JPS636153B2 - - Google Patents

Info

Publication number
JPS636153B2
JPS636153B2 JP57003626A JP362682A JPS636153B2 JP S636153 B2 JPS636153 B2 JP S636153B2 JP 57003626 A JP57003626 A JP 57003626A JP 362682 A JP362682 A JP 362682A JP S636153 B2 JPS636153 B2 JP S636153B2
Authority
JP
Japan
Prior art keywords
electrode
glass
wire
diode
cuprous oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57003626A
Other languages
Japanese (ja)
Other versions
JPS58119661A (en
Inventor
Nobuo Ogasa
Kazunao Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP362682A priority Critical patent/JPS58119661A/en
Publication of JPS58119661A publication Critical patent/JPS58119661A/en
Publication of JPS636153B2 publication Critical patent/JPS636153B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks

Description

【発明の詳細な説明】 この発明はDHD型ガラス封止ダイオード電極
の製造法に係り、詳しくのべると、小径部と大径
部を有する電極を釘打ち加工または成形加工によ
つて組合わせて得られるリードレスダイオード電
極において、銅パイプを嵌合する方法によつて銅
層を被覆した後、伸線加工を施して得られる鉄−
ニツケル線を切断し、釘打ち加工または成形加工
後に電極表面銅層に亜酸化銅皮膜を形成させるこ
とを特徴とするものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing a DHD type glass-sealed diode electrode, and more specifically, it is obtained by combining an electrode having a small diameter portion and a large diameter portion by nailing or molding. In the leadless diode electrode, a copper layer is coated by a method of fitting a copper pipe, and then an iron wire obtained by wire drawing is applied.
This method is characterized by cutting the nickel wire and forming a cuprous oxide film on the copper layer on the electrode surface after nailing or shaping.

現在市販されているダイオード電極の殆んどは
第1図に示すように両端部にリード線1を具備し
た電極2間に半導体素子3を装着し、電極2の周
囲を封止ガラス4にて封止したDHD型ガラス封
止ダイオード電極であり、これをプリント基板等
に装着する際には、プリント基板の装着孔に細長
いリード線1を挿入して用いなければならない。
Most of the diode electrodes currently on the market have a semiconductor element 3 mounted between electrodes 2 with lead wires 1 at both ends, and a sealing glass 4 surrounding the electrodes 2, as shown in Fig. 1. This is a sealed DHD type glass-sealed diode electrode, and when it is mounted on a printed circuit board etc., a long and thin lead wire 1 must be inserted into the mounting hole of the printed circuit board.

このためその作業に多大の工数を要するととも
にダイオード自体の製造過程においてもリード線
を有しているために自動化作業の大きな障害とな
つているのである。
For this reason, the work requires a large number of man-hours, and the manufacturing process of the diode itself also includes lead wires, which is a major hindrance to automated work.

このようなことから第2図のようなリード線を
有しない、プリント基板への装着容易DHD型ガ
ラス封止リードレスダイオードが考案され、その
需要が次第に急増しつつある。
For this reason, a DHD type glass-sealed leadless diode, which does not have lead wires and is easy to mount on a printed circuit board, as shown in FIG. 2, has been devised, and its demand is rapidly increasing.

そしてこのようなリードレスダイオードの電極
2には銅層6を被覆した心線5(例えばFe−Ni
線)の表面に硼砂ガラス層または亜酸化銅層7を
施したジユメツト線(第3図)が使用され、これ
を一定長に切断し、釘打ち加工を施こして第4図
に示すような小径部8と大径部9からなる電極2
として用意する。
The electrode 2 of such a leadless diode is made of a core wire 5 (for example, Fe-Ni) coated with a copper layer 6.
A composite wire (Fig. 3) with a borax glass layer or a cuprous oxide layer 7 applied to the surface of the wire (Fig. Electrode 2 consisting of a small diameter part 8 and a large diameter part 9
Prepare as.

そしてこのような形状の電極2の中央部に第2
図のようにシリコン等の半導体素子3を装着し、
電極2の周囲を封止ガラス4で封止することによ
つてダイオードを得ている。
Then, a second electrode is placed in the center of the electrode 2 having such a shape.
As shown in the figure, attach a semiconductor element 3 such as silicon,
A diode is obtained by sealing the electrode 2 with a sealing glass 4.

