の吸気聞知により吸気通路内
に膨張波が発生すること を知見した。このことから、一方の気1jLIでの上記
(1)の閉口時の/−iE縮波を他方の気筒の特に吸気
の吹き返しが生じる全開直前の吸気ボーi〜に作用Vし
ぬれば効果的に過給効果が19られること(以下、吸気
慣性効果という)、および各気筒での上記(ii)の膨
張波を圧縮波に反転さゼて該合気1尚の全開直前の吸気
ボートに作用′けしめれば過給効果が青られること(以
下、吸気個右脈勅効果という)を見い出したのである。
fThus, the present inventors studied the intake characteristics of the side intake port in a rotary piston engine and found that (i) When the intake port is closed, the intake air is compressed due to the inertia of the intake air, and the intake air in the intake passage is compressed. It was found that a compression wave was generated in the bow 1 ~ part, and that an expansion wave was generated in the intake passage due to the intake sensation of (1;) intake bow) ~.From this, it was found that the above If the /-iE contraction wave at the time of (1) closing is applied to the intake bow i of the other cylinder, especially just before full opening, where intake air blowback occurs, the supercharging effect can be effectively achieved (hereinafter referred to as intake air (referred to as inertia effect), and if the expansion wave (ii) above in each cylinder is reversed into a compression wave and acts on the intake boat just before full opening of the air conditioner 1, the supercharging effect can be reduced. (hereinafter referred to as the "inhalation individual right pulse effect").

そして、上記の如き2系統のリーイド吸気ボート式の2
気筒ロータリピストンエンジンにd″3いては、上記吸
気慣性効果d3よび吸気個有脈動効果を得るに当って、
高負荷用吸気通路と低負荷用吸気通路との各々独立した
2系銃の吸気通路をイ1−リ−ることhl Iら、各々
の吸気系統で上記各効果を有効に寄ることができる1゜ 尚、サイド吸気ボート式と異なり、吸気通路がロータハ
ウジングに聞1]するペリフェラル吸気ボー1式にあっ
ては、該吸気ボー°1〜が常←−作動室に聞r−1シて
いるので上記のような効果は4Iじない。
And, as mentioned above, there are 2 lead-id intake boat type 2 systems.
In the cylinder rotary piston engine d''3, in order to obtain the intake inertia effect d3 and the intake unique pulsation effect,
By creating two separate intake passages for high-load and low-load guns, each of the above effects can be effectively achieved in each intake system.゜In addition, unlike the side intake boat type, in the case of the peripheral intake bow 1 type in which the intake passage is located in the rotor housing, the intake bow °1 ~ is always located in the working chamber. Therefore, the above effects are not the same as 4I.

すなわら、本発明の目的は、上記の如さ一2系統のサイ
ド吸気ボート式の2気筒ロータリビス1ヘンエンジンに
おいて、高負荷用および低負荷用吸気ボー1〜の各間口
期間、各気筒の高角動用又は低負荷用吸気通路の一方を
連通する連通路の位置および他方の吸気通路内に発生し
た膨張波を圧縮波に反転するための拡大室の位置、並び
に」記連通路を介する固気筒の吸気ボート間の通路1・
りさd3よび上記拡大室から吸気ボー1〜までの通路長
ざを適切に設定することにより、高出力を要する500
0〜7000ppmのエンジン高回転時、一方の吸気系
DCでの吸気慣性効果により過給効果を得るととb +
、;=、それよりも低回転側で他方の吸気、系統での吸
気個有脈動効果により過給効果を得、よって過給低等を
用いることなく既存の吸気系の僅かな設計変更による簡
単な構成によってエンジンの中目1ヶ11吹から高回転
域に亘つ−C充填効率を高めC出力向」二を有効に図ら
/υとするものである。
In other words, an object of the present invention is to provide a side intake boat type two-cylinder rotary vis 1 engine with 12 systems as described above, in which each cylinder is The position of the communication passage that communicates one of the intake passages for high angle motion or low load, the position of the expansion chamber for reversing the expansion wave generated in the other intake passage into a compression wave, and the Passage between cylinder intake boats 1.
By appropriately setting the length of the passage from the risa d3 and the expansion chamber to the intake bow 1, it is possible to
At high engine speeds of 0 to 7000 ppm, the supercharging effect can be obtained due to the intake inertia effect in one intake system DC.
;=, On the lower rotation side, the supercharging effect is obtained due to the unique pulsation effect of the intake air in the other intake system, and therefore it can be easily achieved by making slight design changes to the existing intake system without using low supercharging etc. With this configuration, the -C charging efficiency is increased from the engine's medium engine speed to the high rotation range, and the C output direction is effectively achieved.

このII的を辻成刀゛るため、本発明の4+、r、或は
、2節1−ロコイド状の内周面を右J−るロータハウジ
ングどイの両側に位「1゛Jるリーイドハウシンクとで
形成されるケーシング内にそれぞれ配設dれた略三角形
4人のD−夕が、エニ1−ゼン1〜リツクシ【・71〜
(こ支承され該シャツ1−の回転角で180°の位相差
を持つで遊星回1(へ運動し、かつイ1(負荷用吸気通
路と高負荷用吸気通路とが各々独立して各サイドハウシ
ングに設けた低角他用および高負荷用吸気ボー1〜によ
って作動室に間口する2気H151:I−クリビス1〜
ンエンジンにa3いて、 a、高負荷用吸気ボーl−の間口期間19sをエキセン
1−リツクシ!/フトの回転角で270〜320°の範
囲内に設定すること、 1] 、低負荷用吸気ボートの聞[]期間θpをエキレ
ントリツクシャフトの回転角で230〜290°の(1
ワ囲内に設定すること、 C0各気筒の低負荷用および高負荷用吸気通路の一方を
絞り弁下流において連通路で連通づること、 d、各気筒の能力の吸気通路の絞りすII−流に拡大室
を設けること、 C1上記連通路d3よびその一ト流の吸気通路にJ、っ
て形成ざnる固気筒の吸気ボー1−間の通路長さl−3
(1つを、5000〜7000rI)mの間で設定した
エンジン高回転時、一方の気絶の吸気ボー1・閉D [
li冒こ吸気通路内に光生り−る閉I]時圧縮波を上記
連通路を介して他方の気筒の全開直前の吸気ボー1〜に
伝播させるように設定づること、f、上記拡大室から各
気筒の吸気ボーI〜までの吸気通路の通路長ざ91] 
(s)を、上記5000〜7000rpHIの間r g
i定された回転29. J、りも100 Q rpm以
上低回転側の3500〜50001’ p Illのエ
ンジン中回転時、各気筒の吸気ボートの吸気511始に
より吸気通路内に発生Jる膨張波を上記拡大室で反転し
て反射した圧縮波の2次脈動波を各気筒の全開直前の吸
気ボー1〜に伝播さけるように設定すること によつC1各気1に1の仝開直前の低角6・1用および
高f″、j イ1jl用吸気ボー1〜にそれぞれ伝播し
たL「縮波により過給を?1つようにし、よって一方の
吸気系統にJ>りるエンジンとコ、[見し1人114の
1段シ(を肖・i生効床に J:び他方の吸気系統にJ
> +;るエンジン中口り・ム1)・)の吸気個右脈動
効宋によりエンジン中回転1i7から(5回1pムj矛
1(こ口つ−C充填効率を効果的−二高めるJ:う(こ
したものて゛ある。
In order to achieve this objective, the inner peripheral surface of the 4+, r, or 2-section 1-locoid of the present invention is placed on both sides of the rotor housing on the right side. Four approximately triangular D-Yu are arranged in the casing formed by the Idhausink, and the
(This is supported, and the rotation angle of the shirt 1- moves into a planetary rotation 1 (with a phase difference of 180 degrees, and the intake passage for load and the intake passage for high load 2 air H151: I-crivis 1~ which is opened to the working chamber by the low angle and high load intake bow 1~ provided in the housing.
I am in the engine A3, and the frontage period of the high-load intake ball l- is 19s. The rotation angle of the electric trick shaft should be set within the range of 270 to 320 degrees, 1) The period θp of the low-load intake boat should be set within the range of 230 to 290 degrees (1) with the rotation angle of the electric trick shaft.
C0. One of the low-load and high-load intake passages of each cylinder should be connected through a communication passage downstream of the throttle valve. d. The intake passage of each cylinder should be set within the throttle II-flow of the capacity of each cylinder. Providing an enlarged chamber, C1 J is formed in the above-mentioned communication passage d3 and its one-flow intake passage.A passage length l-3 between the intake bow 1 and the solid cylinder is formed.
(One is set between 5000 and 7000rI) When the engine is running at high speed, one of the stun intake bows 1 and 1 and closed D [
(li) Setting is made so that the compression wave generated in the intake passage is propagated through the communication passage to the intake bow 1~ of the other cylinder just before full opening; f. from the expansion chamber; Passage length of the intake passage from intake bow I to each cylinder 91]
(s) at r g between 5000 and 7000 rpHI above.
i determined rotation 29. J, Rimo 100 Q When the engine rotates at 3500 to 50001' p Ill on the low rotation side above rpm, the expansion wave generated in the intake passage by the intake air 511 of the intake boat of each cylinder is reversed in the expansion chamber. By setting the secondary pulsating wave of the compression wave reflected by the cylinder to avoid propagation to the intake bow 1~ of each cylinder just before full opening, the low angle 6.1 and High f'', J I1jl The L'' propagated to the intake bow 1~ by the wave contraction makes the supercharging ?1, so that one intake system is connected to the engine and the [see 1 person 114 1 stage (shown) on the living floor J: and on the other intake system
>+; engine mid-rotation・mu1)・) intake individual right pulsation effect Song from engine mid-rotation 1i7 (5 times 1pmuj 1) (this effectively increases filling efficiency-2) :Yes, there is something wrong.