ところが電極2表面の硼砂ガラス層または亜酸
化銅層7は、非常に脆いため釘打ち加工や成形加
工のような強い力が加えられると、剥離あるいは
疵が発生しやすい。そしてガラス封止ダイオード
にとつてこの表面硼砂ガラス層または亜酸化銅層
の欠損は、ガラス封止後の気密性を著しく低下さ
せ、リーク不良などの大きな要因となるのであ
る。
However, the borax glass layer or the cuprous oxide layer 7 on the surface of the electrode 2 is very brittle and is likely to peel off or crack when strong force is applied to it, such as during nailing or molding. For glass-sealed diodes, defects in the surface borax glass layer or cuprous oxide layer significantly reduce the airtightness after glass-sealing and become a major cause of leakage defects.

この発明はDHD型ガラス封止ダイオード電極
における上記の欠点を解消すべく検討の結果、得
られたものであつて、銅パイプを嵌合する方法で
銅層を被覆した心線例えばFe−Ni線に対する亜
酸化銅処理を行う前に、心線を釘打ち加工して第
4図のような小径部8と大径部9からなる形状の
電極2を作成しておき、そののちこの電極2表面
に亜酸化銅層を形成させることを特徴とするもの
であり、これによつてガラス封止部の疵をなく
し、完全にガラスと密着させてダイオードの信頼
性を高め、ジユメツト線電極表面に起因するリー
ク不良を完全に除去することに成功したものであ
る。
This invention was obtained as a result of studies to eliminate the above-mentioned drawbacks of DHD type glass-sealed diode electrodes, and it is a core wire coated with a copper layer, such as a Fe-Ni wire, by a method of fitting a copper pipe. Before carrying out the cuprous oxide treatment, the core wire is nailed to create an electrode 2 having a shape consisting of a small diameter part 8 and a large diameter part 9 as shown in Fig. 4, and then the surface of this electrode 2 is It is characterized by forming a cuprous oxide layer on the glass sealing part, thereby eliminating flaws in the glass sealing part, completely adhering to the glass, and increasing the reliability of the diode. We have succeeded in completely eliminating leak defects caused by this.

特にガラスと密着する小径部8を意図的に変形
させて、ガラスとの濡れ性を改善するために第5
図のような変形形状の電極を作成する時にこの発
明の方法は効果的である。
In particular, the small diameter portion 8 that comes into close contact with the glass is intentionally deformed to improve the wettability with the glass.
The method of the present invention is effective when creating electrodes with deformed shapes as shown in the figure.

以下この発明の実施例として電極を釘打ち加工
後亜酸化銅による表面酸化処理の方法について説
明する。
As an example of the present invention, a method of surface oxidation treatment using cuprous oxide after nailing an electrode will be described below.

まず銅パイプを嵌合する方法で銅被覆した0.1
〜1.5mmφまで伸線したFe−Ni素線を用意する。
そしてこの素線を釘打ちしながら第4図のような
形状の電極2を作成する。
First, copper-coated 0.1
Prepare Fe-Ni wire drawn to ~1.5mmφ.
Then, by nailing this wire, an electrode 2 having a shape as shown in FIG. 4 is created.

この時次工程の亜酸化銅処理において小径部8
も端面が酸化されるため、釘打ち加工時に該端面
にAgペレツト10を圧着する。またはAgペレツ
トを圧着させない場合は亜酸化銅処理後に端面部
のみ塩酸洗いをすることにより該端面部の黒化部
分を除去することができる。
At this time, in the next process of cuprous oxide treatment, the small diameter part 8
Since the end faces of the nails are also oxidized, Ag pellets 10 are crimped onto the end faces during nailing. Alternatively, when the Ag pellets are not pressed, the blackened portions of the end surfaces can be removed by washing only the end surfaces with hydrochloric acid after the cuprous oxide treatment.

このようにして用意した電極2を第6図に示す
ような連続酸化処理工程にて処理する。
The electrode 2 thus prepared is subjected to a continuous oxidation process as shown in FIG.