ここにJ−3いて、上記一方の吸気系統でi汲込1員性
効果を11するエンジン高回転時とじての5000〜7
000 rl)mの↓A準回転INhの限定は、一般に
最高出力d5よび最高速度がこの範囲(こ設定され−(
いることがら、エンジンの高負荷高回転領域ぐあって高
出力を要し、充填効率向上、出力向上に有効な領域であ
ることに依る。j、た、他力の吸気系統で吸気個有脈動
効果を行るエンジン中回転時としての3500〜500
0rpmの回φ云数N9の設定は、一般に最大トルクが
この回転域で設定されていること、低回転域で吸気個有
脈動効果が得にくいこと、ざらに上記基準回転数Nhで
吸気慣性効果を111だ基金、その効果(過給効果)(
,1塁1−11−回転数N ITを中心にトj1)より
も1000’ :’ Ill高低回転側に及、′i・の
て′、上記基準回転数N bよりも少4fくとも100
0 +゛pm以上低回転側(N 9 ≦N h −10
00rp111) −C”吸気個有脈動効果を111る
ことか全体的に出ツノ向上を図ることが−Cきることに
依る。
Here, in J-3, one intake system has an i pumping effect of 11, which is 5000 to 7 at high engine speed.
000 rl)m's ↓A semi-rotation INh is generally limited when the maximum output d5 and maximum speed are set within this range (-(
This is due to the fact that the engine's high load, high rotation range requires high output, and is an effective area for improving charging efficiency and output. j, 3500 to 500 when the engine is running at mid-speed when the intake system uses external power to create a unique pulsation effect on the intake air.
The setting of the number of rotations N9 at 0 rpm is because the maximum torque is generally set in this rotation range, it is difficult to obtain the intake pulsation effect in the low rotation range, and the intake inertia effect at the above reference rotation speed Nh. 111 fund, its effect (supercharging effect) (
, 1st base 1-11-rotation speed N IT is 1000' more than toj1):'
0 +゛pm or more on the low rotation side (N 9 ≦N h -10
00rp111) -C" It depends on -C to improve the intake-specific pulsation effect or to improve the overall output.

J、た、上記設定」j項aでの高角?+&用吸気ボー1
−の開口期間O5は、その上限である320°は、リー
イド吸気ボートを介して先行作動寮と接続作fjj室と
が連通づるのを防止するためて、[j−夕側面による実
質的な間口期間にりもサイドシールによる開口1す」間
は約40°人さくなり、このリーイドシール開口期間の
ラップを避りるために間に40゜以]二の間隔を設ける
必要があるので、これ以下に[;1]口明間を抑えるこ
とにより、リーイドシール外側のリイドハウジンク内摺
面どロータ側面どの間の微小間隙〈通常200μ程度)
を介しての吸気作動室とそれに続く排気作動室との連通
を防止し、アイドリンクのような低回転低負荷時におけ
る排気ガスの吸気作動室への持ち込みを防止し安定した
燃焼をt(1゛保TJ’(、・乙の(ある。一方、その
下14(て6うる270°は、1県人上死点< −r 
D C)から下死点<131つC) Fl、ての幾何学
的4.−吸気行程の起1(ilj]間て゛あり、11!
に気をり」宋的に行うために(ユ、少なくとし聞II明
間をこれ以」−に設定(」る必要が((つる、。
J, t, above setting” high angle in j term a? + & intake bow 1
- The opening period O5 of 320°, which is the upper limit, is set to 320°, which is the upper limit of 320°, in order to prevent communication between the preceding operation dormitory and the connecting room fjj through the lead air intake boat. During this period, the opening distance between the side seals will be approximately 40 degrees smaller, and it is necessary to provide an interval of 40 degrees or more between them to avoid the overlap during this lead seal opening period, so it is less than this. [;1] By suppressing the gap, a minute gap (usually about 200μ) is created between the sliding surface inside the lead housing on the outside of the lead seal and the side surface of the rotor.
This prevents communication between the intake working chamber and the following exhaust working chamber through the t(1゛TJ'
D C) to bottom dead center <131 C) Fl, Geometric 4. - There is an interval of 1 (ilj) at the beginning of the intake stroke, 11!
In order to do this in the Song dynasty, it is necessary to set ((), at least set the Ming period in II Ming period from now on).

この高で)前用吸気ボー1〜の開開時期の設定にあたツ
T 1.L 、 l1il li:′i!!IF ヲ上
/E 点J: ’、’) ’b、マタ、閉時1σ」を下
死点よりし)1どらけるlid要がどうる。これは、高
角伺用吸気示−1〜IJX主とじて受り持つ高回転域で
(J吸入空気量のli″l性によって幾何学的な吸気行
程の効果がどれ側にずれること、加えて、サイド吸気ポ
ー(−で(よそのlid Il、+i!!IIを上死点
側にシ1ずけるとリーイ)〜シールの回転側先端がポー
トに落ち込むため−L死+::j i、*約30’以降
に設定しなIJれはならないことによっている。
At this height) when setting the opening/opening timing of the front intake bow 1. L, l1il li:'i! ! IF wo upper/E Point J: ',') 'b, mata, 1σ when closed' from bottom dead center) 1. What is the lid requirement? This is due to the fact that the effect of the geometrical intake stroke shifts to which side due to the li''l nature of the intake air amount, , side intake port (- (other lid Il, +i!! If you move the II to the top dead center side) ~ the rotation side tip of the seal falls into the port, so - L death +::j i, *This is because the IJ should not be set after about 30'.

これに対し2、低角71η用吸気ボー1へは、吸入空気
量が少なく慣性が小さい低回転域を主に受は持つため、
閉時lυ]を下死点後約50°以前にし吸気の吹き返し
を防ぐ一方、少なくともその間口!!I]間を230°
以上どることによって必要な吸気の確保を行う必要があ
る。従って、低負荷用吸気ボー1〜の開口期間01)は
、設定事項1〕のように230〜290°(こ設定され
る。
On the other hand, 2. Since the intake bow 1 for low angle 71η mainly has a low rotation range where the amount of intake air is small and the inertia is small,
While closing lυ] to approximately 50° before bottom dead center to prevent intake air from blowing back, at least that opening! ! I] 230° between
It is necessary to ensure the necessary intake air by going through the above steps. Therefore, the opening period 01) of the low-load intake bow 1 is set to 230 to 290 degrees (setting item 1).

尚、本発明の高負荷用J3よひ゛低負荷用吸気ボー1〜
のI)110期間はロータ側面にJ、る吸気ボー1〜の
実質的な間開111」間で゛あって、リーイドシールに
よるものて゛はイ1い。これは、本発明で問題とり−る
中・高回転域にお()る有効な圧力波の発生、伝播に関
しては、1ナイドシール外側の微小間隙(ま実質的に影
響を及はさ4fいためである3゜ また、上記設定1j″jCでの連通路J5 J:σ上記
設定(Jj項〔1ての拡大室の絞り弁下流位el i;
Ω定は、高角るj1川J5よび低負荷用吸気通路の空気
流帛を制御する絞り弁の存在が圧力波の伝播の抵抗とな
るのでそれを避(プるためであり、圧力波をその減衰を
小ざくしてイ1効に伝播させるためである、。
In addition, the high load J3 of the present invention and the low load intake bow 1~
The I) 110 period is a substantial gap between the intake bows 1 and 111 on the side surface of the rotor, and is not caused by the lead seal. This is due to the small gap (4 f) on the outside of the 1-side seal that has no substantial effect on the generation and propagation of effective pressure waves in the medium and high rotation range, which is the problem of the present invention. Also, the communication path J5 J:σ at the above setting 1j″jC (Jj term [1 downstream of the throttle valve el i of the expansion chamber;
The purpose of the Ω constant is to avoid the presence of the high-angle J1 river J5 and the throttle valve that controls the air flow in the low-load intake passage, which creates resistance to the propagation of pressure waves. This is to reduce the attenuation and propagate the I1 effect.

ざらに、上記設定事項eでの一方の吸気系統の固気筒の
吸気ポー1〜間の通路長ざl−3(r)は、エンジン回
転数が5000〜7000 rpmの範囲内で設定した
基準回転数Nhのときに吸気慣性効果をグツ末的に11
するJ、゛うに設定されl二もの〜C1L、S  (P
)=  <  18(つ −01つ)X (60/36
ONb )xa −(J )のj友からしjシめられ/
こ自]″1てパある。すなわち、」二記(]、 ) 3
’Cニd3いて、′180°は内気筒の位相差であり、
またθ0(J、吸気ボートに開]」時圧縮波が天lj:
j的に発生じてから全開までの期間と効果的に過給を行
うために該閉口性圧縮波を伝t)liざぜる吸気ボー(
−全(31) ir16g (7) rib Jio 
カ+3 e fVJ 、−1テノii!l (75とヲ
合1:I′シた無効1υ]間て、θo−20’であり、
よって(180−θO) iJIニ一方の気筒での閉口
〔1、〒圧縮波発生から他方の気筒の吸気ボー1へへの
伝播までに要づ゛る−[キセンl〜リックシ■・)1〜
の回転角度を表わ7J’ 、また、Nh =5000 
へ7000rph+ 7:あり、60 / 360 N
 hは1°回転するのに要り−る旧聞〈秒〉を表わす。
Roughly speaking, the passage length l-3 (r) between the intake ports 1 and 1 of the solid cylinder of one intake system in the above setting e is the reference rotation set within the engine speed range of 5000 to 7000 rpm. At several Nh, the intake inertia effect is reduced to 11
J, set to 12 things~C1L,S (P
) = < 18 (tsu -01) x (60/36
ONb ) xa - (J )'s friend is shushing her/
This is ``1. That is,'' 2 (], ) 3
'Cd3,'180° is the phase difference of the inner cylinder,
Also, when θ0 (J, open to the intake boat), the compression wave is at the top lj:
In order to effectively supercharge the period from when it occurs to full opening, the closed compression wave is transmitted (t)li to the intake bow (
-Total (31) ir16g (7) rib Jio
+3 e fVJ, -1 teno ii! l (75 and 1: I' and invalid 1υ) is θo-20',
Therefore, (180-θO) iJI - Closing in one cylinder [1, Required from compression wave generation to propagation to intake bow 1 of the other cylinder - [kisen l ~ ricsi ■・) 1 ~
represents the rotation angle of 7J', and Nh = 5000
to 7000rph+ 7:Yes, 60/360N
h represents the number of seconds required to rotate 1 degree.

また、aは圧力波の伝播速麿(音速)であって、20℃
でa −343’m /sである。
In addition, a is the propagation speed of the pressure wave (sonic speed), which is 20℃
and a -343'm/s.

さらにまた、上記設定事項fでの拡大至と各気筒の吸気
ポートとの間の通路長さ9.l) (s) (、:J、
エンジン回転数が上、□ピ阜す(1−回転数N11(5
000〜7000ppm)よりも′1000r p I
n以上イ!(回転側の3.500〜り○QQrpmのど
きに2次吸気個イーJ脈動効果を効果的にtするように
gQ定されたしので、9 rl (S)= (θl) 
(S)−01)X (60/36ON交) XaX1/4    ・・・ ([) の式から求められた値である。’Jなゎち、上記(II
)式において、低ず。]荷荷扱吸気−1− bl1口期
IjjlθI)=230〜290°、高負荷用吸気ボー
ト間口開u11θs =270〜320″であり、θ1
は吸気ボー1〜開口から膨張波が実質的に光引りるまで
のi’jl1間と効果的に過給を行うために該膨張波を
反転した圧縮波の2次脈動波を伝播さぼる吸気ボート仝
閉直前の時期から全開までの期間とを合線した無効期間
であって、θ+−100’であり、よって(0p〈s)
−θ1)は膨張波発生から圧縮波の2次脈動波伝播まで
に要するエキセントリックシャフトの回転角度を表わす
。また、エンジン回転数NR=3500〜5000rp
m r、60/36ON9は1°回転づるのに要づる時
間〈秒)を表わり−931,た、圧力波の伝Jtti速
1ffa = 3 /I 3 m / 5(20°C−
()である。ざらに、1/4は)j11キ動波の2次1
11pl動を利用り゛るので2次脈動が2往(S!づ−
る行程の逆数を表ねづ。
Furthermore, the passage length between the enlargement point in the above setting f and the intake port of each cylinder 9. l) (s) (,:J,
Engine speed is high, □Pi (1 - speed N11 (5)
000~7000ppm) than '1000r p I
More than n! (GQ is determined to effectively reduce the secondary intake J pulsation effect at 3.500 ~ ○QQ rpm on the rotation side, so 9 rl (S) = (θl)
(S)-01)X (60/36ON intersection) 'J nawachi, above (II
) in the formula, low. ] Cargo handling intake -1- bl1 opening IjjlθI) = 230 to 290°, high load intake boat opening u11θs = 270 to 320'', θ1
is the period from intake bow 1 to i'jl1 until the expansion wave is substantially pulled out from the opening, and the intake air which propagates the secondary pulsating wave of the compression wave which is the inversion of the expansion wave in order to effectively perform supercharging. This is the invalid period that combines the period immediately before the boat closes until the boat is fully opened, and is θ+-100', so (0p<s)
-θ1) represents the rotation angle of the eccentric shaft required from the generation of the expansion wave to the propagation of the secondary pulsating wave of the compression wave. Also, engine speed NR=3500~5000rp
m r, 60/36ON9 represents the time (seconds) required to rotate 1 degree, -931, and the pressure wave propagation speed 1ffa = 3 / I 3 m / 5 (20 ° C -
(). Roughly speaking, 1/4 is the second-order 1 of the j11 k dynamic wave.
Since it uses 11 pl movement, there are 2 secondary pulsations (S!
Express the reciprocal of the process.

尚、ここで、本発明に(1jいて、吸2(側石111i
<動効果をH′lるに当って2次1iiリノを用いる理
由(,1、′1次脈動は上記効果が人である反m1、)
勇h:81(さ’) p(S)が長くイiりづ−き、2
次脈動の場合にスリして2イ?3の長さどなるので車載
性が悪く、また吸気抵抗を増加させるfψ向がある。一
方、3次11iit !l’JJ Ij、通路長さ91
) (:;) lfi 2次脈動に対して2/3の長さ
にy□(jかく4する反面、2次II爪動に対しで上記
効果が約15〜25%程度イ1(−ドし、J、1.:吸
気抵抗がさくJ、と変わらない。このことから、通路長
さU l) (S)を可及的に短クシイノ−から吸気個
有脈動効果を有効に発揮させるためである。
Here, in the present invention (1j, suction 2 (side stone 111i)
<Reasons for using second-order 1ii reno when calculating H'l motion effect (,1, '1st-order pulsation is the opposite m1, where the above effect is human)
Brave h: 81 (sa') p (S) is long, 2
Pickpocketing in case of next pulsation 2? 3 is too long to be mounted on a vehicle, and also has an fψ tendency that increases intake resistance. On the other hand, 3rd 11iit! l'JJ Ij, passage length 91
) (:;) lfi For the second pulsation, y□(j is 4), but for the second pulsation, the above effect is about 15 to 25% less (-d). J, 1.: The intake resistance is the same as J, which is low.From this, in order to make the passage length Ul) (S) as short as possible to effectively exert the unique intake pulsation effect. It is.