まず電極2を送り駆動装置11によつて回動す
るベルト12上にのせ、加熱炉13に誘導し、該
加熱炉内で950℃以上に加熱したのち、水温40℃
以下の水冷却槽14中へ連続的に浸漬して急冷
し、電極2の表面に亜酸化銅皮膜のみを生成させ
るのである。
First, the electrode 2 is placed on the belt 12 rotated by the feed drive device 11, guided to the heating furnace 13, heated to 950°C or higher in the heating furnace, and then heated to a water temperature of 40°C.
The electrode 2 is continuously immersed in the water cooling tank 14 to be rapidly cooled, so that only a cuprous oxide film is formed on the surface of the electrode 2.

従来のジユメツト線においては、硼砂液を表面
に均一に塗布した後にもう一度バーナーあるいは
加熱炉で焼付けて硼砂ガラス層を生成させていた
が、第4図あるいは第5図のような異形の形状の
ものに硼砂液を塗布しようとしても均一に塗布す
ることは難しいため得られる硼砂ガラス層も不均
一なものしか得られなかつた。
In conventional diamond wires, the borax liquid was applied uniformly to the surface and then baked again in a burner or heating furnace to form a borax glass layer, but in the case of wires with irregular shapes as shown in Figures 4 and 5, Even if an attempt was made to apply a borax solution to the glass, it was difficult to apply it uniformly, and the resulting borax glass layer was only non-uniform.

しかし、この発明における第6図のような処理
方法を実施するならば如何なる異形であつても銅
表面は均一に加熱されるので次工程の水冷却で一
定の膜厚の亜酸化銅層が得られるのである。
However, if the treatment method of this invention as shown in Fig. 6 is carried out, the copper surface will be heated uniformly no matter how irregular the copper surface is, so a cuprous oxide layer of a constant thickness can be obtained in the next step of water cooling. It will be done.

このようにして得られるこの発明による電極表
面は、ガラス封止に有害な亜酸化銅皮膜の剥離や
疵がないため、ダイオードの信頼性として極めて
高いものが得られるのである。
The surface of the electrode according to the present invention obtained in this way is free from peeling and flaws of the cuprous oxide film that are harmful to glass sealing, so that extremely high reliability of the diode can be obtained.

この発明の方法にて得た電極と従来法による電
極を用いてガラス封止したのち、100℃、1.5%塩
酸液中に15分間浸漬したのちに生ずるガラス−ジ
ユメツト表面境界の軸方向での酸浸蝕深さを測定
したところ第7図AおよびBのような結果が得ら
れ、この発明による電極が第7図Bのように酸浸
蝕が著しく小さくてダイオードの信頼性が極めて
高いことが実証された。
After sealing the glass using the electrode obtained by the method of this invention and the electrode obtained by the conventional method, the electrode was immersed in a 1.5% hydrochloric acid solution at 100°C for 15 minutes. When the corrosion depth was measured, the results shown in Figures 7A and 7B were obtained, and it was demonstrated that the electrode according to the present invention had extremely little acid corrosion as shown in Figure 7B, and the reliability of the diode was extremely high. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリード線つきダイオードの断面図、第
2図はリードレスDHD型ダイオードの断面図、
第3図はこの発明で得られる電極の平面図、第4
図は同じく斜視図、第5図は同じく他の実施例を
示す斜視図、第6図はこの発明のDHD型ガラス
封止ダイオード電極の製造工程の一例を示す説明
図、第7図AおよびBは従来法とこの発明の方法
により得られた電極の夫々の酸浸蝕深さを示す図
表である。 2……電極、6……銅層、7……亜酸化銅層、
8……小径部、9……大径部。
Figure 1 is a cross-sectional view of a diode with a lead wire, Figure 2 is a cross-sectional view of a leadless DHD type diode,
Figure 3 is a plan view of the electrode obtained by this invention;
5 is a perspective view similarly showing another embodiment, FIG. 6 is an explanatory view showing an example of the manufacturing process of the DHD type glass-sealed diode electrode of the present invention, and FIGS. 7 A and B is a chart showing the acid corrosion depth of electrodes obtained by the conventional method and the method of the present invention. 2... Electrode, 6... Copper layer, 7... Cuprous oxide layer,
8...Small diameter part, 9...Large diameter part.

Claims (1)

【特許請求の範囲】[Claims] 1 小径部と大径部を有する電極を釘打ち加工ま
たは成形加工して得られるリードレスダイオード
電極において、銅パイプを嵌合する方法によつて
銅層を被覆した後、伸線加工を施して得られる鉄
−ニツケル線を切断し、釘打ち加工または成形加
工した後に電極表面銅層に亜酸化銅皮膜を形成さ
せることを特徴とするDHD型ガラス封止ダイオ
ード電極の製造法。
1. In a leadless diode electrode obtained by nailing or molding an electrode having a small diameter part and a large diameter part, a copper layer is coated by a method of fitting a copper pipe, and then a wire drawing process is performed. A method for manufacturing a DHD type glass-sealed diode electrode, which comprises cutting the obtained iron-nickel wire, nailing or forming the wire, and then forming a cuprous oxide film on the copper layer on the electrode surface.
JP362682A 1982-01-11 1982-01-11 Manufacture of diode electrode glass sealed in dhd method Granted JPS58119661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP362682A JPS58119661A (en) 1982-01-11 1982-01-11 Manufacture of diode electrode glass sealed in dhd method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP362682A JPS58119661A (en) 1982-01-11 1982-01-11 Manufacture of diode electrode glass sealed in dhd method

Publications (2)

Publication Number Publication Date
JPS58119661A JPS58119661A (en) 1983-07-16
JPS636153B2 true JPS636153B2 (en) 1988-02-08

Family

ID=11562701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP362682A Granted JPS58119661A (en) 1982-01-11 1982-01-11 Manufacture of diode electrode glass sealed in dhd method

Country Status (1)

Country Link
JP (1) JPS58119661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344863A (en) * 1991-05-23 1992-12-01 Kobe Steel Ltd High pressure casting method for high quality casting material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156242U (en) * 1985-03-18 1986-09-27

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122555A (en) * 1981-01-23 1982-07-30 Toshiba Corp Glass sealed metallic piece electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122555A (en) * 1981-01-23 1982-07-30 Toshiba Corp Glass sealed metallic piece electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344863A (en) * 1991-05-23 1992-12-01 Kobe Steel Ltd High pressure casting method for high quality casting material

Also Published As

Publication number Publication date
JPS58119661A (en) 1983-07-16

Similar Documents

Publication Publication Date Title
US3860949A (en) Semiconductor mounting devices made by soldering flat surfaces to each other
US3569797A (en) Semiconductor device with preassembled mounting
US3844029A (en) High power double-slug diode package
US3125803A (en) Terminals
US2989578A (en) Electrical terminals for semiconductor devices
US3409809A (en) Semiconductor or write tri-layered metal contact
EP0090439A2 (en) Electrically isolated semiconductor power device
US3217401A (en) Method of attaching metallic heads to silicon layers of semiconductor devices
JPS636153B2 (en)
US4493143A (en) Method for making a semiconductor device by using capillary action to transport solder between different layers to be soldered
CN1161570A (en) Bumpless method of attaching inner leads to semiconductor integrated circuits
US3579375A (en) Method of making ohmic contact to semiconductor devices
JPH0445985B2 (en)
TWI231019B (en) Lead frame and manufacturing method thereof and a semiconductor device
JPH01257356A (en) Lead frame for semiconductor
US3947303A (en) Method for producing a surface stabilizing protective layer in semiconductor devices
JP2002368165A (en) Resin-sealed semiconductor device
US3539391A (en) Methods of coating semiconductor materials with conductive metals
JP2918676B2 (en) Manufacturing method of stem for hermetic sealing
KR920000225B1 (en) Ceramic condenser manufacture method
JPS6041860B2 (en) Manufacturing method for airtight terminals
JPH10321633A (en) Bump formation
JPH0422340B2 (en)
JPS6345005Y2 (en)
JPS5915080Y2 (en) semiconductor equipment