尚、」上記(I)、(IT)式では、圧ノJ波の伝播に
対する吸入空気の流れの影響を無視している。
Note that in the above equations (I) and (IT), the influence of the flow of intake air on the propagation of the pressure J wave is ignored.

これは、流速が音速に比べて小さく、吸気通路の長さに
ほとんど開化をもたらさないためである1、以上、本発
明を図面に示す実施例に阜ついて詳細に説明J゛る。
This is because the flow velocity is smaller than the speed of sound, and the length of the intake passage hardly changes.1 The present invention will now be described in detail with reference to the embodiments shown in the drawings.

第1 (ZJ +1’) J: ヒ第2 図ニJ) イ
ーC11A J′3J、び1B(31低負荷用と高負荷
用との2系統のサイ1〜吸気ボート式の2気筒ロークリ
ピストンエンジンにお(プる第1気筒および第2気筒で
あって、各シ・、筒1△。
1st (ZJ +1') J: hiFig. The first and second cylinders connected to the engine, each cylinder 1△.

1Bは各々、21!i5トロ=1イド状の内周面;2a
を右J−るロータハウジング2と、その両側に位置し後
述の低負荷用吸気通路20a、20bおよび高負荷用吸
気通路21a、211)が各々間口づる低置イリマ1用
吸気ポート3おJ:び高負荷用吸気ボー1〜/1を備え
たリイ1〜ハウジング5,5とで形成されたケーシング
6内を、略三角形状のロータ7が単一のエキセントリッ
クシャフト8に支承され−CIn星回転運初し、かつ各
気筒1A、IBのロータ7.7はエキセントリックシャ
フト8の回転角で180°の位相差を持ち、上記各ロー
タ7の回転に伴ってケーシング6内を3つの作動室9,
9.9に区画して、各々の気筒1A、1Bにおいて上記
18O″のイゼt((1差−(しってll気、圧fil
I%曝光、膨張j3J:σIJI気の各行程を順次行う
しの(゛ある。尚、10(J合気t、’l 1△、1[
3にJ3い−(’ 1.1−クハウシンク2(こ設りら
れた1J1貫・、小−1〜、11おJ:ひ12はリーー
Tイング側J3よび1〜レーリシク側Lij火プラク、
13けローフ7の側面に7.谷されたり・イドシール、
1 =1 i5iローク7の各頂部に装4されにアペッ
クスシール、15 let ml −9717) B 
頂8i! 両m’! ml ニB S ’ta’れたコ
ーナシール゛Cある。
1B is 21 each! i5 Toro = 1 id-shaped inner peripheral surface; 2a
The rotor housing 2 is located on the right side of the rotor housing 2, and the intake ports 3 and 3 for the low-mounted rotor 1 are located on both sides of the rotor housing 2 and have low-load intake passages 20a, 20b and high-load intake passages 21a, 211), which will be described later, respectively. A substantially triangular rotor 7 is supported by a single eccentric shaft 8 in a casing 6 formed by a relay 1 and a housing 5, which is provided with intake bows 1 to 1 for high loads. At the beginning, the rotors 7.7 of each cylinder 1A, IB have a phase difference of 180° in the rotation angle of the eccentric shaft 8, and as the rotors 7 rotate, the inside of the casing 6 is divided into three working chambers 9, 7.
9.9, and in each cylinder 1A, 1B, the above 18O''
I% light exposure, expansion j3J: σIJI ki steps are performed in sequence (゛.In addition, 10(J Aikit, 'l 1△, 1[
3 to J3 - (' 1.1-Kuhousink 2 (This was set up 1J1 Kan, Elementary - 1 ~, 11 OJ: Hi 12 is Lee T-ing side J3 and 1 ~ Lelyshik side Lij fire plaque,
7. On the side of the 13-piece loaf 7. Tanisarari・Idshiru,
1 = 1 Apex seal on top of each i5i Roke 7, 15 let ml -9717) B
Top 8i! Both m'! There is a corner seal 'C' that has been 'ta'ed.

上1把両サイドハウシング5,5にり・]面して設(プ
られた低負荷用J:> J:び高負荷用吸気ボート3,
4はロータ7側面によって聞1′Aiされ、1へ負荷用
吸気ボート4の開[]朋間θs F:エキレントリック
シlンフl−8の回転角で270〜320°の範囲に設
定されており、低負荷用吸気ボー1−3の間口期間θp
は230〜290°の範囲に設定されている。
Upper 1 side housing 5, 5 facing (low-load J: > J: high-load intake boat 3,
4 is 1' Ai by the side surface of the rotor 7, and the opening of the load intake boat 4 to 1 is θs. and the frontage period θp of intake bow 1-3 for low load
is set in the range of 230 to 290°.

また、上記高負荷用吸気ボー1〜4の間口時期は低負荷
用吸気ボー1〜3の間口時期にりも早めるように設定さ
れており、作動室9からのJJI気カスの吹き返しを高
負荷用吸気ボート4側に集中させることにより、低ニー
″l荷用吸気ボー1へ3での膨張波を強く発生させて強
い吸気側石脈動効果を1゛1するようにしくいる。また
、+’ニアIイ’i ?+:i川吸気用−1−/Iの閉
[コ11.1朋り、Jl (f、(負荷用吸気ボー1〜
3の閉口時期ど同If、? 1ilJらしく l;1 
gら4Jるように119定さ?している。
In addition, the opening timing of intake bows 1 to 4 for high loads is set earlier than the opening timing of intake bows 1 to 3 for low loads, so that the JJI air scum from the working chamber 9 can be blown back under high loads. By concentrating it on the side of the intake boat 4 for use, a strong expansion wave is generated at the intake boat 1 to 3 for the low knee load, thereby reducing the strong stone pulsation effect on the intake side. 'Near I'i'i?+: i river intake -1-/I closed [ko11.1 friend, Jl (f, (load intake bow 1~
If the closing time of 3 is the same? 1ilJ-like l;1
119 fixed like g4j? are doing.

−ブJ、1Gは一端がエアクリーナ17 ’i介し−(
大気に開口して固気筒1△、1Bに吸気を供給するため
の主吸気通路であって、該主吸気通路1Gには、吸入空
気量を検出する」ニアフローメータ1Bが配設されてい
る。上記主吸気通路′16は土アフ巳−メータ18下流
において隔壁11)によって主低負荷用吸気通路20と
主高負荷用吸気通路21とに仕切られ、該主低負荷用吸
気通路20には、エンジンの負荷の増大に応じて開作動
し所定Q荷以上になると全開となるエンジン但1:’a
 ?−:i時の吸入空気量を制御する低負荷用絞り弁2
2が配設され、また上記主高負荷用吸気通路21には、
エンジン負荷が所定負荷以上になると開作動!jイ〜・
エンジン高負荷時の吸入空気量を制御する高負荷用絞り
弁23が配設されている。さらに、上記主低負荷用1穀
気)D)路20は似j?i荷用絞りブ′i゛22−1・
流において1i)l形状・j−法の第1a′3よび第2
低イ・)動用吸気通路20a、201)に分岐されたの
ら各気筒IA、IBの低負荷用吸気ボー1〜3,3を介
して作動室9゜9に連通し、J、た上記主高角イ(η用
吸気通路21は高角イ+:i用絞り弁23下流において
同形状N法の第1および第2高fり動用吸気通路21τ
1,21+)に分岐されたのら各気筒1△、1[3の高
負荷用吸気ボー1〜/I、4を介して作動室9.9に連
通しており、よって各気筒1A、1Bに対して、低負荷
用吸気通路20a 、201)と高負荷用吸気通路21
a、21bとは低負荷用絞り弁221;流において各々
独立して作動室9に間口するように(111成さ4′シ
ている。
-Bus J and 1G have one end connected through air cleaner 17'i-(
The main intake passage opens to the atmosphere and supplies intake air to the solid cylinders 1Δ, 1B, and the main intake passage 1G is provided with a near flow meter 1B that detects the amount of intake air. . The main intake passage '16 is partitioned into a main low-load intake passage 20 and a main high-load intake passage 21 by a partition wall 11) downstream of the meter 18, and the main low-load intake passage 20 includes: The engine opens as the engine load increases and opens fully when the load exceeds a predetermined Q load.However, 1:'a
? -: Low load throttle valve 2 that controls the amount of intake air at time i
2 is arranged in the main high-load intake passage 21,
Opens when the engine load exceeds the specified load! ji~・
A high-load throttle valve 23 is provided to control the amount of intake air when the engine is under high load. Furthermore, is the main low load 1st grain) D) road 20 similar to the above? I-load aperture block'i゛22-1・
In the flow, 1i) l-shape/j-method 1a'3 and 2nd
The low-load intake passages 20a, 201) are connected to the working chamber 99 through the low-load intake bows 1 to 3, 3 of each cylinder IA and IB. The intake passage 21 for high-angle A (η is high-angle A +: the first and second high-angle intake passages 21τ of the same shape N method downstream of the throttle valve 23 for i.
1, 21+) are connected to the working chamber 9.9 through the high-load intake bows 1 to /I, 4 of each cylinder 1△, 1[3, so that each cylinder 1A, 1B In contrast, the low-load intake passages 20a, 201) and the high-load intake passages 21
a and 21b are low-load throttle valves 221;

−に記各高<Q葡用吸気通路21a、21bのf&小通
路而面Asは各低負荷用吸気通路20a、20bの最小
通路面積AI)J:す・し太きく (As >Arl 
)設定され、また各高負荷用吸気通路21a、21bの
通路長さpsは各低負荷用吸気通路20a。
- Each height <Q f & small passage of intake passages 21a, 21b for grapes
), and the passage length ps of each high-load intake passage 21a, 21b is the same as that of each low-load intake passage 20a.

201)の通路長さ9pよりも短か< (Qs <Up
 )設定されてJ5す、高負荷用吸気通路2ia、21
1)による吸気(<′I性効宋での圧縮波の伝Jiii
をその減衰を小さくして有効に行うJ、うにしている。
201) is shorter than the path length 9p < (Qs <Up
) is set to J5, high load intake passage 2ia, 21
1) Inhalation (<'I effect of compression waves in the Song Jiii
This is done effectively by reducing the attenuation.

また、上51:各但負葡用吸気通路20a、2Qbには
それぞれ上記エアフローメーク18の出力(吸入空気量
)に応じて燃利噴a」量が制御される゛1t−1VG弁
式の燃第1 nr4射ノズル24,271が配設され−
(いる。
In addition, upper 51: Each intake passage 20a, 2Qb has a 1t-1VG valve type fuel whose fuel injection amount is controlled according to the output (intake air amount) of the air flow make 18. The first NR4 injection nozzle 24, 271 is arranged -
(There is.

イして、上記主高負荷用吸気通路21の分岐部は高角?
i&用絞り弁23下流に位h゛シて、第1高負伺月2吸
気通路21aと第2高負荷用吸気通路211〕どを連通
する連通路25を右づ−る拡大卒26によって構成され
ている。上記連通路25)の通路面積△CSは圧力波く
吸気慣性効果での圧縮波1をそのiト3:衷を小ざくし
て有効に伝達づ゛るように第1゜第2高負荷用吸気通路
21a、21bの最小通路面積Asと同等かそれ以上(
△CS≧AS>に設定されている。
Is the branch part of the main high-load intake passage 21 at a high angle?
Located downstream of the i& throttle valve 23, a communication passage 25 that communicates the first high-load intake passage 21a and the second high-load intake passage 211 is configured by an enlarged graduation 26 on the right. has been done. The passage area △CS of the above-mentioned communication passage 25) is set so that the compression wave 1 due to the intake inertia effect is effectively transmitted by reducing the width of the pressure wave. Equal to or greater than the minimum passage area As of the intake passages 21a, 21b (
ΔCS≧AS> is set.

また、上記主低負荷用吸気通路20の分岐部は、同様に
、低負荷用絞り弁22下流に位「ス(〕て、第1低負荷
用吸気通路20aと第2低負イ・11用吸気通路20b
とを連通ザる連通路27をVFi u−る拡大室28に
よって+111成されている。上記拡大室28の容積は
、エンジンjノ1気量(1(1−作動室の抽気量×2)
にズ・]シて0.5〜2イj″Sに設定ざl′tており
、0゜511°1木(lδ1では膨張波と圧縮波間の反
転効果が1!7られず、一方、2 (i:iを越えると
圧力波が拡散してしJ、い吸気個有脈動効果が2しく低
下づることによるしのCある。また、上記各拡大3Σ2
6.28(よ、エンジンの加速時又は6]]速時等の過
渡連転1.1でのり一−ジタンクとして機能し、撚れの
良好な応性性を確保Jるしのである。
Similarly, the branch part of the main low-load intake passage 20 is located downstream of the low-load throttle valve 22, and is connected to the first low-load intake passage 20a and the second low-load intake passage 20a. Intake passage 20b
A communication path 27 communicating with the VFi is formed by an enlarged chamber 28 of +111. The volume of the expansion chamber 28 is equal to 1 air volume of engine J (1 (1 - bleed air volume of working chamber x 2)
The inversion effect between the expansion wave and the compression wave is not 1!7 at 0°511°1 tree (lδ1), and on the other hand, 2 (i: If i exceeds i, the pressure wave will diffuse and the unique pulsation effect of the intake will be reduced by 2.
It functions as a glue tank during transient rotations such as during acceleration of the engine or at speeds of 1.1 to 6.28, ensuring good twisting properties.

さらに、上記固気筒1A、IBの高負荷用吸気ポー1〜
4./I間の通路長ざ[Sは、連通路25の通路長さ9
 csど該連通路25下流の第1.第2高角荷用吸気通
路21a 、21bの各通路長さU S。
Furthermore, the high load intake ports 1 to 1 of the solid cylinders 1A and IB are
4. /I [S is the passage length 9 of the communication passage 25
cs and the first downstream of the communication path 25. Each passage length US of the second high-angle load intake passages 21a and 21b.

9Sとを)叫算したちのくLp−9cs+2.9s)と
イ【す、5000〜7000rptn (D範fffl
 内(7) W tlj 回転数N hでのエンジン高
回転時を基準として吸気儂性効果を得るように上記(I
>式から、Ls =1.31〜1.83 (T11)加
えて、上記第1.第2低負荷用吸気通路20a、2.O
bの通路長さ9p、つまり該各低角伺用吸気通路20a
、20bの拡大室28’\の聞]」端面から作動苗9へ
の間口(低1’ji A用吸気ボー1〜3)J、(゛の
通路長さUpは、」二記5000・へ−7000r p
 iilの範囲内の基準回転% N hよりも1000
rpm jス上低回転側の3500〜50001’ 1
)IIIの範囲内の回転数N9でのエンジン中回転Mを
基ill“とじて上記<n>式から Lp =0.37〜0.78 (m) に現定されている。
9S), 5000~7000rptn (D range fffl
(7) W tlj The above (I
> From the formula, Ls = 1.31 to 1.83 (T11) In addition, the above 1. Second low load intake passage 20a, 2. O
b passage length 9p, that is, each low angle intake passage 20a
, 20b's expansion chamber 28'\]' Frontage from the end face to the operating seedling 9 (low 1'ji A intake bows 1 to 3) -7000rp
Reference rotation % within the range of il 1000 than N h
rpm 3500 to 50001' on the low rotation side 1
) From the above formula <n>, Lp is determined to be Lp = 0.37 to 0.78 (m) based on the engine intermediate rotation M at the rotation speed N9 within the range of III.

尚、第2図中、29はIII気ボー1〜10に接続され
た排気通路、30は該排気通路29の途中に介設された
触媒装置(図示せず)を補助づ−るJlll浮気用の拡
大マニij\−ルドである。
In Fig. 2, 29 is an exhaust passage connected to the III cylinders 1 to 10, and 30 is a Jllll exhaust passage that assists a catalyst device (not shown) interposed in the middle of the exhaust passage 29. This is an enlarged manual.

次に、上記実施例の作用を第3図にJ:り説明づるに、
エンジン高負荷時には、高負荷用絞り弁23の開作動に
より第1.第2高負荷用吸気通路21a、21bが開か
れて各気筒1A、IBの高角イ・jI用1段シ1.ボー
1−/I、<がらも低角伺用吸り・、ボー1〜3.33
とは独立して吸気の供給を行っている。イシ−(、高出
力を要J−る5000〜7000rpmのエンジン高回
転11.旨こ(Jい一方の気筒例えば第2気fill 
1 [−tの高f)曲用吸気ポー1〜41男り詩には吸
気の1’、l t!Iにより吸気が圧縮されて第2高角
イ・b用吸気通路211〕内の高負荷用吸気ポー1〜/
1部分に閉10時圧縮波が発生づ“る3、この閉[」時
圧縮波は、固気筒1A、1Bの高負荷用吸気ボー1〜=
1.、<間の通路長ざl−sを上記5000〜7000
rpn+のエンジーン高目117時を基準どして上記〈
丁)式によりi−s=L、31〜1.83mに設定した
ことにより、第2高負荷用吸気通路21b’iル通路2
5→第1高負葡用吸気通路21aを経て、180°の位
相差を持つ第1気筒1Aの全開直前の高負荷用吸気ボー
1〜/Iに伝播づ−る。その結果、この閉口時圧縮波に
より、吸気が第1気筒1Aの全開直前の高負荷用吸気ボ
ート3にり作動空9内へ押し込まれて過給が行われるこ
とになる。同様に、第2気筒1Bにおいても、全開直前
の高負荷用吸気ボー1〜4にλJし’(−第1気筒1△
からの開口(1、う圧れ1・1′波が伝播(]で過給効
果が1!1られる。
Next, the operation of the above embodiment will be explained as shown in FIG.
When the engine is under high load, the high load throttle valve 23 is opened. The second high-load intake passages 21a and 21b are opened, and the high-angle I/JI first-stage cylinders 1. Bow 1-/I, <Garamo low angle suction・, Bow 1-3.33
Intake air is supplied independently from the 11. High engine speed of 5,000 to 7,000 rpm that requires high output.
1 [-t high f) Song intake port 1-41 For male verse, intake 1', l t! The intake air is compressed by the high-load intake ports 1 to 1 in the second high-angle intake passages 211 for
A compression wave occurs at the time of closing 10 in the 1 part 3. This compression wave at the time of closing occurs in the high load intake bow 1~= of the solid cylinders 1A and 1B.
1. , <The path length between l-s is 5000 to 7000 above.
The above is based on the engine high time of rpn+ 117 o'clock.
By setting i-s=L, 31 to 1.83 m according to the formula (2), the second high-load intake passage 21b'il passage 2
5→The first high-load intake passage 21a is propagated to the high-load intake bow 1 to /I just before full opening of the first cylinder 1A, which has a phase difference of 180°. As a result, due to this compression wave at the time of closing, the intake air is forced into the working air 9 by the high-load intake boat 3 just before the first cylinder 1A is fully opened, and supercharging is performed. Similarly, in the second cylinder 1B, λJ'(-first cylinder 1△
The supercharging effect is increased by 1!1 due to the propagation of the opening (1, pressure 1.1' wave) from the

一方、上記5000〜70001−11mの塁準回転故
N h 、J:りも11000rp以上低回転側の35
00〜5000r l] nlのエンジン中回転0、r
にtJ、各気踵)1Δ、1Bにおいで、低角前用吸気ボ
ー1〜3の吸気開始により第1.第2低負イ・行用吸シ
(通路20a、2Qb内には膨張波が光生じ、この膨張
波は、該低負荷用吸気ボー1〜3と拡大室28との間の
通路長さ91)を上記(■)式により0.37〜0゜7
81ηに設定したことにj:す、第1.負′12低負荷
用1以気通路20a、2Qb→拡大室28(圧縮波に段
転して反則)→第1.第2低負向用吸気通路20a、2
0b−>低負荷用吸気ボート3(膨張波に反転して反射
2→第1.第2低負荷用吸気通路20a 、20b→拡
大室28(圧縮波に反転して反9A)→第1.第2低負
荷用吸気通路208.20bを経て、圧縮波の2次脈動
波として各気筒1A、IBの全開直前の低負荷用吸気ボ
ート3に伝播して過給が行われる。
On the other hand, due to base semi-rotation of 5000 to 70001-11 m, N h , J: Rimo 11000 rp or more, 35 on the low rotation side.
00~5000r l] nl engine medium rotation 0, r
tJ, each air heel) 1Δ, 1B, the 1st. Expansion waves are generated in the second low negative A/row suction (passages 20a and 2Qb), and this expansion wave extends over the passage length 91 between the low load suction bows 1 to 3 and the expansion chamber 28. ) to 0.37 to 0°7 using the above formula (■)
I set it to 81η. Negative '12 Low load 1st air passage 20a, 2Qb → Expansion chamber 28 (step change to compression wave and foul) → 1st. Second low negative intake passage 20a, 2
0b->low-load intake boat 3 (reverses to expansion wave and reflects 2->1st. Second low-load intake passages 20a, 20b->expansion chamber 28 (reverses to compression wave and reverses 9A)->1st. Via the second low-load intake passage 208.20b, it propagates as a secondary pulsating wave of the compression wave to the low-load intake boat 3 just before each cylinder 1A, IB is fully opened, and supercharging is performed.

(ノl;かつて、このように気筒1△、′IB相互間に
d5い−(エンジン高回転時の高負荷用吸気ボーでの吸
気)(”性効果(こJ、る過給効果ど、各気筒1A。
(Nol; In the past, there was a d5 gap between cylinders 1△ and 'IB. 1A for each cylinder.

1[3自身にJ3いて]−レジン中回転時の低角’lI
l用模気系統−Cの吸気個有脈動効果による過給効果と
にJ、って、第4図に示づようにエンジン中回転域から
高[i)1転域に亘って充j1)1効ハぐの増大により
出力を向」−ざμることがでさ′る3、尚、第4図で【
ユ、合気C:)1Δ、1[3の低’i’3 イdj 7
11 a3よび高負荷用吸気通路20F1.201) 
、218.2′lbを各々独立させた従来例の場合(破
線で示す)に対し、6000r p nlをlい1(に
高負荷用吸気系統で吸気慣性効果を1ilるどどもに/
1. OOOrpmをJ、t f−%にニ低置イ1.j
i用吸気系統で2次の吸気fll有脈動効果を1!?る
ようにした本発明例の場合(実線で示す)にa3けるエ
ンジンの出力トルク特性を示ザ。
1 [J3 on 3 itself] - Low angle 'lI during resin medium rotation
The supercharging effect due to the intake air pulsation effect of the simulated air system-C for l is as shown in Fig. 4, and as shown in FIG. It is possible to decrease the output due to the increase in the 1st effect.
Yu, Aiki C:) 1Δ, 1[3's low 'i'3 Idj 7
11 a3 and high load intake passage 20F1.201)
, 218.2'lb are each independent (indicated by the broken line).
1. 1. Lower OOO rpm to J, t f-%. j
The i intake system has a secondary intake full pulsating effect of 1! ? The figure shows the output torque characteristics of the engine in A3 in the case of the example of the present invention (indicated by the solid line).

また、その場合、特に高負荷用吸気通路21a。In that case, especially the high-load intake passage 21a.

21bは、低負荷用吸気通路20a 、20bよりも通
路面積が大でと・す、しかも通路長さが短かいので、E
L:力彼(圧縮波)の伝播の抵抗が小さく、光1;1?
ざぜることができる。
21b has a larger passage area than the low-load intake passages 20a and 20b, and has a shorter passage length, so E
L: The resistance to the propagation of the force (compression wave) is small, and the light 1; 1?
You can make noise.

J、た、上記連通路25は、高負荷用幹り弁23下流に
位1ごし、L/ IJ’も該連通路25の通路面積AC
Sを面負荷用吸気通路21a、21bの1μ小通路面積
A Sより同等以上としたので、」二記高角荷用校り弁
23や連通路25白身によって)−1力波が減表びれる
ことがなくL記吸気慣性効果4・有効に光Jrff T
’さる。また、上記拡大室28は但f”(荷用絞り弁2
2下流に位買づ−るので、同様に、吸気個有脈動効果を
有効に発揮できる。
J, T, The communication passage 25 is located downstream of the high-load stem valve 23, and L/IJ' is also the same as the passage area AC of the communication passage 25.
Since S is made equal to or larger than the 1μ small passage area A S of the surface load intake passages 21a and 21b, the −1 force wave is reduced due to the high angle load calibration valve 23 and the white of the communication passage 25. Intake inertia effect 4 without taking effect on light Jrff T
'Monkey. In addition, the expansion chamber 28 is
Since the intake air is positioned two downstream, similarly, the unique pulsation effect of the intake air can be effectively exerted.

ざらに、上記高負荷用吸気ボー1へ4の開口時期を低角
?、1用吸気ボー1〜3よりも以早としたことにより、
IJ1気ガスの吹き返しが高負荷用吸気ボー1〜4側に
集中゛りるので、低負荷用吸気ボーi〜3での膨張波゛
つまり2次脈動圧縮波を強く発ど1゜でき、上記吸気個
有脈動効果による過給効果を一層強力なものとすること
ができる。
Roughly speaking, is the opening timing of intake bow 1 to 4 for high load mentioned above at a low angle? By making the intake bow for 1 to 1 earlier than 1 to 3,
Since the blowback of the IJ1 air gas is concentrated on the high-load intake bows 1 to 4, expansion waves, that is, secondary pulsating compression waves, can be strongly generated at the low-load intake bows I to 3, and the above-mentioned The supercharging effect due to the intake-specific pulsation effect can be made even stronger.

J、た、上記吸気慣性効果a3よび吸気個有脈動効果に
よる過給効果は、低負荷用および高負荷用吸シ・、ボー
1−3.4の1’;i! [] flI! Bilθ[
〕、θS、第1高負イI:jIll吸う(通路?−)d
と第2高娘イ、ら;B吸気通路211ノとを連通りるi
” +iB、 +j82 bの0′4置および1代工冒
4:j i’i]吸気通路20a+ 201+の拡大室
28のイブ!買、並ひに固気ii:j I A 、 1
Bの高s”AイI;1用吸気ボー1へ4゜1間通路ト〈
ざls+l)よび十記拡大空2ε3とV 1”J荷用吸
気ボー1・3との間の通路長ざ2 pをJ−i!8の々
)1く設定り−ることによつ−C4’Jられ、過給畏τ
5゛を要さないので、既存の吸気系の1イ・かな9Ωi
]変更C゛済み、t/’S 3告が極めて簡単なもの−
Cあり、よって容易にかつ安価に実施てきる。
J, the supercharging effect due to the above-mentioned intake inertia effect a3 and intake individual pulsation effect is 1'; i! []flI! Bilθ[
], θS, first high negative I:jIll suck (passage?-)d
and the second high girl A, B;
” +iB, +j82 b's 0'4 position and 1st generation construction 4: j i'i] Eve of the expansion chamber 28 of the intake passage 20a+ 201+!
B height s” AI; 1 for intake bow 1 to 4° 1 passage
By setting the passage length 2p between the length 2ε3 and the load intake bows 1 and 3 as J-i!8) 1. C4'J and supercharged τ
Since it does not require 5Ω, the existing intake system's 1I/Kana 9Ωi
] Change C゛ Already completed, t/'S 3 Notice is extremely simple -
C, so it can be implemented easily and inexpensively.

尚、本発明は土:1[)実施例(こ限定されるものでは
イ1く、その他種々の変形例をも包含するものである3
、例え(J1上記実施例と異なり、エンジン高回転時に
吸気慣性効果を低負荷用吸気系統て、エンジン中回転1
1、〜に吸気個イj脈動効果e高角イ■u用吸気系統r
i!7るようにしてもよいのけ勿論である。
It should be noted that the present invention includes: 1 [) Examples (I 1 is not limited to this, and also includes various other modifications) 3
For example (J1), unlike the above embodiment, the intake inertia effect at high engine speeds is applied to the low-load intake system;
1. Intake system for ~ j pulsation effect e high angle i ■ u intake system r
i! Of course, it is also possible to do so.

また、吸排気オーバラップ期間はエキセントリックシャ
ツ1への回転角でO〜20’の範1mに設定することが
、充填効率の向上を図るとともに、ダイリ]−シ3ン刀
スの持込み量を少なくして特にエンジン低置*?+ l
l’lの失火の防止を図る1−(好ましい、。
In addition, setting the intake/exhaust overlap period to 1 m in the rotation angle of O to 20' to the eccentric shirt 1 improves the filling efficiency and reduces the amount of carry-in. Especially if the engine is placed low*? +l
1- (preferable) to prevent l'l misfire.

J、た、上記実施例では低負荷用絞り弁22を主低負荷
用吸気通路20内に設けた型式のものについて述l\た
が、低負荷用絞り弁22を、主低負荷用吸気通路20と
主旨負荷用吸気通路21との分岐部−ト流の主吸気通路
16に設りた型式のものも’+21 nl可能である。
In the above embodiment, the low-load throttle valve 22 was installed in the main low-load intake passage 20, but the low-load throttle valve 22 was installed in the main low-load intake passage. A type provided in the main intake passage 16 of the flow between the main intake passage 20 and the main load intake passage 21 is also possible.

以上説明したように、本発明によれば、低負荷用と高角
了Si用との2系統の独立した吸気通路を備えたリイド
吸気ボー1〜式の2気1:)ロークリピストンエンジン
にJ3 イT、5000〜700Q rpIIIのエン
ジン高回転時、一方の吸気系統にJ用ノる気筒イロ7:
7間の吸気慣性効果(こより過給効果を1呵るととも(
こ、上記5000〜7000r111T+の基準回転数
、よりも11000p以上低回転側の350Qrpm 
〜5000 rl〕mのエンジン中M転時、仙グツの吸
気系統における各気筒白身の吸気個イj脈動り)果によ
り過給効果を得るようにしたので、過給機等を要さづ°
に既存の吸気系の(午かな設5」変更によるf!l甲な
椙成で−6って、−Lンジンの中回転1戊から高回転域
に0って充填クツ率を高めて出力向上を有効に図ること
かで゛き、よってロークリビス1〜ンエンジンの出力向
上対策の容易実施化おにびコストダウン化に大いに奇+
a′c′きるものである。
As explained above, according to the present invention, a lead intake bow 1~ type 2 air 1:) low re-piston engine equipped with two independent intake passages, one for low load and one for high angle Iro 7: When the engine speed of I T, 5000-700Q rpIII is high, one intake system is connected to the cylinder for J.
The intake inertia effect for 7 hours (with the supercharging effect being taken into consideration)
This is 350Qrpm, which is 11000p or more lower than the reference rotation speed of 5000 to 7000r111T+ above.
When the engine is running at ~5000 rl]m, the supercharging effect is obtained by the pulsation of the intake air in each cylinder in the air intake system, so there is no need for a supercharger, etc.
Due to the modification of the existing intake system (5), the f! This makes it possible to effectively improve the output of low-revise engines, making it easy to implement measures to improve output and reducing costs.
A'c' can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面(J本発明の実施例を示し、第1図は全体tM成説
明図、第2図(ま全体+11i%略断面図、第3図は第
1および第2気筒の吸気行程を示す説明図、第4図は本
発明(こよる出力トルク特性を示すグラフである。 1△・・・第1気筒、1B・・・第2気筒、2・・・1
コークハウシング、2a・・・2 i搭l〜ロコイド状
内周面、3・・・低負荷用吸気ボー1〜.4・・・高負
荷用吸気ボー1−15・・・サイドハウジング、6・・
・ケーシング、7・・・ロータ、8・・・エキセントリ
ツクシレフト、9・・・作動卒、16・・・主吸気通路
、20・・・主低負荷用吸気通路、20a・・・第1低
負荷用吸気通路、20b・・・第2低員向用吸気通路、
21・・・主高負荷用吸気通路、21a・・・第1高負
荷用吸気通路、211〕・・・第2高負荷用吸気通路、
22・・・低置曲用絞り弁、23・・・高角荀用絞り弁
、25・・・連通路、28・・拡大室。
Drawings (J) Showing an embodiment of the present invention, Fig. 1 is an overall tM construction explanatory diagram, Fig. 2 is an overall +11i% schematic sectional view, and Fig. 3 is an explanatory diagram showing the intake stroke of the first and second cylinders. , FIG. 4 is a graph showing the output torque characteristics according to the present invention. 1Δ...first cylinder, 1B...second cylinder, 2...1
Coke housing, 2a... 2 i tower ~ lochoidal inner circumferential surface, 3... low load intake bow 1 ~. 4...Intake bow for high load 1-15...Side housing, 6...
・Casing, 7... Rotor, 8... Eccentric left, 9... Operation release, 16... Main intake passage, 20... Main low load intake passage, 20a... 1st Low-load intake passage, 20b...second low-load intake passage,
21... Main high-load intake passage, 21a... First high-load intake passage, 211]... Second high-load intake passage,
22... Throttle valve for low angle bending, 23... Throttle valve for high angle bending, 25... Communication path, 28... Expansion chamber.

Claims (1)

【特許請求の範囲】[Claims] (1)2節1〜ロコイド状の内周面を右Jるロータハウ
ジングとその両側に位罫づ゛るυ−イドハウジングとで
形成されたケーシング内にそれぞれ配設された略三角形
状のロータが、エキセントリックシャツl〜に支承され
該シャフトの回転角−℃180°の位相差を持って遊星
回転運動し、かつ低負荷用吸気通路と高負荷用吸気通路
とが各々独立して各サイドハウジングに設けた低負荷用
および高負荷用吸気ボートによって作動空に開ロザる2
気筒ロータリピストンエンジンにJ3いて、 a、高負荷用吸気ボー1〜の開口期間をエギヒン1〜リ
ックシャフトの回転角で270〜320°の範囲に設定
すること、 b 、低負荷用吸気ボートの開口期間をエキセントリッ
クシャツ1への回転角で230〜29O°の範囲に設定
すること、 C1各気筒の低負荷用および高角6S1用吸気通路の一
方を絞り弁下流において3qi通路で連通ずること、 d、各気筒の他方の吸気通路の絞り弁下流に拡大室を設
りること、 0、上記連通路およびぞの下流の吸気通路によって形成
される雨気筒の吸気ボー1〜間の通路長さを、5000
〜7000 rllmの間”c F=2定したエンジン
高回転時、一方の気筒の吸気ボーミル閉口時に吸気通路
内に発生覆る圧縮波を上記連通路を介して他方の気筒の
仝開直前の吸気ボー1〜に伝播させるように設定するこ
と、 f、上記拡大室から各気筒の吸気ボートまでの吸気通路
の通路長さを、上記5000〜7000 ppmの間で
設定した回転数よりも10o o rpm以上低回転側
の3500−5000rpH+のエンジン中回転時、各
気筒の吸気ボー1−の吸気開始により吸気通路内に発生
する膨偏波を上記拡大某て反転して反射した圧縮波の2
次脈動波を各気筒の全開直前の吸気ボートに伝播させる
ように設定すること ににって、各気筒の全開直前の低負荷用および高負荷用
吸気ボー1−にそれぞれ伝播した圧縮波により過給を行
うにうにしたことをI8徴どづ−るロークリピストンエ
ンジンの吸気装置。
(1) Approximately triangular rotors each disposed within a casing formed by a rotor housing with a locoidal inner peripheral surface on the right and υ-oid housings arranged on both sides of the rotor housing. is supported by the eccentric shirt l~ and rotates planetarily with a phase difference of -°C 180°, and the low-load intake passage and the high-load intake passage are independently connected to each side housing. The low load and high load intake boats installed in the
In the J3 cylinder rotary piston engine, a. Setting the opening period of the high-load intake bow 1 to a range of 270 to 320 degrees at the rotation angle of the rick shaft, b. Opening of the low-load intake boat setting the period in the range of 230 to 290° in rotation angle to the eccentric shirt 1; communicating one of the low load and high angle 6S1 intake passages of each cylinder C1 with a 3qi passage downstream of the throttle valve; d. An enlarged chamber is provided downstream of the throttle valve in the other intake passage of each cylinder; 5000
~7000 rllm"c F=2 When the engine is running at a constant high speed, the overlapping compression wave generated in the intake passage when the intake bow mill of one cylinder is closed is transmitted to the intake bow of the other cylinder just before opening via the communication passage. f. The length of the intake passage from the expansion chamber to the intake boat of each cylinder is set to 10 o o rpm or more above the rotation speed set between 5000 and 7000 ppm. When the engine rotates at 3500-5000 rpm+ on the low rotation side, the expansion polarized wave generated in the intake passage due to the start of intake bow 1- of each cylinder is inverted and reflected by the expansion wave 2 of the compression wave.
By setting the next pulsating wave to propagate to the intake boat of each cylinder just before full opening, the compression wave propagated to the low-load and high-load intake boats of each cylinder just before full opening causes overload. The intake system of a low-repetition piston engine that uses I8 to supply air.
JP57217319A 1982-12-10 1982-12-10 Intake apparatus for rotary piston engine Granted JPS59105934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57217319A JPS59105934A (en) 1982-12-10 1982-12-10 Intake apparatus for rotary piston engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57217319A JPS59105934A (en) 1982-12-10 1982-12-10 Intake apparatus for rotary piston engine

Publications (2)

Publication Number Publication Date
JPS59105934A true JPS59105934A (en) 1984-06-19
JPH0337012B2 JPH0337012B2 (en) 1991-06-04

Family

ID=16702299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57217319A Granted JPS59105934A (en) 1982-12-10 1982-12-10 Intake apparatus for rotary piston engine

Country Status (1)

Country Link
JP (1) JPS59105934A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357820A (en) * 1986-08-28 1988-03-12 Mazda Motor Corp Suction device for engine
JPS6361712A (en) * 1986-09-01 1988-03-17 Mazda Motor Corp Intake device for engine
JPS6361713A (en) * 1986-09-01 1988-03-17 Mazda Motor Corp Intake device for engine
JPS6361714A (en) * 1986-09-01 1988-03-17 Mazda Motor Corp Intake device for engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6357820A (en) * 1986-08-28 1988-03-12 Mazda Motor Corp Suction device for engine
JPS6361712A (en) * 1986-09-01 1988-03-17 Mazda Motor Corp Intake device for engine
JPS6361713A (en) * 1986-09-01 1988-03-17 Mazda Motor Corp Intake device for engine
JPS6361714A (en) * 1986-09-01 1988-03-17 Mazda Motor Corp Intake device for engine

Also Published As

Publication number Publication date
JPH0337012B2 (en) 1991-06-04

Similar Documents

Publication Publication Date Title
JPS59105934A (en) Intake apparatus for rotary piston engine
JPS5999034A (en) Intake apparatus for rotary piston engine
JPS6211169B2 (en)
JPH0452377B2 (en)
JPH0559249B2 (en)
JPS5970834A (en) Intake device of rotary piston engine
JPH0562226B2 (en)
JPS60249623A (en) Intake-air device in rotary piston engine
JPS5979042A (en) Intake apparatus for rotary piston engine
JPS5970837A (en) Intake device of rotary piston engine
JPS60222525A (en) Suction device of rotary piston engine
JPS60224927A (en) Suction system for supercharged engine
JPS59101542A (en) Suction device of rotary piston engine
JPS5970833A (en) Intake device of rotary piston engine
JPH0562227B2 (en)
JPH0337013B2 (en)
JPS59226230A (en) Intake apparatus for rotary piston engine
JPS5979044A (en) Intake apparatus for rotary piston engine
JPH0517378B2 (en)
JPS59105932A (en) Intake apparatus for rotary piston engine
JPS59101543A (en) Suction device of rotary piston engine
JPS6340251B2 (en)
JPS5970832A (en) Intake device of rotary piston engine
JPH052814B2 (en)
JPS5979043A (en) Intake apparatus for rotary piston engine